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ABSTRACT

At the research and development stage, a decision maker may wish to select the
most reliable design from among several competing product designs. This paper proposes
a systematic approach to the selection problem for highly reliable products which possess
a Weibull-Inverse Power law failure model. First, optimum test plans for both type-I and
type-II censoring are derived by minimizing the asymptotic variance of estimated
quantiles at the design stress. Next, an intuitively appealing selection rule is proposed.
The sample size and censoring time (or number of failures) needed by this selection rule
are computed with a predetermined time-saving factor and a minimum probability of
correct selection (CS). An example to demonstrate the selection procedure is given.
Finally, a cost criterion is used to compare these two censoring plans. Although type-II
censoring needs slightly larger sample sizes than type-I censoring, it has a shorter
expected life-testing time.



1 Introduction

At the research and development stage, a decision maker usually faces the problem of se-
lecting the most reliable (best) product design from several competing designs. Also, he/ she'
may want to compare the products of several vendors. Referring to the example in section
6, there may be several vendors who provide different competing designs of electrical insula-
tion. The decision maker may wish to select the best vendor. Many selection rules for such
problems have been proposed during the the last thirty years. General references may be
found in Gibbons et al. (1977), Gupta & Panchapakesan (1979) and Gupta & Huang (1981).
Recently, a comprehensive survey of selection procedure in reliability models was given by
Gupta & Panchapakesan (1988). Most of those selection rules are based on complete and/or
censored data. For highly reliable products, a few (or even no) failures can be observed under
normal design stress (i.e., normal use condition). Consequently most of these selection rules
are not applicable.

Accelerated Life Tests (ALTs) are used to compare and to estimate the life time of highly
reliable products within a reasonable testing time. Products are tested at higher stress (such
as temperature, voltage, vibration, etc.) and results are extrapolated using an assumed
statistical model to estimate the product life at normal design stress. General references
may be found in Mann et al. (1974), Lawless (1982), Tobias & Trindade (1986), Peck and
Trapp (1987), Viertl (1988), and Nelson (1990).

There is much literature on optimum ALT plans. Chernoff (1962) is a pioneer in this
area. Under type-I censoring, Nelson & Kielpinski (1976) and Nelson & Meeker (1978) give
an exposition on optimum test plans for lognormal-Arrhenius and Weibull-Inverse Power
models respectively. Meeker & Hahn (1977) analyze the linear logistic failure model in a
similar way. Escobar & Meeker (1986) and Menzefricke (1988) present optimum test plans
under type-II censoring. In addition, Martz & Waterman (1978) and DeGroot & Goel (1979)
also discuss the Bayesian analysis of ALT models.



There is no suitable discussion of optimal ALT planning for comparing several highly-
reliable, competing product designs. The main reason is that there is no simple estimator
even for the single population (design) case. The life of certain products is described with
a Weibull life distribution whose characteristic life is an inverse power function of stress
(Nelson (1990)). Examples are electrical insulation (voltage as the accelerating variable),
ball bearings (load as the accelerating variable) and metal fatigue (mechanical stress as the
accelerating variable). This paper presents a systematic approach to this selection problem
for highly reliable products possessing a possessing a Weibull-Inverse Power model.

When the Weibull shape parameters are known, the optimum test plans for both type-
I and type-II censoring are derived by minimizing the asymptotic variance of estimated
quantiles at design stress. Based on life data from those plans, we propose an intuitively
appealing selection rule to achieve a stated goal. The sample size and censoring time (or
number of failures) which are needed by this rule are computed under a predetérmined
time-saving factor and a minimum probability of correct selection. We use an example to
demonstrate this selection procedure.

By using a cost criterion , we compare the relative efficiency of these two censoring plans.
It is seen that type-I requires slightly smaller sample sizes than type-II censoring. On the
other hand, type-II has a shorter expected life-testing time than type-I censoring.

Although the Weibull shape parameters are usually unknown, it is reasonable to assume
that their prior distributions are known over some interval. We use simulation to study the
robustness of our rule under a general beta prior distribution. From the results, it is shown
that this rule is quite robust when the true shape parafneter has a moderate departure from

the assumed value.



2 The life-stress model

In this section, we will summarize the statistical life-stress model, censoring mechanism and
the optimality criterion.

