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ABSTRACT

A general approach is proposed for constructing response surface designs of economical size for
qualitative and quantitative factors. It starts with a central composite design for the quantitative
factors and then partitions them into groups corresponding to different level combinations of the
qualitative factors. Good designs are selected to ensure high estimation efficiency for several
models that reflect four stated objectives. A fairly complete collection of designs for one
qualitative factor with two levels is given. Designs for other situations are constructed and some
extensions are considered.

Key Words: Central composite design; Determinant criterion; Factional factorial design;
Plackett-Burman design.



1 Introduction

An outstanding problem in response surface methodology is the construction of economi-
cal designs for both quantitative and qualitative factors and the associated issue of modeling.
It may arise in situations in which some of the factors are qualitative by nature. Consider,
for example, a machining process for caster rolls in a steel plant. To improve the machining
time while keeping a high rating of surface roughness, four factors are identified as poten-
tially important: (i) feed which is the distance the tool advances in one revolution, (ii) speed
at which the surface moves past the cutting tool, (iii) lead angle at which the tool meets the
work piece, and (iv) insert which is the replaceable part of the cutting tool that does the
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cutting. The first three factors are quantitative, while the fourth can only take two shapes:
round and square. Without the availability of economical designs, the investigator may adopt
one of the following two approaches. In the first approach, a second order response surface
design such as the central composite design is used for each level of the qualitative factor
(i.e., for round and for square). This can take a large number of runs and may therefore be
impractical. Alternatively, one may ignore the difference between the two types of factors
and use a standard design for both types. As Draper and John (1988) aptly pointed out,
standard designs such as the central composite designs may not be suitable because they
would require four to five levels which the qualitative factors may not have. Even if this

were possible, the quantitative levels among them would be meaningless for the qualitative

factors.



The importance of the problem was recognized by Cox (1984), who posed it as one of
eleven open problems in design of experiments. Draper and John (1988) appeared to be the
first to tackle it seriously. They discussed the relations between designs and models and found
designs in some specific situations. In this paper we give a systematic method for constructing
designs of economical size and discuss the underlying objectives and models. An obvious
requirement for good designs is that when collapsed over the qualitative factors they should
possess desirable properties of standard response surface designs for quantitative factors
(Box and Draper, 1987; Khuri and Cornell, 1987). These are captured by the objectives C
and D of Section 2. Some issues related to the presence of qualitative factors are addressed
by the objectives A, B and C. In Section 3 we outline a method of constructing designs
to meet these objectives. The main idea is to start with a central composite design for
the quantitative factors and then partition them into groups. Each group corresponds to a
combination of the qualitative factor levels. From these designs we then select those with
high overall efficiencies as measured by the determinant criteria (3.1) and (3.3) for several
models. For one qualitative factor with two levels, a fairly complete collection of designs
is given in Section 4. A different but related class of designs for one qualitative factor and
two quantitative factors is given in Section 5. Strategies for constructing designs with two
qualitative and two quantitative factors are briefly discussed in Section 6. Section 7 outlines

some extensions.



2 Objectives and Supporting Models

The designs will be constructed to meet the following objectives. Denote the quantitative

factors by z; - - -, zx and the qualitative factors by 2zq,- -, z.

A. The overall design is efficient for a model that is second order in x4, -, 2, and has

the main effects of 2y, -+, 2, and the interactions between z; and z;.

B. At each combination of the qualitative factors or each level of a qualitative factor z;,

it is an efficient first order design in zy,- -, zk.

C. The second order design in A consists of two parts: the first part is a first order design
for both zq,---,zx and 2y, -, 2, and the second part can be viewed as a sequential

addition to the first part to expand it from a first order design to a second order design.

D. When summed over the levels of zy,---,z2,, it is an efficient second order design for

L1,y Tk-

Objective A is self-explanatory. Since the effects of x; may vary with the levels of z;, it is
desirable to have the design at each combination of zy,---,z, (or at each level of z;) that
allows separate estimation of the first order effects of z;. The second objective accomplishes
this. The third objective enables the experiment to be conducted in two stages. The initial
experiment allows the estimation of first order effects for both z; and z;. If warranted,

the second experiment can be conducted to ensure the estimation of second order effects in



the combined experiment. Objective D ensures that, when there is no significant difference
among the z;’s, the combined design is a second order design with good overall properties.
The issue of estimation efficiency will be addressed in the next section.

These objectives can be stated more precisely with the aid of regression models. For
simplicity we only consider r=1, the case of one qualitative factor. A second order model

for z; and z is given by

m k k
E(y) = Z W, (ﬂoz + Zﬂizxi) + Z Bijziz;, (2.1)
i=1

z=1 1,7=1
where m is the number of levels of the qualitative factor, W, is 1 when y is taken at level z
and 0 otherwise, 3,, is the constant term and S, is the slope of z;, both depending on the

choice of z. If the run size is small, we may only be able to entertain the following submodels

of (2.1),

m k
E(y) = Z Wz (,Boz + Z ﬁiz:l}i) + Zk: ﬂ,’,’iE? + some of ,Bijwi:cj(i < j), (22(1)

z=1 =1 =1
m k
E(y) = Z Wzﬂoz + E (,3,'11),‘ + ﬂnl'?) + some of Wzﬂiz:lii and ﬂijil:,'l'j(i < j) (226)
z=1 =1
Model (2.2a) excludes some interaction terms f3;;z;z;, ¢ < j, in model (2.1). Model (2.2b)
further excludes some B;,z; terms . Objective A stipulates that the overall design allows one

of these models to be fitted with high efficiency.

