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ABSTRACT

Yield is currently defined as the percentage of inspected units which meet
specification limits. Yield focuses attention on meeting the tolerance of the next-in-line
customer. High yield may not imply reduced variation in the passed units, and low yield
may not imply large variation. The conclusions drawn from single measures such as yield
or total defects per unit are incomplete at best and often misleading. As a result,
customers are likely to receive units with product characteristics which are not tightly
centered around design target values. Therefore, a more accurate, complete, and
customer-oriented measure of yield, called neoyield, is proposed, defined, and
mathematically derived in this memorandum. Sample calculations of neoyield for typical
factory problems are given. Measurements of a small number of units are needed to
convert yield to neoyield. Neoyield and yield complement each other and unite to
indicate a direction for quality improvement.



1. MOTIVATION

Yield is currently defined as the percentage of units which pass inspection. Units are inspected
according to specification limits placed on various key product characteristics and sorted into two
categories: passed and rejected. Use of yield as a single measure implies that each rejected unit costs the
factory an additional amount (for scrap or repair) while each passed unit costs the factory nothing addi-
tional. By inference, all passed units are equally acceptable to the next-in-line customer. Customer in this

sense refers to any user of goods such as materials, components, subassemblies, assemblies, or systems.

This premise, that all passed units are equal, is not justified when product characteristics have target
design values. Customers do notice unit-to-unit differences in these characteristics, especially if the vari-
ance is large and/or the mean is offset from the target. A single unit which deviates an amount 3 from the
target may cause no actual quality loss in a particular instance, but quality loss on average is incurred by
units with deviation of an amount § from target when many different customer usage conditions are con-

sidered. In general, quality loss can be expressed as a continuous function of a product characteristic.

In order to gauge quality loss as defined above, a more accurate, complete, and customer-oriented
measure of yield is needed. Hereafter, we shall refer to the new yield measure as neoyield (y,,, as a percen-
tage; Y,., as a fraction) and the current yield measure simply as yield (y in percentage; Y in fractions).
Neoyield accounts for both the amount of nonconforming units and variation from target for the passed

units. It does this by penalizing yield commensurate with the amount of variation.

Our predominant motivation is to have a simple measure that complements yield and encourages

designers and factory personnel to:
1. focus on quality from the view of the customer
2. reduce manufacturing variation in the product

3. pay attention to specifications.



Field returns encourage us to focus on the customer. Process capability indices encourage us to widen the
design tolerance range and reduce processing variation. Yield encourages us to keep product within custo-
mer specifications. Neoyield, on the other hand, is explicitly defined to encourage all the above actions.

2. A GENERAL DERIVATION

Neoyield is defined in terms of:

1. the customer’s quality loss as a function of the product characteristic x: L (x) such that L (T) =0 and

is minimum at the target x = T.

2. the probability density function of the manufactured parts: f(x) such that f(x)>0 and

Jfeoda=1.

3. the lower and upper specification limits for x: LSL and USL.

We define neoyield as:
USL

Yoo = | [1— %x)-]f(x)dx @1
LSL

where A is the average quality loss at the specification limits.

The probability density function f (x) and the customer quality loss function L (x) are evaluated only
in the specification interval LSL < x < USL. We will make use of two common probability density func-
tions in Section 5. We now proceed to define L (x) for the common situation in which the target T is cen-

tered within the specification interval. Other situations will be covered in Section 7.

A general expression for L (x) is:
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x =T. Notice that L (LSL) = L (USL) = A, which agrees with the earlier definition of A.

withT =

,and p > 0. The reader can verify that L (T) = 0 and is minimum at

When L (x) is given by expression (2.2), definition (2.1) reduces to:

USL
vig=] |1-
LsL

x-T
A

P
] fx)dx (23)

The superscript [G ] refers to the general loss function given by expression (2.2).

3. TWO SPECIAL CASES
There are two special cases of the customer quality loss function as defined by equation (2.2):
o the step-wise loss function in which p — o
o the quadratic loss function in which p = 2.