(A) Weibull-Inverse Power model
The assumptions of this model are:

(1) Product life has a Weibull distribution at any stress. The Weibull reliability function is
R(t) = e ¢/ ¢ > 0,

where 8 > 0 and B > 0 are the Weibull scale and shape parameters respectively.
(2) The Weibull shape parameter 3 is independent of stress (a constant for any stress).
(3) The Weibull characteristic life (scale parameter) 6 is an inverse power function of stress
S. That is,
6(S)=-¢e"/S™,

where v and 7; are two unknown parameters.
(B) Censoring mechanism
Two well-known censoring plans are often used to shorten the time of life-testing.
(1) Type-I censoring
This involves running each unit for a predetermined time. In this case, the censoring
time is fixed while the number of failures is random.
(2) Type-II censoring
This involves simultaneous testing of the units until a predetermined number of them
fail. In this case, the common censoring time is random and the number of failures is fixed.
(C) The optimization criterion
Nelson & Kielpinski (1976) describe various criteria for determining o}ptimal ALT plans. In
this paper, we use the criterion of minimizing asymptotic variance of estimated quantiles at

the design stress to derive the optimal plans.



3 Problem formulation

Suppose I, ..., II; denote k available product designs and Sy denotes the normal use condi-
tion (stress) of those designs. For 1 < £ < k, Ry(t,So) denotes the reliability function of II,

under stress So. The design II; is said to be the most reliable design at time ¢t* if

R{(t‘, So) = 11151?5; Rl(t‘, So) (1)

The goal of the decision maker is to select the most reliable design from among these k
available designs.

For highly reliable products, there may be only a few (or even no) failures observed under
So. The accelerated life test (ALT) is used to overcome this difficulty. Suppose the tests are
conducted at m values of higher stresses {S,-};-’;l and So < 51 < ... < S, It is assumed
that the life-stress relation follows a Weibull-Inverse Power model, that is, the lifetime of
design II; under stress S; follows a Weibull distribution with an unknown characteristic life
(scale parameter) 6;; and a shape parameter f3;, where 6;; with S; following an inverse power

model. This can be expressed as

eij — "o / S;y.'l’ (2)

where «;0 and «;; are unknown parameters of design II;.

For each combination of (II;, S;), there are n;; units which are put on test to perform
an ALT. Using a type-I (or type-II) censoring plan for each combination, the experiment
terminates when the censoring time 7;; (or the number of failures r;;) is reached. Based on
these life-testing data to select the most reliable design, some typical decision problems are
as follows:

(1) Which censoring plan is better?
(2) How many stresses should be used for performing ALT?

(3) How many observations n;; for each combination of (II;, S;) should be taken?



(4) What is the optimal censoring time 7;; (or the optimal number of failures r;;) for each
combination of (II;, S;)?
(5) How to construct a suitable selection rule to achieve the goal of the experimenter?

In the following section, we assume that the Weibull shape parameters are known. In

section 8, we will discuss the case of unknown shape parameters.

4 Optimal accelerated life test plan

The maximum likelihood (ML) method is used to estimate the unknown parameters under

both type-I and type-II censoring. It is convenient to reparameterize the life-stress model

(refer to Nelson & Meeker (1978)). Define the standardized stress v; as follows:

v;j=(n Su—1In S;)/(In Sm—1In Sp),0<j < m, (3)

It is easily seen that vo =1 and v, =0, while0 < v; < 1,for 1 < j < (m —1). The relation

in equation (2) can be rewritten as:

In 0,'_,' = a;o + a;1v5, (4)

where ajo = (7i0 — Yi1ln Sm) and iy = v (ln S —1n Sp).

Let {T};c};~) denote a set of observations for the combination of (II;, S;), and Z;j, =
Bi(In Tij¢ — ao — ai1v;). It is easily seen that Z;;, follows a standard extreme distribution,
for ¢,5,£, where 1 <i<k,1<j<mand1<{<n.

Consider a sample that may be type-I or type-II censored involving observations on
the lifetimes of n;; individuals for each combination of (II;, S;). We shall denote both
standardized lifetime and censoring time as 2;,({ = 1,...,n;;) and let D;; be the set of
individuals for which z;j, is an observed lifetime and C;; be the set for which Zije 1s a
standardized censoring time. The likelihood function for the 7 — th design can be expressed

as follows:



ﬁ{ II Bid(zi50) II Q(zi0)} (5)

=1 LeD;;j LeC;;
where ¢(z) and Q(z) denote the probability density function (pdf) and reliability function
for the standard extreme distribution respectively.

The maximum likelihood estimators (MLE) for a;o and 1, (&io, &i1), can be solved by

Sory -3 et T ewy = ©

Jj=1 (teD;; LeCij

and

Sorin =Sl T et 3 e o, ¢

Jj=1 LeD;; LeC;;
where r;; = number of individuals in D;;.
From equation (4), we have In b;0 = (Gio + 1), for all 1 < i < k, so it is easy to obtain the

following lemma.

Lemma 1 ln; is asymptotically normally distributed with mean In 6;9 and variance

1 {(z,. wijv}) — 2T wiv;) + (5 w.-,-)} , (8)

BE L (55 wi)(E;wigv}) — (5 wijv;)?
where
ni;M;; for type-I censoring
wi; = , 9)
Tij for type-II censoring
and

My =1 — el

Lemma 2 For both type-I and type-II censoring, the necessary condition for minimizing

Var(ln é,-o) ISV = Vg = ... = V1.