Objective B requires that the coefficients in the model

k
E(y)=p8+ Z,Bla:, + some of B;z;z;(1 < j), (2.3)

1=1



be estimated with high efficiency from the design at each level of the qualitative factor. The

first order submodels of (2.2a) and (2.2b) are respectively

m k
E(y) = E W, (,@oz + Z,B,-zm,) + some of fizizi(i < j), (2.4a)
z=1 =1
m k
E(y) = Z W, Bo: + Zﬂ,x, + some of W,B;.z; and Bijziz;(1 < 7). (2.4b)
z=1 =1

Objective C requires that the coeficients in (2.4a) or (2.4b) be estimated with high efficiency

from the first order design.

3 Selection Criteria and Construction Method

For r = 1 and m = 2 the objectives stated in Section 2 can be met by a class of designs
to be constructed in this section. Such designs are generically represented in Table 1. For
the quantitative factors 1, - -,y the first ¢(= 2’“_”) runs are chosen according to a Qk—rp
fractional factorial design with high resolution and z; = £1. The (t 4+ 1)st and (¢ + 2)nd
runs are the center points. The last 2k points are the “star points” with a = t1 to make the
overall design for z;, - - -,z) a rotatable central composite design (Box and Draper, 1987, p.

488). This design for z; satisfies objective D in Section 2.



Table 1. Second Order Designs for Quantitative
Factors and One Qualitative Factor

run T Z2 cee Tp z

1

2 +1 according to a see

: 2F-P  design note 1

t(= 2k-7)

t+1 0 0 oo 0 1 -1
‘ or

t42 0 0 0 -1 1

t+3 0 0

t+4 -a 0 0 see

t+95 0 o 0

146 0 e 0

: note 2

t+2k+1 0 et

t+2k+2 0 e

Notes

1. z = 1 or -1 by (i) equating column z to an interaction column among the z;s, or (ii)

search over different combinations of +1’s according to some criteria.

2. See 1 (ii).

For the first ¢ runs, z = 1 or -1 can be chosen according to an interaction column among
the z!s or by searching over different combinations of +1’s. The z values for the (t+ 1)st
and the (¢ + 2)nd runs are (1, -1) or (-1, 1). The z value for the last 2k runs are chosen
by searching over different combinations of £1’s. The search in both cases is directed by

objectives A, B and C of Section 2.



We use the determinant criterion (D-criterion) for efficiency comparison,
IXTX[m (3.1)

where the model is described by Ey = X3, y is the vector of observations, 3 is the vector of
parameters and n is the dimension of 3, i.e., the number of parameters in the model.

According to A, the overall design with ¢ + 2k + 2 runs should allow the paramenters
in models (2.1) or (2.2) to be estimated with high efficiency in terms of (3.1). When the
fraction 277 in the 257 design is small, we can usually find a design to accommodate the
estimation of parameters in the complete model (2.1). Otherwise, we look for designs that
can accommodate the estimation of the largest number of parameters in models (2.2). The
same principle is used for models (2.3) and (2.4).

According to B, the runs at each level of z should allow the parameters in model (2.3)
to be estimated with high D-efficiency.

According to C, the first t+1 runs, including one center point, should allow the parameters
in models (2.4a) or (2.4b) to be estimated with high D-efficiency. If the first ¢ + 1 runs and
the remaining 2k + 1 runs are conducted at different times, the D-criterion for the overall
design should accommodate the possible difference between the mean levels of the two sets

of runs, that is a “block” effect. The model is

B
E(y) = [X, u] = XB + ub, (3:2)



where y, X, B are the same as in (3.1), u = (u;) is the (t + 2k 4 2) X1 vector with u; =1 for
1 < t+ 1 and —1 for s >t + 1, and b is the block effect. Then the determinant criterion for
B is
IXTX — (XTw)(uTu) " (uT X) ", (3.3)
where uTu = t + 2k + 2. In the optimal design literature, (3.3) is called the D;-criterion. We
will use D; and respectively D_; to denote the value of (3.3) when the (¢ + 1)th run (center
point) is at z = 1 and respectively z = —1.
Note that the parameters in the linear model are estimable if and only if the determinant

value (3.1) or (3.3) for the design is positive.

Table 2. Coefficient Matrix of the Design for z;,z, and 2

T Ty X1T2 mf 3:% zZ T1Z2 X2z

1 1 1 1 1

1 -1 1 1 1

-1 1 1 1 1

-1 -1 1 1 1

0 0 0 0 0 1

0 0 0 0 0 or
V2 0 0 2 0
-2 0 0 2 0 -1

0 2 0 0 2

0 V2 0 0 2

We now illustrate the method by constructing designs for z1, z; and z. There are ten runs
whose coefficient matrix is given in Table 2. Since the coefficients for the z;’s are determined
by the requirement that they form a rotatable central composite design, it remains to choose
the levels of z for the ten runs. Therefore the choice of designs amounts to the choice of the