The p =2 case has a unique property. It approximates any L (x) that can be expanded about x =T by
a Taylor series and has L (T)=L'(T) =0, where L’(x) is the first derivative. Subsequent sections will be
based on this quadratic loss function because the exact function of L (x) is typically unknown.

3.1 STEP-WISE LOSS

As p — o, L (x) — O for all values of x such that lx-T| <A. Equation (2.3) becomes:

USL
Yeo= | f(x)ds @3.1)
LSL



Note that the current yield measure is defined as:

UsL

Y= | fx)dx
LSL

3.2)

Therefore, when p — o, ¥,,,, = Y, which is to be expected since the yield definition implicitly assigns zero

loss within the specification interval.

3.2 QUADRATIC LOSS

With p =2 and use of definition (3.2), equation (2.3) becomes:

1U.S'L
YO =v-— [ x-TP2fxdx
A s

3.3)

To simplify for later usage, we define a term to represent the mean squared error of the passed units from

the target value:
USL
[ -1y r@ax
MSE g5 = = USL
.[ fx)dx
LSL

Then equation (3.3) can be rewritten as:

MSE e,
AZ

Y,[f}=Y[l—

34

3.5



The multiplier of Y on the right hand side of equation (3.5) simply penalizes yield for variation within
the specification interval. If all passed units are on target, then Y,,, = Y which is as expected. If all passed
units are at the lower or upper limit, then Y,,, = 0 which indicates that the customer will, on average, incur

the loss that the factory would have incurred if all parts had been rejected. YC] is bounded by 0 and 1.

4. WHEN LOSS IS A FUNCTION OF YIELD

So far, we have assumed that L (x) of equation (2.2) does not depend on the yield. This is valid in
many practical cases, where there are high yields or one-time adjustment/repair operations for rejected
units. In the case where yield is low and rejected units are valueless, average loss in the passed units

becomes a function of yield.
4.1 MODIFIED LOSS FUNCTION

If y=50% and a unit is rejected, there is only a 50% chance that its replacement unit will be passed,
and so on. Each passed part really costs the customer M times the cost of producing a single part. The fac-
tor M is the geometric progression (1 —gq)~!, where q is the fraction defective, also known as (1 —Y).
Equation (2.2), when multiplied by M = Y~!, becomes:

A 14

L(X)= 7

x-T
A

@.1)

Notice that L (LSL)Y=L(USL)= % Average quality loss of a borderline passed unit is A only when

Y — 1; otherwise, it is greater than A. We always define A assuming a very small fraction defective.
4.2 MODIFIED NEOYIELD

Let us examine this modified loss function when it is quadratic, i.e., p = 2. By substituting equation
(4.1) with p = 2 into equation (2.1):
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4.2

The superscript [M ] refers to the modified loss function given by expression (4.1).

If all passed units are on target, then Y] = ¥ which is as expected. If all passed units are at the
lower or upper limit, Y) =0 when Y =1, and Y) — —1 when Y — 0. Whereas the penalty factor in

equation (3.5) is a multiplier of yield, the penalty factor in equation (4.2) is a subtrahend of yield.

Theoretically, —1 < Y <1 for equation (4.2). It is rather academic when Y] is negative since
such situations, regardless of the neoyield value, must be drastically remedied. Appendix A further exam-

ines what a negative neoyield implies.

5. USES OF NEOYIELD

Neoyield combines the advantages of yield and the customer quality loss function. It is more infor-
mative than yield alone since it provides a more accurate and customer-oriented measure of product quality.
It is more informative than the loss function alone since it (i) is an absolute measure invariant to different
characteristics, (ii) includes the cost but ignores the quality of rejected parts, and (iii) indicates a direction
for quality improvement when contrasted with yield. These points will be illustrated in the following sec-

tions.
5.1 NEOYIELD VERSUS YIELD

We assume the mean is right on target T in all four scenarios of this section. Discussion of scenarios
when the mean is off target will be deferred to Sections 5.2 and 5.3. In scenarios (1) and (2) we assume the
population distribution is normal with standard deviation equal to A and A/3, respectively. In scenario (3)
we assume the population distribution is continuously uniform within the range from LSL to USL. In
scenario (4) we assume the population distribution is a bimodal distribution which contains a mixture of
two normal distributions, each with a mean located at a distance of 0.75A from the target and a standard

deviation equal to 0.1A.