From this lemma, it shows that m > 3 are non-optimal. This means that only two higher
stresses (m = 2) are needed to perform accelerated life test.

For simplicity, let L and H denote the low and high stresses. Now, let p;; (pirr) denote
the proportion of the sample size allocated to the low (high) stress, and let ¢;z (gin) denote
the proportion of the number of failures allocated to the low (high) stress. Suppose that
nio and ;o denote the total sample size and the number of failures which are needed by the
i — th design (population). Then n;; = njop;; and r;; = riog;;, for j=L,H and eq (8) can be

rewritten as

1 (1—vp)? .
Var(ln éio) _ F"v},n.'o {p'L ML + - PiL;lMiH} for type-I censoring (10)
Ffirn ":,"-o {,M + Ll:—_:’z.&z),_} for type-II censoring.

It is impossible to find a non-trivial solution (vr,pir) (or (vi,qir)) # (1,1), such that

Var(ln éio) attains a minimum. Consequently, we shall fix vz and minimize with respect to

pir (or gr).

Lemma 3 For type-I censoring, the optimal proportion of the sample size allocated to the

low stress is

Pip = .
14 (1 —vr)y/(Mir/Mix)

For type-II censoring, the optimal proportion of the number of failures allocated to the

low stress is

From Lemma 3, if M;;, = M;g, then p!; = gf;. Besides, if 7y = njoM;z, then ln(0 }) is

asymptotically normally distributed with mean ln(0 ;) and variance L (——'5—”‘L)2



5 A selection rule

Based on the life data as described above, we propose a selection rule as follows:

§: select design II; if

Ri(t'7 SO) = 112?‘5)% Rl(t" SO)’ (11)
where Ry(t*,So) = e"®'/80)t for 1 <€ < k.
This selection rule is completely specified when the sample size and censoring time (or

number of failures) are known. In the following, we develop a procedure to determine these

values.

For simplicity, we define the i — th preference region as follows:

Q = {(Ry,...,R) | R} > max Re}, A > 1. (12)

The selection rule in equation (11) gives a correct selection if II; is the most reliable design
and we can correctly select it. Let Pr(C'S | §) denote the probability of a correct selection
(CS) by using the selection rule §. It is usually required that the probability of CS exceeds

a minimum value P* (referred to as the P*-condition), that is,

inf Pa(C5 | )2 P, (13)

where P* is a value predetermined by the decision maker.
To control the accelerated life-testing time within a specified level, we can compute the

sample size in terms of the number of failures (refer to Tseng and Wu (1990)) by

E(Yijei;)/ E(Yijny;) < Gij- (14)

where (Yij1,...,Yijn,;) denotes the order statistic of (Tjj1,... s Tijni; ), and G is a fixed con-
stant.

We now state a lemma to compute E(Y;;,,;) as follow:
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Lemma 4 For ;
_ 1 (=In(1 —y)) ey (1 —y) !
g(a, b’ c) = ‘/o ,B(a,, b) dy’

E(Yijr;) = g(rijyni; — rij + 1, 8:).

Note that Lemma 4 can be easily obtained from David (1981, p.34). We now state two
theorems to compute the optimal sampling plan for selecting the most reliable population

under both type-I and type-II censoring.

Theorem 1 For type-II censoring, the sample sizes and number of failures {(nij,ri;)}i-r,

1 <1<k, can be solved by using the asymptotic approzimation

1 k Pio o _ v .
[ TR0 287 (=) + yiin A)G=5-))}de > P, (15)
i#i i
Tij = Tiod; (16)
and
g(rijynij —rij +1,5:) <, Can

9(nij, 1, ;)
where ® is the cdf of the standard normal distribution.

Note that equation (15) can be simply derived from Gupta & Panchapakesan (1979, p.
7) and g}; in equation (16) comes from Lemma 3. From Theorem 1, it is easily seen that this
may lead to an infinite number of solutions for {(n,-,-,r;j)}f:L, 1 <1 < k. For illustrative
purposes, we consider only the case of equal sample size and equal number of failures for
each population; that is, r;; = r; and n;; = nj,forall1 <i < k and j = L, H. We arbitrarily
choose (;; = 0.5, P* = 0.90, and vz = 0.5. Given various pairs of (R,, Ry), where R, denotes
the reliability function of the most reliable population, while R, denotes the largest reliability

function of the other (k-1) less reliable populations, the minimum values of all feasible

9



solutions (rz,nr;rg,ng) are computed under 2 < k < 6, and B; = 0.75(0.25)1.50. The
results are given in Table 1. For example, when k = 4,8; = 1.25 and (Ra, Rs) = (-999,.9975)
(i.e., A = (In 0.9975/1n 0.999) = 2.5018), we obtain from equation (15), rio = [64.3+1] = 65,
for 1 < i < k. From equation (16), we have r, = [64.3 * (1/(2 — 0.5)) + 1] = 43 and
rg = [64.3 x (1 — 0.5)/(2 — 0.5)) + 1] = 22. Finally we obtain ny = 52 and ng = 28 from
equation (17).