8



vector z = (21, - -, 210), Where z; is the z level of the 7th run. According to the requirements
" stated above, first, the designs should allow the estimation of the parameters in (2.1), which

can be rewritten as
E(y) = Bo + P11 + Box2 + Praz1T2 + Br1z? 4 BaaTi + 72 + 1712 + Y2T22
because z takes the values 1 or -1. We denote this model by
(1,21, 2, T1T2, T3, T3, Z, T12, T22),

where 1 is the constant term, and the value of its determinant criterion (3.1) by D. Second,
the design at each level of z should allow the estimation of the parameters in the model
(1,21, %2, 2122). The corresponding value of the determinant criterion is denoted by d_, for
2z = —1 and dy for z = 1. There are only ten designs with positive values of D, d_, and
dy (see Section 4). Third, the first order design, consisting of the first five runs, should be
able to entertain a multitude of models represented by (1, 1, T3, z||z1Z2, 12, £22), where the
first four variables to the left of the double bar must be included in the model and one of
T1T9,T17 OF T2z can be added as the fifth variable. We use D, () (and respectively D_;(2))
to denote the value of the D-criterion for the first order design whose center point takes
z =1 (and respectively z = —1) and the model consisting of the first four variables and the
ith variable to the right of the double bar. We denote the value of the D-criterion (3.3) by

D; or D_;, depending on the z value of the center point in the first order design.



Since good designs must satisfy multi-objective criteria, we list these designs in Table 3.1
of Section 4 according to their values of D,d_y,dy, Dy, D_y, Ds(i), and D_,(3). A high D
value is desired because‘ of the primary importance of fitting the overall model to the data.
Subject to this, we may choose designs with approximately equal d; and d_; values if the
information at each level of z is deémed equally important. Or, we may choose those with
a large value of dy or d_; if information at one level of z is more important for investigation
(e.g., a more commonly used machine, or a major supplier). There are ten designs with
positive values of D,d;, and d_;. If sequential design is contemplated, then the first order
design should be efficient for some selected models as reflected by high values of D;(z) or
D_4() for some %, and the overall design should be efficient for fitting the model (3.2) with a
block effect, which is reflected by high values of D, or D_;. Recommendations on the choice

of designs according to these criteria are given in the next section.
(Figure 1 here)

In Figure 1 we represent these ten designs graphically. The geometry of these designs
provides some insight into their values of di,d_y, D1(¢) and D_;(¢) given in Table 3.1. For
example, design 8 is the only one with d; = d_;. Its designs at z = 1 and at z = —1 are
identical after a 90° rotation. In general designs with equal numbers of points at z = +1
have similar d; and d_; values. The patterns of D;(¢) and D_y(¢),7 = 1,2, 3 are determined
by the distribution of the corner points. From Table 3.1, there are t'hree groups of designs
according to the values of Dy(¢) and D_;(¢). The best is designs 1 to 6, the second best

10



is design 7, and the worst is designs 8 to 10. Their distributions of the corner points over

z = —1 and 1 are, respectively, of the following types:

There is, however, no good geometric explanation for the D values in Table 3.1. The high
values of D in Table 3.1 can be explained partially by the orthogonality between the block
effect and some second order effects. This orthogonality is apparent from the geometry in
some situations. Take, for example, designs 6 and 8, which have the best and second best
D values. From Figure 2, the estimation of 7 and z3 is based solely on the observations at
z = —1 of the supplementary design. It is therefore orthogonal to the block effect since the
latter measures the overall difference between the first-order design and the supplementary

design. A similar explanation holds for design 8.

(Figure 2 here)

4 Designs For One Qualitative Factor

In this section we apply the previous construction method to obtain useful designs for
24,z with k < 7 and one qualitative factor z. Since z has two levels +1, models (2.1)

11



and (2.2a) can be represented respectively by the vectors
(1,z;, 22, 2525, 2,2),0 = 1, -+, k, 1 <1< j <k, (4.1)

and

(l,xi,x?,wiwj,z, z;z),1=1,--,k, (4.2)

with i < j chosen from selected pairs. Similarly, models (2.3) and (2.4a) can be represented

respectively by the vectors

(1,$i,$i$j), (43)

and
(1,z;, 225, 2, %:2), (4.4)
where i = 1,---,k and ¢ < j take all possible pairs or are chosen from selected pairs as

specified in each case. A similar representation was used and explained in Section 3 for the
case of k = 2.

In each case we give the information on the designs and models in five parts.

(a) A 2% design for xy,---,z; with its defining relations, or a 2% full factorial design.
(This is for the upper left part of Table 1.)' N = 2%-? 4+ 2k 4+ 1 = total run size, and
N, = 2FP 4 1 = size of first order design, a = (2""”)% in Table 1 that makes the

collapsed design (over z) rotatable.

12



(b) If the first 2°~7 components of the z column in Table 1 are defined by an interaction

among the z;’s, say z1zox3, we will write z = z1z223. Otherwise, this part is omitted.
(¢) Overall model (from (4.1) or (4.2)) for the whole design.
(d) Model for z =1 and for z = —1 (from (4.3)).

(¢) Model for the first order design (from (4.4)) with optional terms to the right of the

double bar.

The information on each design is completed by the values of z. If the first ¢(= 277)
components of z are defined by an interaction among the w,-;s (see (b) above), we only give
values of z = (2443, - -+, Zt42k+2) for the star points. Otherwise, we give z = (21, "+, Ze42k42)-
For each design, the values of D,d; and d_; are given. For k = 2 and 3, the values of
Dx, D_l,Dl(i) and D_,(z) are also given.

General Comments on Table 3.

(i) In each case only designs with positive values of D,dy, d_i,D; and D_, are given,
where D; and D_; are the D value (3.1) for the first order design with the center point
at z = 1 and -1 respectively. Recall that positive values of these criteria guarantee
that the parameters in the models for the criteria are estimable. These designs are
generally good since there is no marked difference among their values of D,dy,d_1,D;
and D_;. Choice of designs depends on the relative importance of these criteria and
those in (ii).

