IMPROVING A CALIBRATION SYSTEM
THROUGH DESIGNED EXPERIMENTS

Arden Miller and C. F. J. Wu

IIQP Research Report
RR-91-06

August 1991



IMPROVING A CALIBRATION SYSTEM THROUGH
DESIGNED EXPERIMENTS

Arden Miller and C. F. J. Wu
Department of Statistics and Actuarial Science
University of Waterloo

August 1991

ABSTRACT

Taguchi (1987) advocates the use of designed experiments to improve calibration systems.
In this paper we study the statistical aspects of the problem. Inverse regression is used to
estimate the value of some quantity of interest, U, using measurements, Y, of related quantity,
W. We give a rigorous justification for Taguchi’s signal-to-noise ratio by showing that the
expected length of the Fieller intervals for U is a decreasing function of p%/c” where Y = o + BU
+ ¢, V(e) = 6°. Two methods of modeling this quality characteristic are proposed. Performance
measure modeling, which includes Taguchi’s signal-to-noise ratio approach as a special case,
considers modeling B*/c” directly as a function of the control factors whereas response function
modeling models P and o separately. These methods are compared both theoretically and using
an experiment on drive shaft imbalance.

KEY WORDS: Fieller intervals; Inverse regression; Model building; Performance measure
modeling; Response function modeling; Signal-to-noise ratio; Taguchi.



1 Introduction

In industry, the ability to obtain accurate estimates of certain critical quantities is
often a crucial part of monitoring a process. For example, the production of a chem-
ical compound may require a complicated process. It is important to have accurate
estimates of the composition of the process stream at various stages of the process so
that adjustments can be made to maintain a high product yield. A second example is
the measurement of residual imbalance in automobile drive shafts. Often, the manu-
factured drive shafts are not adequately balanced but can be corrected provided the
imbalance can be measured accurately. A data set from such a measurement system

is analyzed in Section 5.

Measurement systems are a practical application of statistical calibration or in-
verse regression. Measurements taken on a series of standards are used to calibrate the
system. Then measurements taken on samples can be used to estimate the quantity

of interest for the sample.

Mathematically, the calibration problem can be defined in the following manner.
Let U be the quantity we wish to estimate, W be a related quantity, and Y designate
measurements of W. Suppose we have p standards for which the values of U are
known with a high degree of precision, and a sample. Given the measured values of
W for the standards and for the sample, we wish to estimate the value of U for the

sample.

The most common type of calibration assumes that the relationship between U
and W is linear and deterministic, i.e., W = a + BU. Further, it is assumed that
the measurements, Y, are normally distributed with mean W. Therefore we have the

following relationship between Y and U:
Y = a+ U+ o, (1)
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e ~ N(0,1).

Most of the statistical literature on caiibration considers this type of system, where
the main interests are focused on obtaining estimates and making inference about
U. A more ambitious engineering objective would be the reduction of measurement
errors. Recognizing that a measurement system comprises a number of factors that
can be adjusted to affect its precision, Taguchi (1987) advocates the use of designed
experiments to identify settings of these factors which will reduce measurement errors.
Adopting Taguchi’s terminology, these factors will be referred to as control factors.
We view a measurement system as the whole process involved in obtaining an estimate
of U, which may include the sampling procedure and sample preparation as well as

the actual measurement process.

Although Taguchi’s idea is novel, his proposed signal-to-noise (SN) ratio lacks a
firm basis and his statistical analysis can be improved. The purposes of this paper
are two-fold: (i) to provide a rigorous justification of and better insight into Taguchi’s
SN ratio and (ii) to investigate several statistical modeling and analysis methods for

achieving the stated objective.

In order to improve a measurement system some measure of the performance of
the system is required. Section 2 outlines Taguchi’s procedure and demonstrates that
his signal-to-noise ratio is equivalent to Bz/sz. We have chosen the length of the
confidence interval obtained for U as a suitable measure. In Section 3, the classical
approach to obtaining a confidence interval for U is developed and it is shown that
the length of this interval is a decreasing function of 32/s? for the fitted calibration
relationship. Section 4 proposes two general methods of investigation; performance
measure modeling, which includes Taguchi’s procedure as a special case, and response
function modeling. Sections 5 and 6 use data from an actual experiment to demon-

strate and discuss the procedures. Section 7 outlines a model selection and estimation
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procedure for the response function approach.