Similarly, if we let rﬁL = n;pM;r and r;H = n;oM;g, for 1 < i < k, then we have the

following result.

Theorem 2 For type-I censoring, the sample sizes and censoring times {(nij,mi;) =g, 1 <

1 < k, can be solved by using the asymptotic approzimation

[ T ’L(”’L)rl(znﬁ(ln A)(vzpir))}de 2 P, (18)

J#i

g(riz,mio — rip +1,6:)

< ¢ 19
g(niO,laﬁi) - Co’ ( )
Nij = NioPjjs (20)
and
Ni; = éj * 9,‘,’, (21)
where

—f_ __,7_.:1 /Bi
£ = (~In(1 — Ty

Again, {p};} in equation (18) and (20) come from Lemma 3. We also assume equal sample
size and equal censoring time for each population, i.e., n;; = n; and n;; = 7;, for j = L, H
and 1 <3 < k. Set M;;, = M;y, then p}; = 1/(2 —vg), for 1 <4 < k. Under various pairs of
(RayRy), 2 < k < 6 and B = 0.75(0.25)1.50, we compute the minimum feasible solutions of
(é,n,ng). The results are given in Table 2. For example, as k=4, (R, Rs) = (0.999,0.9975)

10



and B; = 1.25, from equation (18), we have r;; = 65. As (;o = 0.5, from equation (19) and
(20), we have ny = 77, ng, = [T7 % (2/3) + 1] = 52, and ng = [77 % (1/3) + 1] = 26. From
equation (21), we have {; = (—In(1 — £))1/1% = 1.6421. So, n;; = 1.6421 * §;;, for all
j=L,Hand1<i<k.

Alternatively, we can set (M;/M;g) = 0.90. This gives another feasible solution in
(nL,nm, nir, 7im)=(51, 24, 1.674 * 6,1, 2.3547 % 0;5), for 1 < ¢ < k. Comparing this with the
previous case, we find that the case of M;;, = M;g requires larger sample sizes but results in
a decrease in both censoring times. Therefore, we only consider the case of M;r = M;g, for

1 <1 <k in Table 2.

6 Example

Suppose that we have four different competing, highly-reliable designs of electrical insulation
and that the voltage is the accelerating variable (refer to Nelson & Meeker (1978)). The
design stress (use condition), Sop = 20KV. It is also known that 38KV is the highest stress
for this problem. The life-stress relation follows a Weibull-Inverse Power model. The decision
maker is interested in selecting the most reliable design at a predetermined time t*(= 17.0669)
under the use condition. Some typical decision problems are as follows:

(1) How many stresses should be chosen for performing an accelerated test?

(2) Find the suitable accelerated stresses for performing life-testing.

(3) What is the optimal sampling plan for type-II censoring?

(4) What is the optimal sampling plan for type-I censoring?

(5) Construct a suitable selection rule for this problem.

(6) Which one is a better for the decision maker?

11



Answer:
(1) From Lemma 2, we know that only two higher stresses are needed for performing an
accelerated test.
(2) If we choose vg, = 0.5, from equation (3), we have S = 27.57 KV and Sy = 38 KV.
(3) In the beginning, we have no idea about the values of (R,, R;). So we perform a pilot

life-testing program. The decision procedure may include the following steps:

e From each population, we randomly select (n},n%) for performing an ALT under

(SL,Su). The experiment terminates when r§ and r§ are reached. Based on Weibull
k

=1

probability plots and log-log paper plots, suppose that all {5;
imate 0.7764 and

are roughly approx-

[ (0.2863,10.2662,0.99750)  i=1
(0.3536,11.3801,0.99900)  i=2
(0.4052,10.1217,0.99745)  i=3

| (0.3015,10.1281,0.99725) i=4.

(a;O) i1, R(t‘, SO)) ~ 9

So (Ra, Ry) ~ (.999,.9975). We find that the optimal sample sizes and number of
failures for (S, Sg) of the type-II censoring plan are (rr,nr;rm,ng) = (43,48;22, 26).

e From each population, we shall take some more observations up to ny = 48 and
ng = 26 for performing life-testing under Sy and Sy and the experiment terminates

when rp = 43 and rg = 22 are reached.