13



(ii) Values of the D,-criterion (3.3) are only given for £ = 2 and 3. For k > 4, the
rankings of designs according to D are essentially the same as D. They do not give
new information for design selection and therefore are omitted. Note also that, for
k > 4,D; and D_, are constant for the competing designs because the z values for
the first order design, being defined by an interaction among the z;’s, are the same
for the competing designs. Recall that objective C in Section 2 is manifested by the
criteria D,, D; and D_;. In view of the remarks above, it is not necessary to use them

to further discriminate the designs for k > 4.

The eight cases in Table 3 are referred as Table 3.4, ¢ = 1,---,8. Recommendations on
the choice of designs are only given for k = 2 and 3. Recommendations for the remaining

cases can be similarly made.
Table 3. Constructed Designs for z,,---,z; with £ <7 and one 2

1. k

I
)

(a) 22 design for z; and z3, N =10, N, = 5, = 1.414.
(c) Overall model: (4.1).
(d) Model for z = —1 and for z = 1: (1,21, T2, T172).

(e) First order model: (1,1, 3, 2||z122, 212, 222).

14



Table 3.1

design
no. z:(zl,-~~,z10)
1 -1 -1 -1 11 -1 1 -1 1 -1
2 -1 -1 -1 11 -1 1 -1 1 1
3 1 -1 -1 11 -1 -1 1 1 -1
4 -1 -1 -1 11 -1 -1 1 1 1
5 1 -1 -1 11 -1 -1 1 -1 1
6 1 1 1 11 -1 -1 -1 -1 -1
7 1 -1 1 11 -1 -1 -1 -1 1
8 1 1 1 -1 1 -1 -1 -1 1 1
9 1 1 1 -1 1 -1 -1 -1 -1 1
10 11 1 -1 1 -1 -1 1 -1 1
design
no. D di  d_y | dy(z?) di(zd) d_i(z?) d_i(«3) d_i(z?,22)
1 5.66 1.41 4.29 0.00 0.00 3.714 3.74 3.38
2 5.64 2.21 3.35 0.00 2.30 2.85 2.00 0.00
3 418 1.41 3.92 0.00 0.00 2.73 3.35 2.52
4 3.95 221 243 0.00 2.30 1.41 2.00 0.00
5 3.32 141 287 0.00 0.00 2.51 2.51 1.88
6 5.58 2.00 2.99 0.00 0.00 3.29 3.29 3.17
7 418 1.68 3.19 0.00 0.00 3.10 2.49 2.52
8 5.04 2.63 2.63 0.00 2.64 2.64 0.00 0.00
9 4.88 1.68 3.42 0.00 0.00 3.39 2.86 2.83
10 4838 221 2.74 2.00 2.00 2.00 2.00 0.00
design
no. D1 D_1 Dl(l) D1(2) D1(3) D_l(l) D_1(2) D_1(3)
1 458 4.58 3.57 3.03 3.03 2.30 0.00 0.00
2 3.90 4.75 3.57 3.03 3.03 2.30 0.00 0.00
3 3.10 3.10 3.57 3.03 3.03 2.30 0.00 0.00
4 3.90 3.21 3.57 3.03 3.03 2.30 0.00 0.00
5 2.09 2.09 3.57 3.03 3.03 2.30 0.00 0.00
6 421 5.38 2.30 0.00 0.00 3.57 3.03 3.03
7 3.10 3.10 3.03 0.00 3.03 3.03 0.00 3.03
8 492 492 3.03 0.00 0.00 3.03 0.00 0.00
9 3.61 4.61 3.03 0.00 0.00 3.03 0.00 0.00
10 3.61 461 3.03 0.00 0.00 3.03 0.00 0.00
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First we compare the designs in terms' of D,d;, and d_;. Obviously designs 1, 2 and 6
are the best, with design 2 being slightly better than 6. Design 8 has a high D value and is
the only one with equal values of d; and d_,. Between designs 1 and 2, design 1 is preferred
if the efficiency at one level of z is much more important than at the other. In general the
choice depends on the relative importance of the three criteria. If a sequential design is
contemplated, the designs need to be compared in terms of Dl, D_,, Dy (7)) and D_4(z). The
first six designs have the best values of D,(z) or D_;(), that is, their first order design can
entertain any one of z;z,, 212, or oz in addition to 1, 71, z2 and z. Design 6 emerges as the
best choice since it has the highest D value and the best values of D_;(z). Designs 2, 1, and

8 are the next best three.
2. k=3
(a) 23 design for zy,z; and 23, N = 16, Ny = 9,a = 1.682.
(c) Overall model: (4.1).

(d) Model for z = 1 and for z = -1: (4.3) with all possible pairs of ¢ and j.

(e) First order model: (1, zy, 22,23, 2|| 122, 21T3, T2T3, L1, T272, T3z).

Thirty choices of z are found to give positive values of D, dy,d_;, from which the best

three are given below.
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Table 3.2

design

no. z = (2’1, . ',zle) D d1 d_1 Dl ij_l
1 11-1 1 1-1-1-11-=-1-11-=-11-1-1{946 244 3.83 8.03 8.03
2 11-111-1-1-11-1-1-1-111 1[925 315 3.15 837 7.95
3 11 1-1-1-1-1-11-1-11-11 1 1[867 3.00 427 736 7.36

Let the six variables to the right of the double bar in (e) be denoted by 1, 2, 3, 4, 5, and
6, and D;(%) be the D value for the first order design including the center point at z =1 and -
the model consisting of 1,21, z,, 23, z and four additional variables in the set 1, for example,
T1To, T123, Toz3 and zyz for €= (1,2,34).