Table 5.1 summarizes yield (y), mean squared error of passed units (MSE,,), general neoyield

(y'¢)), and modified neoyield (y™]) for these four scenarios.

Table 5.1
SCENARIO y MSE 4, y©} yMi
1 68.27% 0.291A2 48.4% 39.2%
(0)) 99.73% 0.108A2 89.0% 88.9%
3 100.00% 0.333A% 66.7% 66.7%
@ 99.38% 0.569A2 42.8% 42.4%

In comparing scenarios (1) and (2), both yield and neoyield indicate that scenario (2) has better custo-
mer quality than scenario (1), which is reasonable and expected. In comparing scenarios (2) and (3), it is
interesting to see that scenario (3) has a higher yield but a smaller neoyield than scenario (2). Clearly
scenario (2) has better customer quality than scenario (3) because it has a much tighter distribution around
the target. Thus neoyield indicates quality more accurately than yield does. The same point is also illus-
trated in the comparison of scenarios (2) and (4). Although they both have similar yield measures, neoyield

reveals that scenario (2) is much better than scenario (4).

To illustrate how neoyield is different from yield in practice, we have computed both measures for a
real circuit pack product. The background of this example and the relevant information are given in Appen-
dix B. Although the yield of each different product characteristic in this example is 100%, as determined
by measurements of approximately 275 circuit packs, the corresponding neoyield of each is very different.
The higher that neoyield is, the better quality that the characteristic has. Thus neoyield can help us distin-

guish the different quality levels among many product characteristics of the same product.



5.2 NEOYIELD: ROADMAP FOR QUALITY IMPROVEMENT

We now present a sequence of events at a hypothetical widget factory to illustrate how neoyield can

be used as a roadmap for quality improvement activities.

The widgets being produced by the factory come off the assembly line with a large variance and a

mean which is far from the target. After a first-pass inspection, it was found that:
1.  y=50%, MSE 4, = 0.8A%, yS) =10%, y M) = -30%.

The factory decides to fix all rejected units. The fixes are marginal so that the mean squared error of
passed parts remains nearly the same as before. At the end of the second inspection (units that passed the

first inspection are not re-inspected but included in the distribution), it was found that:
2. y=100%, MSE 45 = 0.8A, y¢1 =20%, y M =20%.

The factory decides to improve its process by using statistical quality control, i.e., AT&T (1956).
After a first-pass inspection, it was found that the widget mean p is now on target and the widgets are nor-

mally distributed (f (x) = [1/(cV27)] e"* =M/ jn _os < x < 0o) with standard deviation & equal to A:
3. y=6827%,  MSE,, =0291A% yGl=484%,  yM1=39.2%.

Widgets that do not pass first inspection continue to be fixed. After the second inspection, it was
found that the widgets are more or less distributed uniformly within the specification limits
(f (x)=1/(USL —LSL) in LSL <x < USL and f (x) = 0 otherwise), so that:

4.  y=100%, MSE,, =0333 A%, y€) =66.7%, y M) = 66.7%.

In time, the process improves so that the widgets continue to have their mean p on target and a nor-
mal distribution with a standard deviation ¢ equal to A/3. Inspection continues and rejected units are

analyzed for causes of failure:



5. y=99.73%,  MSE,.=0.108 A%, ¥ =89.0%,  y¥1=889%.

The factory finds 100% inspection no longer necessary. Lots are sampled and the mean squared
deviation for each lot is calculated. The possibility now exists that units passed to the customer may be
outside of specification limits, but the customer can tolerate a minute number of defectives. Neoyield does

not change noticeably when inspection is eliminated, which confirms that inspection adds little value:
6. y=100%, MSE, . =0.111 A%, yS] = 88.9%, yM) = 88.9%.