(4) Under the same conditions in (3), we find that (¢,nz,ng) = (3.647,47,24), so we take
nr = 47 and ng = 24 from each population for life-testing. The experiment terminates when

the censoring times

[ (823.28,4.8559)  i=1
(1536.88,5.1937)  i=2
(862.60,5.4690)  i=3

| (780.13,4.9303)  i=4

(ML, mim) = 4

12



are reached.

(5) By using the selection rule in equation (11), for both censoring plans, we have at least
90 % confidence to select the most reliable population correctly if the true configuration is
as shown in equation (12).

(6) Comparing decision (3) and (4), we find that type-II censoring is more convenient to
perform an ALT than type-I censoring. In the next section, we will use a cost criterion to

compare these two plans.

7 Comparison between Type-I and Type-II censoring

MacKay (1977) has suggested some criteria for comparing the two censoring plans, for ex-
ample, the duration of the experiment, cost of the experiment, etc. In this section we will
concentrate on the cost of the experiment.

(A) Product’s unit cost
Comparing Table 1 and 2, it shows that a type-I censoring plan needs slightly smaller sample
size than that for a type-II censoring plan. If the product’s unit cost is very expensive, it
seems that type-I will be preferred.

(B) Expected life-testing time
To compare the relative efficiency of type-II censoring with type-I censoring, we define a

quantity as follows:

P = E i{E(Yijrij)/ 77i.1'}° (22)

=1 j=1

It is easily shown that p can be reduced to:

p= k > Jo(=1n(1 — y)) /By 71 (1 — y)™imiidy

=S B(rijymi — rij + 1)(—In(1 — ZLy)y/s:

where

B(a,b) = /0 1 ¥ (1 —y)*ldy.

13



From Table 3, it is seen that the value of p is always less than 1. Due to the large separation
of R, from Ry, smaller expected life-testing times are needed by type-II censoring. The value
of p is very close to 1 when R, is very close to R, and {8;} and k are large.

8 Simulation studies

In practical situations, the Weibull shape parameters {3;}_, are unknown. It is reasonable to
assume that each f; has a prior distribution. In the following, we will study the “robustness”
of this selection rule when each f; has a known beta prior distribution with (p, g) over the

interval [a;, b;]:

N (Bi—a)P (b — Bi)* !
f6) = B(p,q)(b; — a;)pta-t

where a; < 3; < b;,V1 <1< k.
Let

(24)

[ai, 0] = B x (1 £¢),

where € > 0 is a constant.

Three cases are under consideration:

Case I: 87 = 0.7764 and

(421.42,1.4241) if II; is the most reliable
(biz,0:) = (25)
(233.47,1.4241) if II; is less reliable one.

Case II: Bf = 1.0 and

(171.70,1.7284) if II; is the most reliable
(6:z,6:m) = (26)
(101.54,1.5123) if II; is less reliable one.

Case III: B = 1.25 and

14



(82.51,1.5886) if II; is the most reliable
(0iz,6:m) =

(57.68,1.6136) if II; is less reliable one.
Under € = 0.0 and ¢* = 17.0669, we have (R,, R;) = (0.999,0.9975). Thus, as k=4, the

(27)

values (r,nr;ra,ng) for these three cases from Table 1 are:

Case I : (rp,np;ra,ng) = (43,48;22,26),

Case Il : (rp,nr;ra,ng) = (43,49;22,26),

and

Case III : (rp,nL;ra,nu) = (43,52;22,28).

When € is nonzero, the performance of this selection rule is investigated by simulation

under type-II censoring plan. The basic steps of the simulation are:

o Generate a set of {;};_,, where each 3; has a beta prior with (p,q) over Bf(1 £ ¢).

e From each population, we generate a random sample of size ny and ng from Weibull
distributions with (6;z,0;) and (6;m, ;) respectively. The two experiments are termi-

nated when r; and rg are reached.
e From equation (6) and (7), we solve (&, &i1) by
&0 = alt;g,
and
G = (altip — alt;g)/vi,

where

1 AP .
alt;; = E {ln(z TS} + (n; — rj)Tg',J. —1In "'j} . (28)
1 =1

15



o A correct selection (CS) is made if we can correctly select the most reliable design.

For given (p, q) and each of specified values of €, 500 trials are conducted and the proportion
of CS is calculated. The results are given in Table 4. All the computations are done by the
MATLAB software. From the results, it is seen that this selection rule is very stable not only
for symmetric priors ((p,q)=(1,1) and (5,5)) but also for skewness to the left ((p,q)=(9,1)
and (7,3)) and for skewness to the right ((p,q)=(1,9) and (3,7)). All the proportions of CS
are very close to the target value P* = 0.90. Even for very large variation (25% from g}), it
still has at least 77% of CS (about 85% of the target value). It seems that this selection is

insensitive to the {3;} values.