For design 1, Dy(2) = D_(3) = 5.44 for 1 = (1,2,3,4), (1,2,3,5), (2,3,4,5); D1(2) = D_1(2)
= 4.67 for i = (1,2,4,5), (1,2,4,6), (1,2,5,6), (1,3,4,5), (1,3,4,6), (1,3,5,6), (1,4,5,6), (2,4,5,6),
(3,4,5,6). For design 2, Dy(2) = D_;(2) = 5.44 for the last nine choices of ¢ in design 1 and
D1(3) = D_y(3) = 4.67 for the first three choices of % in design 1. For design 3, D1(z) =
D_1(3) = 5.4 for i = (1,2,3,5), (1,2,3,6), (1,3,5,6), (2,3,5,6) and Dy(2) = D_;(z) = 4.67 for
i = (1,2,3,4), (1,3,4,6), (2,3,4,5), (3,4,5,6).

Designs 1 and 2 have the largest D values. Design 3 has a smaller D value, but its value
4.27 of max(dy,d_,) is much larger than that of design 2. On the other hand design 3 has
smaller D values and can entertain a much smaller number of first order models.

For the same case Draper and John (1988) gave three designs in their Figure 8. Using
our definitions of D,d; and d_y, their design 8a has D = 0,d; = d_; = 3.56; design 8b
has D = 7.90,d; = d_; = 0; design 8c has D = 11.76, d; = 0 and d_, = 8.13. Their designs

8a and 8b are inferior to the three designs given above. Design 8c has larger values of D
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and d_; at the expense of having d; = 0. This can be seen from the distribution of points
| 3
between z = 1 and -1. All the star points and one center point are assigned to z = 1. For

the design at z = 1, the columns of 2, z123 and z,z3 are zero. Therefore the coefficients

of these three variables in (4.3) are not estimable.
3. k=4
(a) 2* design for z1, 22,23 and x4, N =26, N, = 17,0 = 2.
(b) Define z = z1x,23 for the first 16 runs.
(c) Overall model = (4.1).
(d) Model for z = 1 and for z = -1: (1,21, 2, T3, T4, T1T4, T2T4, T3T4).
(e) First order model: (4.4) with (¢,7) = (1,4), (2,4), (3,4).

The following six designs are found to give positive values of D, d; and d_; and the same

value of D; = D_; = 16.15.

Table 3.3

design
no. z = (z19, -, 226) D dy  d_;
1 -1 -1 -1 -1 -1-1 -1 16.64 8.13 12.43
-1 -1-1-1-1-1 1 16.48 9.08 11.22
-1 -1-1-1 111 16.42 10.11 10.11
1
1

-1 - 16.42 8.62 11.87
15.38 9.62 10.70
15.21 9.14 11.32

O Ol N

|

—_

1

—_

1

—

|

p—

1

—
e e e e

4. k=5

(a) 2° design for zy,---,z5, N = 44, N; = 33, = 2.378.
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(b) z = zyzox32425 for the first 32 runs.
(c) Overall model: (4.1).
(d) Model for z = 1 and for z = -1: (4.3) with all possible pairs of 7 and j.

() First order model: (4.4) with all possible pairs of ¢ and ;.

The following twelve designs are found to give positive values of D, d; and d_; and the

same value of Dy = D_; = 32.09.

Table 3.4

design

no. z = (235, s ,244) D dl d_l
1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1{38.39 16.06 19.54
2 -1 -1-1 -1 -1 -1-1 -1 1 1{38.23 16.72 18.81
3 -1 -1-1-1-1-1 1 1 1 1|38.17 1740 18.09
4 41 -1-1-1 -1 - -1 -1 -1 1{38.09 16.41 19.20
5 -1 -1 -1 -1 -1 -1-1-1-1-1|37.97 17.08 1847
6 1-1-1-1-1 11 1 1 1|3793 17.77 17.77
7 41 -1-1-1-1-1-1 1-1 1|37.81 16.77 18.86
8 -1 -1-1-1-1 1-1 1 1 1|3774 1745 18.15
9 -1 -1-1-1-11-1 1-1 1|3755 17.13 18.53
0 |(-1 -1 -1 1-1 1-1 1 1 1|37.53 1782 17.82
11 |-1 -1 -1 1-1 1-1 1-1 1|3731 17.50 18.20
12 -1 1 -1 1 -1 1-1 1-1 1[37.09 17.87 17.87

5. k=5

(a) 25! design with =5 = 2324 for 21, -, 5, N = 28, M=17a=2.

(b) z = zyz2z3 for the first 16 runs.

(c) Overall model: (4.2) with (,7) = (1,2), (1,3), (1,4), (1,5), (2,3), (2,4) and (2,5).
(d) Model for z = 1 and for z = 1 (1, z;, g, T2x5), 2 =1, -+, 5.

(e) First order model: (4.4) with (¢,7) = (2,4), (2,5).
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The following six designs are found to give positive values of D, d; and d_; and the same

value of D; = D_; = 16.14.

Table 3.5

design

no. z = (219, ety 223) D dl d_1
1 -1 -1-1-1-1-1-1-1-1-1|1582 812 13.75
2 -1 -1-1-1-1-1-1-1 1 1|1567 9.08 12.43
3 -1-1-1-1-1-1 11 1 1|1563 10.11 11.22
4 -1-1-1-1-1 11 1 1 1|1461 10.70 10.70
5 -1-1-1-1-1-1-1 1 1 1|1461 9.62 11.87
6 -1 -1-1-1-1-1-1-1-1 1[1461 862 13.14

6. k=6

(a) 2671 design with z¢ = T12oz3z4zs for z1,---,26, N = 46, N; =33, a =2.378.
(b) z = z1x225 for the first 32 runs.