There is still much room for improvement. The process is reaching its capability, but better design
techniques, i.e., Phadke (1989), will make the next generation widget more robust to manufacturing varia-

tions. The ultimate goal is of course:
7. y=100%, MSE =0,  yi]=100%, y™M] = 100%.
From this illustration, it is clear that neoyield can be used to:
1. baseline a product and measure improvements in terms of the customer
2. compare product produced with different processes
3. determine whether inspection per design specifications is worthwhile.

On Appendix C.1, a useful graph of Y,,,, versus Y is shown. These two dimensions of product quality
are powerful when used together because one dimension represents customer satisfaction while the other
represents factory fulfilment. The triangle with vertices (0, 0), (100, 100), and (100, 0) contains the set of
all (¥, YIG]). The parallelogram with vertices (0, 0), (100, 100), (100, 0), and (0, -100) contains the set of
all (¥, Y™y, The objective of quality improvement is to move towards the apex of (100,100). The paths of

improvement for the widget company are shown in Appendix C.1, one via YIC) and the other via Y'#,
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53 NEOYIELD: RELATIONSHIP TO SIX-SIGMA CONCEPT

To further illustrate how neoyield can be used for measuring and improving the progress of quality
improvement, we compare yield and neoyield of five normally distributed populations and relate them to
the Motorola Six-Sigma concept, i.e., Harry (1989). The mean p and standard deviation ¢ of these five

populations are:

(@ |p-T| =150 and A=3c (3-sigma, 1.5-sigma shift pop.)
(®) |lp-T|1 =0 and A=3c (3-sigma, on-target pop.)

©) |u-T1| =150 and A=60 (6-sigma, 1.5-sigma shift pop.)
@ |lu-T1=0 and A=6c (6-sigma, on-target pop.)

(e) | w-T | =0 and A=12c (12-sigma, on-target pop.)

Appendix C.2 graphically depicts yield and neoyield for all five populations. Motorola’s Six-Sigma pro-
gram contrasts the quality difference in terms of ppm (parts per million, equal to (100 — y) x 10,000) for the
first four populations above. Motorola points out that over a very large number of lots, a change in the
mean of about 1.50 from lot to lot could be expected because of "typical” shifts and drifts.

By accounting for "typical” shifts and drifts, and assuming that the inspected units come from a nor-
mally distributed population, Motorola equates a standard deviation of A/6 to a defect rate of 3.4 ppm.
Population (c) above is the conservative representation of a product population which achieves the Six-

Sigma quality standard.

This Six-Sigma concept is practical when the product characteristic tends to be normally distributed
but is difficult to measure on a continuous scale. On the contrary, neoyield does not make assumptions
about a normal distribution nor "typical” shifts and drifts. We state once more that yield (or the ppm meas-

ure in the Six-Sigma program) should not be the only measure of quality in a quality improvement pro-
gram,
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The following lessons are learned by observing the neoyield versus yield graph on Appendix C.2.

« By comparing populations (a) and (b) or (c) and (d), we find that a 1.50 shift of the population mean
from the design target substantially degrades product quality as perceived by the customer. In addi-
tion, populations (b) and (c) show that a 6-sigma population with a 1.5¢ shift is not much better than
a 3-sigma population with no shift of the mean from the target. Lesson: Strive to reduce lot-to-lot

variation as well as within-lot variation.

« By comparing populations (d) and (e), we find that the impact of quality improvement on the custo-
mer diminishes as quality levels increase from 66 (Y., = 97.2) to 126 (¥,., =99.3). This points out
the key advantage of yield and neoyield over mean and variance or C, and C,; capability indices.
Neoyield economically justifies quality improvement because it is based on a customer quality loss

function. Lesson: Aim for perfection but beware of diminishing returns as perfection is neared.

o The triangle defined by (60, 60), (100, 100), and (100, 60) is where most typical quality improve-
ments are made, measured and compared against baselined values of Y,.,. Lesson: Locate the

current quality of the product and incrementally advance toward the goal of perfection.