For convenience we assume the error, €, in (1) and throughout the paper to be
normally distributed. The validity of the results in this péper is not sensitive to this
assumption since the estimates employed are standard ones in linear model theory
which are known to be quite robust against moderate deviations from normality. More
serious deviations can be detected by residual plots and other diagnostic methods. In

such cases, robust alternatives to the least squares method may be required.

2 Taguchi’s SN Ratio Analysis

Taguchi’s approach (1987) is motivated by considering the mean square error of the
generated estimates. Suppose the true relationship between W and U is known and
is deterministic and linear. Also assume the error variance of the measurements of
W is known. In terms of the definition of the calibration model (1), this means that
a, B and o? are known. The obvious estimator of U given a measured value, ys,, for

a sample is
Yobs —
B

Now let w, and u, be the true values of W and U for the sample. Since yo, = w; + €

Uest =

and wy = a + Bu;, we have

€
Uest = U + .

B

Therefore,
V() o*

= g )

V(ueot) =

which is also the MSE since wu.,. is unbiased. Taguchi identifies the goal of an exper-‘
iment as finding the factor settings which minimize 02/32 or equivalently maximize

w = #2/c?. Usually, B and o are not known and therefore must be estimated. Taguchi



rejects using & = 32/s? (where 3 and s? are the classical estimates of 3 and o?) since
Bz is not an unbiased estimator of 82. Instead, he defines a signal-to-noise (SN) ratio,
w, as X R

:82_32/51414 _ :32 1

LD:—-———-—-——-——-sz —-;*—-S:, (3)

where S, is defined in (4). Taguchi’s approach is to implement an orthogonal design
~ (usually factorial or fractional factorial) for the control factors. The calibration proce-
dure is performed and @ is calculated for each run. A standard ANOVA is performed
using 10log & as the response with the goal of maximizing w. For additional work

along this line, see Liggett (1991).

Taguchi’s derivation ignores the fact that in practice 8 and o must be estimated
and the estimation error may affect the choice of performance measure. The impli-
cations of parameter estimation should be considered in determining control factor

settings. A more rigorous derivation is given in the next section.

3 An Alternative Justification of Taguchi’s SN

ratio based on Fieller Intervals

In this section, the classical method of obtaining a confidence interval for U given an
observed value of Y is reviewed. Fieller (1954) used a fiducial argument to develop

these intervals. Consequently, confidence intervals of this type are known as Fieller

intervals (Williams 1959, Seber 1977).

The measured values y; of Y and known values u;, 7 = 1, ..., p, of U for the stan-

dards are used to model the relationship between Y and U. The classical estimates



for a, B, and o? are

. S
B = 5.
& = 37—:31-",
1
$$ = ——(Sw —BSw),

where
2 2
Syy = E(y:i - g) ’
1
P
Suu = z(uj—ﬁ)z’ (4)
1

Sy = ‘;(yj-y)(u,-—a)-

For a specific value of U = u,, the 100(1 — )% prediction interval for Y is given by

Uo — )2

&+Buoits\ﬁ+%+(s—w, (5)
where t = t,/2,—2. Suppose that y, is the measured value of W for a sample which
has an unknown value of U. A 100(1—+)% confidence interval for u, can be obtained
by using the set of values of U for which y, is in the 100(1 — )% prediction interval

of u. Therefore, the confidence interval will contain all values of u that satisfy:

R =2
(Yo — & — Bu)? < t%s? (1+l+u). (6)
P Suu
This can be rewritten as
Alu—a)*+Bu—a)+C <0, (7)
where
A 122
A = 132 - S b
B = _2B(yo - 37)7

C = (y,—79)* —t%s? (1+11;).
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It is straightforward to characterize the set of values of u — @ which satisfy (7) using

simple calculus. Let

flu—a) = A(u-—a)*+ B(u—1a)+C,
fu—8) = 24(u—-1a)+ B,
fflu—1a) = 24.

Consider the following cases:

A >0, f(u — u) is a quadratic function which opens upward and has a minimum at
u — 4 = —B/2A. It is straightforward to show that f(—B/2A4) < 0if A > 0.
Therefore, the solution to (7) consists of a finite interval. Note that A > 0
implies 32/(s%/Suu) > t* which is equivalent to the F-test for the hypothesis
H:B = 0 being rejected at the v level.

A =0, the solution to (7) is a semi-infinite interval.

A < 0, the solution to (7) will consist of two semi-infinite intervals if the maximum,

f(—B/2A), is greater than zero and the entire real line otherwise.

The first case is the only one of practical interest since it would be unreasonable
to use Y to predict U if there is no clear evidence of a relationship between them.