(c) Overall model: (4.1).

(d) Model for z = 1 and for z = -1: (4.3) with (3,5), ¢ =1,2,3,and j = 4, 5, 6.
(e) First order model: (4.4) with (z,5),¢ =1, 2, 3,and j =4, 5, 6.

The following two designs are found to give positive values of D, d; and d_; and the

same value of D; = D_; = 32.08.

Table 3.6

design

no. z = (235, s ,246) D dl d_1

1 -1 -1 -1-1-1-1 11111 1{29.04 18.09 18.09
| SN

2 |-1-1-1-1-1-1-11 27.63 17.77 18.47

7. k=17
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(a) 27! design with z7 = zyzsz3245 for z4,---,27, N = 80, N; = 65, = 2.828.
(b) z = zyzoz5 for the first 64 runs.
(c) Overall model: (4.1).

(d) Model for z = 1 and for z = -1: (4.3) with (3,7) = (4,6), (5,6), (6,7) and ¢ = 1,

2,3,and y =4,5,67.

(e) First order model: (4.4) with the same set of (¢,7) as in (d).

The following ten designs are found to give positive values of D, d; and d_, and the same

value of D; = D_; = 64.

Table 3.7

design

no. z = (Z67, s ,Zso) D d1 d_l
1 -1 -1-1-1-1-1-1-1-1-1-1-1-1-1|5745 32.04 36.81
2 -1-1-1-1-1-1-1-1-1-1-1-1 1 15736 32.70 36.10
3 -1-1-1-1-1-1-1-1-1-11 1 1 1|57.30 33.36 3540
4 -1-1-1-1-1-1-1-111 1 1 1 1|57.27 34.03 34.03
5 -1-1-1-1-1-1-1-1-1-1-1 11 15715 33.05 35.77
6 -1-1-1-1-1-1-1 111 1 1 1 1|5465 3439 34.39
7 -1-1-1-1-1-1-1-1-11 1 1 1 1|5465 33.71 35.08
8 -1-1-1-1-1-1-1-1-1-1-1-1-1 1|5465 32.39 3648
9 -1-1-1-1-1-1-1-1-11-1 11 1|5446 33.40 3545
0 (-1 -1-1-1-1-1-1-1-1-1-11-1 1|5446 32.75 36.15

8. k=17

(a) 2772 design with z¢ = T12223%4, Tr = 21222325 and TeT7 = 2475, for 1, -+, T7,

N =48, N; = 33,0 = 2.378 .

(b) z = 12232425 for the first 32 runs.
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(c) Overall model: (4.2) with (i,7) = (1,2), (1,3), (2,3) and i = 1,2, 3 and j = 4, 5,
6, 7.

(d) Model for z = 1 and for z = -1: (4.3) with (i,5) = (1,2), (1,3), (2,3) and z = 1,
2.3 and j =6, 7.

(¢) First order model: (1,z;,T;Tk, 2,712, %22, 232), Where ¢ = 1,---,7,5 =1 and

k=2,---,7,j=2and k=3,---,7,5=3and k=4, ---,T.

The following six designs are found to give positive values of D, d; and d_, and the same

value of D; = D_; = 32.07.

Table 3.8

design

no. z = (235, s ,243) D d1 d_l
1 1 -1-1-1-1-1-11-11 1111|3344 16.83 1590
2 1-1-1-1-11-11-11-1111|3330 13.29 1643
3 1-1-1-1-11-11-11 11 1 1|3330 17.17 15.63
4 1-1-11-11-11-11-11-11|3317 1653 16.99
5 1-1-11-11-11-11-1111|3317 1701 16.15
6 -1 1-11-11-11-11-11-11]|3304 1686 16.69

5 Nine-Point Designs With One Center Point

Draper and John (1988) gave a design for 7 = 1 and k = 2 in their Figure 5, which
consists of one center point, four corner points and four star points. By following the
same search procedure for ten-point designs with two center points, we are able to find
all possible nine-point designs with desirable properties in terms of D, D(7),dq, and d_y,

whose definitions and models are exactly the same as in Table 3.1. Without loss of generality,
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we can assume that the center point is assigned to z = 1. There are eleven such designs

given in Table 4 and Figure 3 which have positive values of D,d; and d_;. The z; values of

these designs are the same as before (see Table 2). The values of z; to z4 are the z values

for the corner points, z5 for the center point, and z¢ to zo for the star points. From their

values of D, dy,d_y,D;(1), D;(2) and D;(3), design 1 is the best overall choice. If Dy(i) are

less important, design 7 is comparable to design 1. Both designs are quite unbalanced in

the distribution of the star points over z = £1. Other designs, particularly 2, 6, 9, 10, may

be considered depending on the relative importance of D, dy,d_y and Dy(z). Note that the

design given in Draper and John is equivalent to design 4.