6. ESTIMATE OF NEOYIELD

As mentioned earlier, Appendix B shows estimates of neoyield for a finite number of samples.
Further, some of the measured characteristics are targeted on one side rather than symmetrically between
specification limits. This section covers computing neoyield from a finite population and estimating neo-
yield from a random sample. The next section describes the handling of asymmetric targeted characteris-

tics.

In Sections 2, 3, and 4, neoyield is defined for a general product population with probability density
function f (x). In practice, we often have a finite population of products. Suppose x;,x5, . . . ,xy denote the

product characteristics of N units in a finite population; the definition of YC] in equation (3.3) reduces to:
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vGl=v--L  y (x-Ty ©.1)

NA? (g st

Using this formula, 100% inspection is needed to measure the characteristic of each unit and to deter-
mine which x; is within the specification. When 100% inspection is impractical or the population is infinite,
a sample of n units is often measured to make inference about the population. Let X,,X,,...,X, denote

the characteristics of n randomly selected units; the estimate of the population Y€} is defined to be:

A[G] ~ l
Yuo =Y- 2 2 (Xi "T)Z (62)
nA® pax<use

where nf’ is the number of selected units that are within the interval [LSL,USL].

The expected value and variance of this estimator are derived in Appendix D and given as follows:

5G]

E(Yn,)=YE] 6.3)
(6] , 1 USL \ USL , 2
nVar (V)= Y ~ Y+~ [(x=TYf@yde- | [ (x-TP f@x)dr (6.4)
LSL

Thus f’,[fo] is an unbiased estimate of Y!C} and has a finite variance given by equation (6.4). The finite
sample statistical properties of ffj are intractable because of its complex distribution. However, the large
sample properties can be easily derived since ffo] can be expressed as the average of an independently
identically distributed sample. Appendix D shows that Yo, converges to YIS} almost surely, and has an
asymptotically normal distribution with mean Y} and variance given by equation (6.4). Therefore, when
the sample size is large enough, the usual normal statistical inference techniques, such as testing hypotheses

and computing confidence intervals, can be used to make inferences about the population.
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Analogously, definition (3.4), which defines the mean squared error of the passed units from the tar-

get value, can be estimated by measuring a sample of 7 units:

M= 2= & (X-T) ©.5)
nY LSL<X,<USL

Equation (6.5) is useful when implementing equation (3.5) or (4.2).

7. EXTENSIONS

So far, we have dealt only with the situation in which the target value T of the continuous product
characteristic is midway between the upper (USL) and lower (LSL) specification limits. Let us now con-

sider the following situations where:
1. T is asymmetrically located between LSL and USL (see section 7.1)
2. Tis aphysical limitation and only a LSL or USL exists (see section 7.2)
3. Tisatzero and only a positive USL or negative LSL exists (see section 7.3)
4. Tisat+or - infinity and only a LSL or USL exists (see section 7.4).
7.1 ASYMMETRIC TARGET

In an asymmetric target problem, the characteristic is in the range —oo <x <. The target T can be
any value of x. (T —LSL)= A, is not equal to (USL — T) = A,,. Any term defined hereafter with subscripts /
and u implies that term is defined in the interval LSL < x < T and T < x < USL respectively. Units at either

of the limits have equal loss A.

By splitting definition (2.1) into two integrals and substituting in two forms of equation (2.2) or (4.1)

with p =2, one with A; and one with A,,, we obtain:
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_ Y MSEm_x _ Y MSEpa.\'.\'—u

YCl=y |1

7.1

_ N MSEpau-l _ Yu MSEpass-u

YMl -y

(1.2)

where ¥, + v, = 1 and MSE,, is given by equation (3.4) with the limits changed according to subscript / or
u. The term v indicates the fraction of total passed units within the lower or upper specification limit, as
indicated by the subscript.

In practice, we measure the characteristic of a finite number of sample units. We then use equation
(6.5) to estimate MSE,,_, for o units with x <T and MSE,,;_, for B units with x >T. Since

Y; = a/(o+ B) and 7y, = B/(a + B), equation (7.1) or (7.2) can be used to calculate Y,,,,.
7.2 ONE-SIDED TARGET

In a one-sided target, T defines one limit of the characteristic x. Typically, T is a physical limitation
such as the strength of a pure material. When T is the USL and a lower specification limit LSL is defined,
the situation can be considered to be an asymmetric target problem. Use equation (7.1) or (7.2) and set

vy=1andy,=0.