Assuming a finite interval, (ur,ur), its length is

vB? — 4AC
Y= ®)

Uy — U =

which can be written as

1 . 1282 o — 3212 (., 252\ 71
uy —up = 2ts [(1+;) (ﬁz—sju)-l-(yswy)] (,32—5—;)
1\ (. ¢ -9 11V (. £\
- 2“[(”;) s) v s o) - ©
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In this expression, ¢, p and S, are controlled by the calibration design so the width
of the Fieller interval depends on & and (y, — )?/s%. Now, let u, = y, — &/8 be the

classical estimate of U given Y = y,. Therefore
yo"'?-l-::é(uo_ﬂ)

and

('.‘/o - 1‘7)2 — &(uo — @)%

38

Substituting into (9) gives

1 £2 . — @) 1/2 2\ 7!
uU—uL=2t[(1+;)(‘—§;)+a%] (_B’Z) . (10)

which depends on @, Sy,,, and u, — @. This is equivalent to a result shown by
Hoadley(1970) that the width of the Fieller interval depends on the magnitude of
the F statistic for testing H:8 = 0:

f = Suul. (11)

The width of the Fieller interval decreases as & increases for & > t2/S,,. This can

easily be seen by rewriting (10) as

- 1/2 -
1 2 1 . — )2 2 1/2
”5”(‘:’"5%) . Swu)] ( "EI) - @

The result is evident since both &(& — t2/Sy,)" and (& — t2/8,,)~/? are decreasing

uy —ug = 2t

functions for @ > t2/S,,. It can also be seen from this equation that for a fixed
value of & the size of the Fieller interval decreases as S,, increases. This can be
done by increasing the number of standards or by spreading the standards out as
far as possible. The second approach is only feasible if the assumption of a linear
relation between U and W holds over the extended range. In practical systems, the

assumption of linearity is often only valid over a limited region.

7



As @ is a random variable, the control factors should be set to produce a favorable
distribution of &. An obvious choice is to maximize E(&). Since Sy,& has a noncentral
F distribution with 1 and v = p — 2 degrees of freedom and noncentrality parameter

A = Suuw,

B@) = -2 (Siww), (13)
Vie) = o= i% >y [(Si,, + ‘”)2 + Vs;z (SLW + 2"’)] - ()

Therefore, maximizing E(®) is equivalent to maximizing w for the true underlying

function.

- It should be noted that not all calibration procedures are of the form just de-
scribed. The drive shaft data which we use to illustrate our procedures in Section 5
is an example of a different type of calibration. Instead of taking measurements on
standards, measurements are taken on the sample drive shaft with known amounts of
weight attached to it. In this case, the objective is to estimate the amount of weight
which should be added to each drive shaft in order to obtain a reading of 0 (balanced
drive shaft). It can be shown that w is also a suitable performance measure for this
application. In this case, since we are considering a fixed value of Y, the 100(1 —v)%

confidence interval for Y given a specific value of U,

(uo — )2

&+Buoits\/l+ ,
P Suu

is used to derive the expression for the Fieller interval, instead of the prediction

interval (5). Following the same procedure as before, the width of the Fieller interval

1 $2 . — )2 1/2 2\ -1
uy — ug = 2 [; (w - Sw) +ol Sw“) ] (cb— SLW') : (15)

Note, in (15), u, is the classical estimate of U when Y = 0. It is clear, that the Fieller

is

interval still decreases as @ increases for @ > t2/S,,.
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4 Modeling and Analysis

Having established that a reasonable goal is to determine the control factor settings
that maximize w = 82/0?, there are two apparent methods of analysis. The first is
to calculate some estimate of w for each run of the experiment. Then this estimate
(or some transformation of it) would be used as the response. The philosophy of this
approach is to model the performance measure directly as a function of the control
factors. This approach will be referred to as performance measure modeling (PMM).
Taguchi’s approach is a specific example of this method where @ = B2 /8% —1/8y, is

used to estimate w and then the transformation g(@) = 10log,, @ is applied.

An alternative approach would be to model the calibration relationship as a func-
tion of the control factors. Then the control factor settings which optimize w could
be found for the fitted model. This approach separates the modeling of the calibra-
tion relationship and the optimization of the performance measure into two distinct
stages. We have assumed the calibration relationship, for a fixed set of control factor
levels, can be adequately described by (1). Therefore, we can model this relationship
by modeling the parameters (e, 8, ¢) in (1). This approach will be referred to as
response function modeling (RFM).