(Figure 3 here)

Table 4. Eleven Designs with One Center Point, r =1, k =2

design
no. z1 zZ9 zZ3 Z4 Z5 Z6e =7 zZg 29 D d1 d_l D1 (1) D1(2) D1 (3)
1 -1 -1 -1 1 1 1 -1 1 1 487 221 3.11 3.57 3.03 3.03
2 -1 -1 -1 1 1 -1 1 1 -1 343 141 364 3.57 3.03 3.03
3 1 -1 -1 1 1 -1 1 1 1 3290 221 129 3.57 3.03 3.03
4 -1 -1 -1 1 1 1 -1 1 -1 329 221 1.29 3.57 3.03 3.03
5 -1 -1 -1 1 1 -1 1 -1 1 232 141 1.69 3.57 3.03 3.03
6 -1 -1 1 1 1 -1 -1 -1 1 343 168 2.99 3.03 0.00 3.03
7 -1 1 1 1 1 -1 -1 1 -1 487 335 2.00 2.30 0.00 0.00
8 -1 1 1 1 1 -1 -1 -1 -1 467 2.00 283 2.30 0.00 0.00
9 -1 1 1 -1 1 -1 1 -1 1 400 221 238 3.03 0.00 0.00
10 -1 1 1 -1 1 -1 -1 -1 1 4.00 168 3.13 3.03 0.00 0.00
11 .11 1 1 1 -1 -1 -1 1 329 243 200 2.30 0.00 0.00

Based on the values of D;(z), we can group the 11 designs in decreasing order as follows:

(i) designs 1 to 5, (ii) design 6, (iii) designs 9 and 10, (iv) designs 7, 8 and 11. From Figure

3 their distributions of the four corner points and the center point are, respectively, of the
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following types:

(i) (i) (ii) (iv)

The worst group (iv) has the least balanced distribution of points.

Finally we note that the 11 designs in Figure 3 can all be obtained from designs 1 - 7
and 9 - 10 in Figure 1 by deleting a center point. For example, design 1 in Figure 3 is the
same as design 2 in Figure 1 with the left center point removed; design 7 in Figure 3 can be
obtained from deleting the right center point of design 2 in Figure 1, and then exchanging
z, and z, as well as z = —1 and 1. However, good designs with two center points are not
necessarily good when a center point is deleted. For example, the “best” design 1 in Figure
1 corresponds to design 4 in Figure 3 after the left center point is removed. The latter design

is not among those we recommended.

6 Designs For r =2 and k£ =2

When there are two or more qualitative factors, construction of designs becomes more
complicated because objective B in Section 2 can take several forms. We only consider the

simplest case of r = 2 and k = 2. The following are some reasonable criteria for selecting
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designs. Since objective C in Section 2 is essentially the same as in r = 1, we will not discuss

it here for brevity.

(i) The model (1,z;,z?, x129, 2, ;2), where ¢ = 1,2 and z = 21, 23, 2122, can be fitted with

high D-efficiency from the overall design.

ii) For each level of z1, the model (1, z;, 2%, 122, 22, Tiz2), ¢ = 1,2, can be fitted with high
i g
D-efficiency. For each level of z,, the model (1,z;,z?, 2122, 21, %i21),¢ = 1,2, can be

fitted with high D-efficiency.

(iii) For each of the four combinations of z; = %1 and z; = %1, the model (1, z1, 22, z122)

can be fitted with high D-efficiency.

For each level of z; and of z,, the criteria (ii) and (iii) are exactly the same as for r =1
and k = 2 (see (4.1) and (4.3)). Therefore we can use any of the eleven designs in Section
5 for, say, z; = 1. Once a design is chosen for z; = 1, the design at z; = —1 is obtained by
changing the sign of z; of the design at z; = 1. This is done so that the design at each of
2y = +1 and of z; = %1 consists of four corner points, four star points and one center point.

An example is given in Figure 4. Altogether there are eleven such designs based on those in

Figure 3.
(Figure 4 here)

For each design the D values for the criteria in (ii) and (iii) are the same as those in
Table 4. For the overall design, we consider the D-efficiency for three models. The first
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is the model given in (i) with 15 terms. The second and third models are obtained from
adding (2221, 2221, 712221) and respectively (z}zs, 322, 217222) to the first model. The D
values (3.1) for these three models are denoted by D(1), D(2) and D(3) in Table 5 for the

eleven designs.

Table 5.
D values of eleven designs with »r =2 and k = 2.
The design number corresponds to the design number in Table 4.

design
no. D(1) D(2) D(3)
1 11.71 973 9.73
2 882 6.86 6.86
3 . 866 658 6.58
4 12.09 10.15 10.15
5 6.55 4.64 4.64
6 882 6.86 6.86
7 1171 9.73  9.73
8 11.26 933  9.33
9 985 8.00 8.00
10 964 8.00 8.00
11 8.66 6.58 6.58

In terms of the D(i) in Table 5, the best designs are 4, 1, 7 and then 8 and 9. When
criteria (i) and (iii) are also considered, we refer to the values of D,d; and d_; in Table 4
for the purpose of comparison. On balance, we would recommend designs 1, 7, 8, 4 and 9 in
descending order.

Normally two center points will be enough for the overall design. If four center points
with one at each of z; = £1 and 2z, = %1 are required, we can use any of the 10 designs in
Figure 1 for z; = 1 and the rest of the construction is the same.

If the run size is much smaller than 18, we must be content with less ambitious objectives

such as the following.
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(i) The model (1, z1, 23, 2122, T1, T2, T1 T2, T3, 23) can be fitted with high D-efficiency from

the overall design.

ii) If the effect of z; (and resp. of z;) is not significant, the model
g
(1, 22, T1, T2, T1T2, T3, T3, T122, T222) (and resp. the model
(1, 2y, %1, T2, T1T2, T3, T3, T121, L221)) can be fitted with high D-efficiency from the over-

all design.