The opposite situation in which there is a lower physical limitation and an upper specification limit
can be handled in an analogous manner. That is, when T is the LSL and an USL is defined, use equation
(7.D)or(7.2)andsety;=0andy, =1.

73 ONE-SIDED TARGET =0

In the case where | x | >0 and the goal is to have | x | as small as possible, it is the same as a one-
sided target problem (Section 7.2) where T =0 and the appropriately subscripted MSE,,,, reduces to the
average of all x2.
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7.4 ONE-SIDED TARGET -

In the case where | x| has a minimum and the goal is to have | x| as large as possible, a con-
venient way to handle this situation is to transform | x | into another characteristic | x | 1. The problem
is then simply the one-sided target problem with the target equal to zero (Section 7.3). Caution: first con-

sider whether a physical limitation exists and use a one-sided target solution (Section 7.2) if possible.
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APPENDIX A

Taguchi has developed his methods based on the quadratic loss function, i.e., Taguchi (1986),
Japanese Industrial Standard (1986), and Taguchi, et. al. (1989). We will use a small part of his work to
further discuss loss and Y. Taguchi (1986) defines averaged total loss when 100% inspection is per-

formed as:

Acmt
Liotat = Linspect + Laefec: (1 =Y ) + A2_

cust

MSE g, , A

where all terms are expressed per passed unit, Li,g,.; is the average inspection cost, Lg.,, (also known as
A) is the cost of scrapping a defective unit, and A, is the average loss to the customer if a passed unit is at

the customer specification limit A_,,.

It is inherent in Taguchi’s approach that the pairs ( A, » Acr ) and (A, A ) are related by the same
quadratic loss function. The ideal procedure is to define the quadratic loss function of a product by estimat-
ing the customer-oriented pair (A, , Aasr ). Then the cost to the product supplier of a failed unit A is

found. Lastly, the manufacturing or inspection tolerance A is determined. Therefore, we can state:

Ao _ A
A A

(A2)

When A, is not estimable, a practical solution is to use the pair (A, A ) to define the quadratic loss func-

tion.

Equation (A.1) can be reduced to the following form by substituting in equation (A.2), dividing all

terms by A, and rearranging terms:

_ MSEpa.!s _ Ltatal _Linspecl

=] — P (A3)

Y
A? A
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The left hand side of equation (A.3) is simply Y} as shown in equation (4.2).

According to equation (A.3), Y™} < 0if Ly > A + Lingpecr- The implication is that if passed units to
the customer have an average total loss that is greater than the average inspection cost per passed unit plus
the cost of the factory in fixing a unit, then the units should not have been produced in the first place.
Manufacture of the units should be halted until the process or product is corrected.
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APPENDIX B

Factory data from a number of critical electrical tests run on a lot of circuit packs were made avail-
able by A. Seghatoleslami and S. Mcardle. Neoyield values were calculated for each test. Some results are

tabulated below. The columns are self-explanatory, except the last which indicates the degree to which
improvement is needed.

Note: 3-sigma (on-target normal) quality = 89.0% neoyield
6-sigma (on-target normal) quality = 97.2% neoyield
12-sigma (on-target normal) quality = 99.3% neoyield

TEST DESCRIPTION OF TEST TARGET #UNITS YIELD YNEO FIX?