9 Conclusion

For highly-reliable products which possess a Weibull-Inverse power model, this paper pro-
poses both type-I and type-II optimal sampling plans for selecting the most reliable product.
We use a cost criterion to compare these two plans. Although type-II needs slightly larger
sample sizes than that of type-I censoring, it has a shorter expected life-testing time. Finally,
when the Weibull shape parameters are unknown but their prior distributions are known,
we use simulation to study the “robustness” of our rule. Results show that this rule is quite
robust even when the unknown shape parameter has a moderate departure from the assumed

value.

The results of this paper can easily be extended to the Weibull-Arrhenius and the

lognormal-Arrhenius models.

10 Acknowledgements

This work was done while the author was visiting the Department of Statistics and Actuarial

Science, University of Waterloo. I deeply appreciate my sponsor, Professor Jerry Lawless,

16



who gave me invaluable suggestions in preparing this manuscript. The helpful comments by
Professor Jeff Wu and Michael Hamada have also made the paper more readable. Besides,

I thank Mr. X. D. Sun, Dr. J. Chen, and Mr. Thomas Hopkins for their assistance!

11 Appendix : Notation

ALT : accelerated life test.

II; : i — th population (product design), for all 1 < i < k.

S; : 7 — th level of test stress, for all 0 < 7 < m.

R;(t,S;): the reliability function of II; under stress S;.

0;; : Weibull scale parameter for the combination of (II;, S;).

B; : Weibull shape parameter for the : — th population.

(7ioy¥i1) : the parameters of inverse power model.

v; : standardized stress, for all 0 < j < m.

(oo, a1 ): reparametrization of (vio,¥i1)-

Tije : £ — th observed data from (II;, S;).

Yij¢ : the £ — th order statistics of {T};}.

Zije = Bi(In Tije — aio — airv;).

M = 1 — exp(—(3)5%).

n;; : sample size for the combination of (II;, S;).

ri; : number of failures for the combination of (II;, S;).

D;; : the set of individuals for which z;j, is an observed lifetime of (II;, S;).

C;; : the set for which z;;, is a standardized censoring time of (II;, S;).

7;; : censoring time for the combination of (I;, S;).

Gij : time-saving factor of r;; with respect to n;; for the combination of (II;, S;).
pi; : proportion of the sample size which allocates to the combination of (II;, S;).

¢;; : proportion of number of failures which allocates to the combination of (II;, S;).

L : the low stress for ALT.
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H : the high stress for ALT.

§ : a natural selection rule.

Q; : the 1 — th preference region.

CS : correct selection.

Pg(CS | §) : probability of CS of the rule § under R.
P* : minimum value of CS probability.

¢ : pdf for the standard extreme distribution.

® : cdf of the standard normal distribution.

Q(z) : cdf of the standard extreme distribution.

1(—1n(1 — 1/c,a=1(1 __ . \b-1
g(a,b,0)=/o( In(1 y),;(af/b) (1-9) dy.

N (Bi— (b — )
16 = B(p,q)(b; — a;)pret

B(a,b) = /o 1 y* (1 —y)ldy.
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Table 1

Sample size, number of failures needed for selecting the most reliable product under type-II

censoring with P* = 0.90,(* = 0.50, v = 0.50.

The values of (rr,nL;TH,nm) are given in the table.

B | (RaRe) k=2 k=3 k=4 k=5 k=6
(.999, .9980) | 41 45; 21 24 | 63 68; 32 35 | 75 80; 38 42 | 85 91; 43 47 | 92 98; 46 50
(.999, .9975) | 24 27; 12 14 | 36 39; 18 20 | 43 47; 22 25 | 49 53; 25 28 | 53 57; 27 30

0.75 | (.999, .9970) | 17 19;9 11 | 25 28; 13 15 | 30 33; 15 17 | 34 37; 17 19 | 37 40; 19 22
(.999, .9965) | 1315;79 |1922;1012 |23 26; 12 14 | 26 29; 13 15 | 29 32; 14 16
(.999, .9960) | 1113;68 | 16 18;810 | 1922; 10 12 | 22 25; 11 13 | 23 26; 12 14
(.999, .9980) | 41 47; 21 25 | 63 71; 32 37 | 75 84; 38 43 | 85 94; 43 49 | 92 102; 46 52
(.999, .9975) | 24 28; 12 15 | 36 41; 18 22 | 43 49; 22 26 | 49 55; 25 29 | 53 60; 27 31