At this point it is useful to consider the structure of the models for the above
modeling procedures. In identifying suitable models we recognize that measurement
systems are often not stable. By this we mean that the relationship between Y and U
is not fixed but may vary with time. For this reason, measurement systems are often
recalibrated at regular intervals. It suggests that a good modeling strategy should
consider B and o? as random variables instead of constants for a fixed set of control
factor settings. These types of models are referred as random coefficient models and

are often used in econometrics.



First, consider PMM. The model we propose can be described in the following
manner. Let &; = f32/s?, i = 1 to n, be the value of & corresponding to the ith
experimental run. Assume that the distribution of In(&;) can adequately be described
by the model

In(@;) = In(w;) + o165, (16)

where the errors are iid N(0,1). A justification of this is given in the Appendix. It is
also shown there that
V(ind;) = 2/(v —4) (17)

for values of Syuw; > 30, where v is the degrees of freedom associated with s?. Let
®,, denote the vector of coefficients for the control factors, X denote the design matrix
of the experiment, and x; denote the ¢th row of X corresponding to the i¢th control

run. We now assume that ln(w;) can be modeled in the following manner:
In(w;) = x!O,, + ook, (18)

where the error terms are iid N(0,1). Substituting (17) and (18) into (16) gives the

following model for In w;:
Ind; = x\0, + (02 + 2/(v — 4))2¢;, (19)

where the errors are iid N(0,1).

Now consider RFM. In this case Wé wish to model 8 and o? separately. To

accomplish this we propose the model

Yi; = o+ Piu; + o€, (20)
B = x:.@ﬂ + oaT, (21)
In(e}) = xi®, +0,(, (22)
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where ¢€;;, 7;, and (; are independent N(0,1) random variables. First consider the
modeling of o%. Bartlett and Kendall (1946) have studied the use of Ins? to study

variance. Adapting this approach to the current situation we have
In(s) = In(o?) + (2/v)" e, (23)
where ¢; is approximately N(0,1). Substituting (21) into (23) gives
In(s?) = x1®, + (62 + 2/v)'/%, (24)
where ¢ is approximately N(0,1).
For 3, we have the following model
Bi = Bi + (07 /Sun) . (25)
Substituting in the model for j3; gives
B; = xi@ + (of + 02/8u) e, (26)

where the error terms are iid N(0,1).

In Section 7 we give a step-by-step procedure for fitting these models.

5 Analysis of Drive Shaft Data

Taguchi (1987) describes an experiment which investigates a system of measuring
the the residual imbalance of automobile drive shafts. Apparently, the manufactured
drive shafts are often not adequately balanced which results in noise and vibration.
This problem can be corrected using balance weights but this requires an accurate
measurement of the amount of imbalance. Therefore, an experiment was undertaken

with the goal of finding the control factor settings which produce the most precise
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A: Testing Machine A;: New A,y: Old
B: Master Rotor vBlz #1 B,: #2
Bs: #3 By: #4
C: Rotations at Handling Time Cy: Current C3: New
D: Rotations at Measurement D;: Current Dj: New
E: Signal Sensitivity E;: 10 E,: 20
E3: 30 E,: 40
F: Sequence of Correction of Imbalance | F;: Current F3: Reverse
F3: New #1 . Fy: New #2
G: Imbalance Correction Location G4: Current G3: New

Table 1: Control Factors for Drive Shaft Data

measurements. The experiment contained eight control factors which are listed in
Table 1. Three drive shafts (M], M;, M;) were tested at each combination of control

factors. Four measurements were taken on each drive shaft corresponding to the

following conditions:

M;: Drive shaft measured as is.

M;: Drive shaft measured with 10g weight attached to mass-deficient side.

M3: Drive shaft measured with 20g weight attached to mass-deficient side.

My,: Drive shaft measured with 30g weight attached to mass-deficient side.