7201 forward disconnect (R) -37.25 Volis 277 100%  98.60%

7202  forward disconnect (T) -10.5 Volis 277 100%  97.72%

6201  on-hook rcv. gain (A) -1.25 dbm 275 100%  99.43%

6202  on-hook rcv. gain (A) -0.70 dbm 275 100%  89.56% **
6203  on-hook rcv. gain (A) 0.0 dbm 275 100%  87.46% **
6301  off-hook rcv. gain (A) 0.0 dbm 275 100%  82.26% **
6302  off-hook rcv. gain (A) -0.175 dbm 275 100% 91.40% *
6303  off-hook rcv. gain (A) 001 dbm 275 100%  66.95%  ****
6401 rev. disable (A) -inf  dbm 275 100%  78.48%  ***
6402  rcv. disable (B) -inf dbm 275 100%  68.65%  ****
6601  on-hook xmt. gain (A) -1.25 dbm 275 100%  97.90%

6602  on-hook xmt. gain (A) 0.0 dbm 275 100%  86.02% **
6603  on-hook xmt. gain (A) 0.0 dbm 275 100% 94.23% *
6701  off-hook xmt. gain (A) 0.0 dbm 275 100%  82.27% **
6702  off-hook xmt. gain (A) -0.025 dbm 275 100%  75.72%  ***
6703  off-hook xmt. gain (A) 0.025 dbm 275 100% 95.01% *
6901  transhybrid loss (A) -inf db 275 100%  5031%  *****
6902  transhybrid loss (A) -inf db 275 100%  63.71%  ****
6903  transhybrid loss (A) -inf db 275 100%  30.42%  HAdexx
6801  transmit noise (A) 0.0 dbme 274 100%  65.00%  ****
6501  receive noise (A) 00 dbmce 274 100%  97.63%

8000  crosstalk, A into B 0.0 dbmc 273 100%  69.42%  ****
8001  crosstalk, A into B 0.0 dbmc 273 100% 71.73%  ***
8002  crosstalk, A into B 00 dbmc 273 100%  65.73%  ****
8003  crosstalk, B into A 00 dbmce 273 100% 8091% **
8004  crosstalk, B into A 0.0 dbmce 273 100%  84.19%  **

8005  crosstalk, B into A 0.0 dbme 273 100%  71.36%  ***
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APPENDIX D

Suppose X;,X5,...,X, are identically and independently distributed (IID) with continuous probability

density function f (x) and —eo < x < eo.

Define:

USL
YlGl—Y—A—j (x=TY f(x)dx (D.1)

USL
withY = I f(&x)dx where LSL, USL, and A are known constants.
LSL

From equation (6.2), we have:

o 13 12 )
= ‘;Z USLSXSUSL) ~ Y Tusesxsusey) (Xi —T) D.2)
= i1

1]
X |-
M=

-
Il
[N

(X;-T)
AZ

Tyusi<x <ust) { 1-

-
Il
—

1]
x|
M=

N

where Z; =1 [LSL<X;<USL) { 1-

(X;-T)
A2



It follows that:

5G]

\

=E

-]

nVar ¥y = Var(Z)=E

=¥-2 [(x-TRf@d+
A% s

=Y
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A2

' (X;-T)
E(Yno)=E(Z)=E|I [LSL<X;<USL) 1- (D.3)

' (X;-T)
=E [Ipg<xsvsiy EY | 1- A2 | Tsrex,sust)

UL,
Twspex.<ust) {1— J%—%{ldx}]
IsL

-rfi-

USL
(x=T) f@x)
IL A? Y “}

' (X;-T» |*
Fisiex,susty {1‘ ‘ 2 -YSr (D4)

\

' (x;-T7 |’
Ips<xsuse) E { [1 - ——LA_{—_ | Tpseaxsosty | - YiSP

1 USL USL
P [T p - LL(x—T)zf(x)dx]
LSL

f USL USL
Tys<xsust {1—2,[ u;—z)z‘[‘;-@'dx+ J‘wﬁdx}]—ﬂf}z
L LSL s A Y

USL
1

USL
L [ (x-Tyfexyax -¥ER
A s

2



Since LSL and USL are finite constants and Z; is a function of X; truncated within [LSL,USL], all finite
moments of Z; are finite. As f’f,f: is the mean of an IID sample, Z,, . . .,Z,, it follows from the Strong Law
of Large Numbers and the Central Limit Theorem that:

A [G

Y,,,j — YIS]  almost surely,and Vn (?fJ—YESJ) - N©O,Var(Z)) as n—o.



	