1.00 | (.99, .9970) | 17 21;9 12 | 25 29; 13 16 | 30 35; 15 18 | 34 39; 17 21 | 37 42; 19 23
(.999, .9965) | 1316;79 |19 23;10 13 | 23 27; 12 15 | 26 30; 13 16 | 29 34; 14 17
(.999, .9960) | 1114;68 | 1619;8 10 | 19 23; 10 13 | 22 26; 11 14 | 23 27; 12 15
(.999, .9980) | 41 49; 21 26 | 63 74; 32 39 | 75 88; 38 46 | 85 100; 43 52 | 92 108; 46 55
(.999, .9975) | 24 30; 12 16 | 36 44; 18 23 | 43 52; 22 28 | 49 58; 25 31 | 53 63; 27 33

1.25 | (.999, .9970) | 17 22; 9 12 | 25 31; 13 17 | 30 37; 15 20 | 34 41; 17 22 | 37 45; 19 24
(.999, .9965) | 13 17;7 10 | 19 24; 10 14 | 23 29; 12 16 | 26 32; 13 17 | 29 36; 14 18
(.999, .9960) | 111569 | 1621;8 11 |19 24;10 14 | 22 28; 11 15 | 23 29; 12 16
(.999, .9980) | 41 53; 21 28 | 63 79; 32 42 | 75 94; 38 49 | 85 107; 43 55 | 92 115; 46 59
(.999, .9975) | 24 32; 12 17 | 36 47; 18 25 | 43 55; 22 30 | 49 62; 25 33 | 53 67; 27 36

1.50 | (.999, .9970) | 17 24; 9 13 | 25 33; 13 19 | 30 39; 15 21 | 34 44; 17 24 | 37 48; 19 26
(.999, .9965) | 13 19; 7 11 | 19 26; 10 15 | 23 31; 12 17 | 26 35; 13 19 | 29 38; 14 20
(.999, .9960) | 11 16; 6 10 | 16 22; 8 12 | 19 26; 10 15 | 22 30; 11-16 | 23 31; 12 17
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Table 2

Censoring time, sample size for (Low) and (High) stress for selecting the most reliable

product under type-I censoring with P*

= 0.90,¢* = 0.50, vz = 0.50.

The values of ({,nz,ng) are given in the table, where n;; = €6;;,j = L,H and 1 <: < k.

B | (RaRs) k=2 k=3 k=4 k=5 k=6
(.999, .9980) | 3.566 45 23 | 3.972 67 34 | 4.025 80 40 | 3.995 90 45 | 3.934 98 49
(.999, .9975) | 3.464 26 13 | 3.711 39 20 | 3.647 47 24 | 3.848 52 26 | 3.986 56 28

0.75 | (.999, .9970) | 2.920 19 10 | 3.127 27 14 | 3.403 33 17 | 3.614 37 19 | 3.743 40 20
(.999, .9965) | 2.507 15 8 | 3.154 21 11 | 3.463 26 13 | 3.168 29 15 | 3.328 32 16
(.999, .9960) | 2.856 12 6 | 2.856 18 9 | 3.155 21 11 | 3.315 23 12 | 3.464 26 13
(:999, .9980) | 2.288 46 23 | 2.342 70 35 | 2.343 84 42 | 2.310 94 47 | 2.264 103 52
(:999, .9975) | 2.079 28 14 | 2.165 41 21 | 2.211 49 25 | 2.315 54 27 | 2.280 59 30

1.00 | (-999, .9970) | 1.981 20 10 | 2.152 28 14 | 2.140 34 17 | 2.114 39 20 | 2.181 42 21
(.999, .9965) | 1.749 16 8 | 1.917 22 11 | 2.079 27 14 | 2.015 30 15 | 2.100 33 17
(:999, .9960) | 1.84513 7 | 1.946 18 9 | 1.917 22 11 | 2.001 24 12 | 2.079 27 14
(:999, .9980) | 1.666 49 25 | 1.691 74 37 | 1.667 85 45 | 1.653 100 50 | 1.653 109 55
(.999, .9975) | 1.594 30 15 | 1.640 43 22 | 1.642 52 26 | 1.664 57 29 | 1.666 62 31

1.25 | (.999, .9970) | 1.487 21 11 | 1.564 30 15 | 1.594 36 18 | 1.606 41 21 | 1.651 44 22
(:999, .9965) | 1.433 16 8 | 1.484 24 12 | 1.504 28 14 | 1.579 32 16 | 1.568 35 18
(:999, .9960) | 1.335 14 7 | 1.463 20 10 | 1.483 24 12 | 1.542 26 13 | 1.594 28 14
(.999, .9980) | 1.359 52 26 | 1.364 78 39 | 1.346 96 48 | 1.329 108 54 | 1.306 119 60
(.999, .9975) | 1.313 32 16 | 1.357 46 23 | 1.353 55 28 | 1.355 60 30 | 1.367 66 33

1.50 | (.999, .9970) | 1.262 22 11 | 1.307 32 16 | 1.344 38 19 | 1.331 44 22 | 1.374 47 24
(:999, .9965) | 1.198 18 9 | 1.275 25 13 | 1.313 30 15 | 1.318 34 17 | 1.324 37 19
(.999, .9960) | 1.190 15 8 | 1.243 21 11 | 1.275 25 13 | 1.272 28 14 | 1.313 30 15
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Table 3

Relative efficiency of type-II censoring to type-I censoring under various values of 3,

(RayRp), and 2 < k < 6.