(iii) For each level of z; (and respectively of z;), the model (1,z;,22,7172) can be fitted

with high D-efficiency.

When the design is collapsed over the levels of z; (and respectively 2;), we call the
resulting design a marginal design in z, (and respectively z;), which has one qualitative
factor and two quantitative factors. It is clear that, for the marginal design in 2; or in 22,
the models in (ii) and (iii) just stated are identical to those in (c) and (d) for the case of
r =1 and k = 2 (see Table 3.1). If the overall design consists of four corner points, four
star points and two center points, then the two marginal designs must be chosen from the 10
designs given in Table 3.1 or Figure 1. Once the marginal designs are specified, the allocation
of the corner and star points to z; and z; is uniquely determined. There are two choices of
the two center points: (z1,22) = {(=1,-1),(1,1)} or {(—1,1),(1,—1)}. One such example

is given in Figure 5.

(Figure 5 here)
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From the previous remarks, the D-efficiency in (ii) is given by the D value in Table 3.1.
Similarly, the D-efficiency in (iii) of each marginal design is given by the values of d; and
d_; in Table 3.1. So we need only to evaluate the D value of the model in (i). The design in
Figure 5 has the largest D value 6.16 for the model in (i) among all possible combinations of
the marginal designs. In general we can compare designs by these three sets of D-efficiency

values. To save space, the details are omitted.

7 Some Extensions

(i) Run size reduction through smaller plans for the cube points

Sometimes we can achieve dramatic reduétion of run size by this means without greatly
sacrificing the capacity for effect estimation. Take, for example, the case of r = 1 and
k = 4. The designs in Table 3.3 have 26 points. If we choose instead a 2*~! design with
z4 = 7122 and define z = z,x3 for the first 8 runs, the total run size is 18 (=84 8+ 2).
By further choosing (211, -,218) = (—1,1,—1,1,—1,1,—1,1) for the eight star points, the
resulting design can entertain the 18 terms (1, z;, 27, ©122, T124, T2T3, T2T4, 2, zz;), 1=1,2,3,4,
with D = 5.66. Obviously it is not as efficient per observation as the designs in Table
3.3. It can entertain (1,1, 2, T3, T4, T1T2, T1T4, T2T3, ToZ4) for z = 1 and for z = -1, with
dy = d_; = 2.52. If the first order model is (1,z1, 22, T3, T4, T1%3, 2, T12), the design has

D, = D_, = 8.23. In practice the choice between smaller and larger designs depends on
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the cost of runs, time limitation, importance of estimation efficiency, etc. If the effects of
interest are large, they can be detected by less efficient (but smaller) designs.

To reduce the number of corner points, we can employ the Plackett-Burman designs for
the corner points. For example, the design in Table 3.6 has 46 runs including 32 cube points
and can entertain an overall model with 35 terms. By taking a Plackett-Burman design
with 28, 24 or 20 runs for the corner points, the total run size is reduced by 4, 8, or 12.
The estimation efficiency for such designs will be investigated later. Note that the Plackett-
Burman designs have been employed té reduce the size of central composite designs (see

Draper and Lin, 1990, and its references).
(i) Additional variables to be entertained

For most designs discussed so far, the models we have considered, i.e., (4.1) - (4.3), are
not saturated. There is often the possibility of entertaining one or more variables. Here
we only discuss three cases. Finding such variables for general designs is computationally
straightforward. An illuminating example is the designs for » = 1 and k = 2. From Figure 1,
it is clear that for some designs 2 or z% can be entertained at z =1 or z = —1. Let d_;(*)
and dy(x) be respectively the D value (3.1) for the design at z = —1 and at z = 1 and the
model consisting of 1, 1, T, 12 and the additional variables indicated by *. For z = —1, *
can be z2,z% or {z2,z2}. For z = 1, x cannot take both z? and z2. The values are given in
the second part of Table 3.1. The best two are designs 1 and 6 at z = —1. Design 6 having

all the four star points at z = —1 clearly has a high value of d_; (2%, 2}) for entertaining
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both z? and z2 because the quadratic curvature of z; and of z, can be efficiently estimated
by the two star points, one corner point and the center point.

Another example concerns the 16-run designs for r = 1 and k£ = 3. Since the overall model
(4.1) has 14 terms, there are two remaining degrees of freedom for fitting additional terms.
Consider the possibility of fitting one or two of the six cubic terms, z,z,2, T1732, T2%32, T} 2, 232
and z2z, which we denote by 1, 2, 3, 4, 5 and 6. Draper and John (1988) stated that their
design 8b allows the pairs (2,4), (2,5) and (2,6) to be fitted. In fact, (4,5) and (5,6) can also
be fitted, but not others. In contrast, design 2 in Table 3.2 allows any of the (%) = 15 pairs
of cubic terms to be fitted. Design 1 allows 13 out of 15 pairs to be fitted with the exception
of (1,6) and (2,3). Design 3 does not fare as well but still allows (1,3), (1,4), (1,5), (1,6),
(3,4), (3,5), (3,6), (4,5) and (5,6) to be fitted. Overall, our designs 1 and 2 are better.

Finally we consider the six designs in Table 3.3. Since the run size at z = 1 ranges from
9 to 13 and the model for z = 1 has eight terms, one would expect more variables to be
entertained in some of the designs. It turns out that each of designs 1, 2, 4, 5, 6 can entertain
three additional terms z12, 2123 and zo23 for z = —1. Designs 5 and 6 can also entertain

7124 for z = 1.
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