B | (BB | k=2| k=3 | k=4 | k=5 | k=6
(.999, .9980) | 0.777 | 0.823 | 0.830 | 0.854 | 0.899
(.999, .9975) | 0.694 | 0.810 | 0.779 | 0.790 | 0.793
0.75 | (.999, .9970) | 0.761 | 0.796 | 0.801 | 0.807 | 0.760
(.999, .9965) | 0.753 | 0.672 | 0.685 | 0.795 | 0.793
(.999, .9960) | 0.595 | 0.795 | 0.722 | 0.689 | 0.685
(.999, .9980) | 0.813 | 0.864 | 0.925 | 0.936 | 0.964
(.999, .9975) | 0.800 | 0.837 | 0.859 | 0.868 | 0.884
1.00 | (.999, .9970) | 0.714 | 0.796 | 0.823 | 0.835 | 0.853
(.999, .9965) | 0.822 | 0.781 | 0.792 | 0.858 | 0.819
(.999, .9960) | 0.714 | 0.852 | 0.817 | 0.796 | 0.792
(.999, .9980) | 0.899 | 0.929 | 0.951 | 0.961 | 0.976
(.999, .9975) | 0.825 | 0.863 | 0.880 | 0.914 | 0.923
1.25 | (.999, .9970) | 0.842 | 0.863 | 0.845 | 0.883 | 0.877
(.999, .9965) | 0.813 | 0.840 | 0.818 | 0.862 | 0.876
(.999, .9960) | 0.807 | 0.853 | 0.866 | 0.822 | 0.818
(.999, .9980) | 0.914 | 0.951 | 0.976 | 0.995 | 0.979
(.999, .9975) | 0.876 | 0.882 | 0.913 | 0.942 | 0.929
1.50 | (.999, .9970) | 0.856 | 0.873 | 0.884 | 0.895 | 0.895
(.999, .9965) | 0.832 | 0.850 | 0.868 | 0.853 | 0.881
(.999, .9960) | 0.810 | 0.886 | 0.871 | 0.873 | 0.850

21



Table 4

Proportion of correct selections under various values of (p,q) and €

B |(p,q)|01% | 0.5% | 1.0% | 2.5% | 5.0% | 10% | 25%

(1,1) | 0.892 | 0.898 | 0.886 | 0.906 | 0.888 | 0.872 | 0.774
(5,5) | 0.908 | 0.894 | 0.888 | 0.872 | 0.874 | 0.894 | 0.800
0.776 | (1,9) | 0.888 | 0.898 | 0.884 | 0.872 | 0.864 | 0.842 | 0.772
(3,7) | 0.904 | 0.868 | 0.886 | 0.898 | 0.880 | 0.870 | 0.774
(7,3) | 0.880 | 0.902 | 0.902 | 0.886 | 0.886 | 0.850 | 0.816
(9,1) | 0.910 | 0.918 | 0.888 | 0.900 | 0.864 | 0.874 | 0.784

(1,1) | 0.910 | 0.906 | 0.878 | 0.904 | 0.870 | 0.868 | 0.806
(5,5) | 0.884 | 0.898 | 0.898 | 0.890 | 0.880 | 0.852 | 0.798
1.000 | (1,9) | 0.888 | 0.888 | 0.868 | 0.920 | 0.876 | 0.836 | 0.812
(3,7) | 0.910 | 0.884 | 0.912 | 0.868 | 0.884 | 0.858 | 0.778
(7,3) | 0.888 | 0.902 | 0.902 | 0.872 | 0.864 | 0.880 | 0.804
(9,1) | 0.894 | 0.918 | 0.906 | 0.870 | 0.860 | 0.860 | 0.770

(1,1) | 0.900 | 0.886 | 0.904 | 0.862 | 0.890 | 0.850 | 0.802
(5,5) | 0.884 | 0.896 | 0.884 | 0.870 | 0.884 | 0.872 | 0.814
1.25 | (1,9) | 0.892 | 0.904 | 0.902 | 0.896 | 0.896 | 0.850 | 0.772
(3,7) | 0.898 | 0.906 | 0.910 | 0.898 | 0.886 | 0.850 | 0.788
(7,3) | 0.898 | 0.908 | 0.884 | 0.904 | 0.890 | 0.856 | 0.786
(9,1) | 0.894 | 0.896 | 0.902 | 0.890 | 0.888 | 0.840 | 0.800
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