In the original experiment data is collected for both the flange side and the sleeve
side of the drive shaft. For the purpose of illustration we will only consider the data

for the flange side. Also, to simplify the analysis, the control factors which have four
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Control Factors Control Factors
Run|{A B C D EF G|Rm|lA B C D EF G
1 1 11 1 1 11 9 {2 3 1 1 4 2 1
2 (1 2 1 2 2 2 110 (2 4 1 2 3 1 1
3 (1 3 2 1 3 3 1|12 1 2 1 2 4 1
4 |1 4 2 2 4 4 1) 1212 2 2 2 1 3 1
5 1 2 1 1 3 4 2|13 |2 4 1 1 2 3 2
6 [1 1 1 2 4 3 2| 14 (2 3 1 2 1 4 2
7 (1 4 2 1 1 2 2|15 (2 2 2 1 4 1 2
8 |1 3 2 2 2 1 216 (2 1 2 2 3 2 2

Table 2: Design Matrix for Drive Shaft Data

levels (B, E, F) will each be analyzed by considering three linear contrasts. As factor
E is quantitative, orthogonal polynomials were used to estimate effects corresponding
to the linear, quadratic, and cubic components (El, Eq, Ec). Factors B and F are
qualitative. The contrasts used for these factors are designated by B1, B2, B3, F1,
F2, and F3. Bl contrasts levels 1 and 2 with levels 3 and 4, B2 contrasts levels 1
and 3 with levels 2 and 4, and B3 contrasts levels 1 and 4 with levels 2 and 3. The

contrasts for F are designated in the same manner.

It is assumed that a linear relationship exists between the measured quantities
_and the true imbalance of the drive shafts. This means the response for each control
factor combination consists of three simple linear functions corresponding to the three
drive shafts. These functions are assumed to have common slopes and error variances
but different intercepts. It is always well advised to make sure that the observed

data is reasonably consistent with the assumptions. Scatterplots of the data indicate
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M! M} M}

Run | My M, Ms My |My, My My M,|My M, M; M, n
1 | 4 6 18 27| 4 6 15 25(/-20 -10 2 14
2 | -7 10 238 42| -3 15 32 46|-3¢ -20 4 16
3 || 4 9 2 34| -7 6 18 30[-26 -15 0 12
4 || 2 10 22 36| -4 8 22 34(-30 -18 -7 10
5 | 6 6 16 28| -5 6 16 27|-21 -12 3 13
6 | -7 13 32 50| -7 14 31 48|-45 -27 -8 13
7 [-13 10 30 52| -8 10 30 50|-37 -18 7 26
8 [-19 8 27 48|-14 7 29 52|-42 25 -2 22
9 -10 4 16 29| -8 6 16 26|-29 -20 -14 -14
10 | -14 11 32 51|-18 4 25 46|-44 -26 -11 16
11 -3 2 10 16| -4 2 17 13|13 8 5 7T
12| -5 5 16 25| -7 3 12 22|-22 -14 -8 12
13 4 6 18 30| -8 2 16 28|-23 -15 -10 18
14 | -6 16 38 62|-16 6 32 55|-44 -25 -6 21
15| 4 2 7 14| 4 2 6 12|-10 -6 -3 7T
16| 5 6 16 30| -7 4 16 27|-25 -14 -6 14

Table 3: Drive Shaft Data (flange side)
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Figure 1: Scatterplots for Run 1 (y — § vs. attached weight)

this is the case for most of the runs (Figure 1 contains the scatterplots for Run 1).
However, runs 9 and 13 each have one point which appears somewhat unusual. Since

the assumptions are reasonably satisfied, we will proceed to illustrate the procedures.

The control factor settings for this experiment are given in Table 2. Table 3
contains the raw data for this experiment and Table 4 contains the estimated values

of the parameters for each experimental run.

First consider PMM. Model (19) is valid provided that the values of S,,w; are
larger than 30. In the present situation this is reasonable since the smallest value of
Suuw; occurs for run 9 and is 58.5. Since this model assumes a constant variance for
the response, the standard half normal plots should be valid. The half normal plot
is given in Figure 2. The plot indicates that effect A is clearly significant and effects

Ec and D are marginal.

Suppose the only significant source of variation is due to estimation error. Then
using equation (34) from the Appendix, the approximate variance for each In®; is 0.5.
Let @, denote the vector of true effects for the control factors and In @ be the vector
of In&;. The covariance matrix for the estimated effects, @, = (X'X) ' X' Inw will

be 0.5(X'X)"!. For the design matrix used in this example, the effects should be
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a

Run | g s? | B%/s? In(B%/s?) || Run| B s? | B%/s? 1In(B3?%/s?)
1.050 1.375 | 0.802  -0.221 9 |0.973 24.304 | 0.039  -3.245
1.660 5.075 | 0.543  -0.611 10 | 2.080 6.378 | 0.642 -0.443
1.263 0.529 | 3.017 1.104 11 | 0.647 10.529 | 0.040  -3.225
1.283 1.417 | 1.162 0.150 12 | 1.017 6.667 | 0.155 -1.863
1.117 1.292 | 0.966  -0.034 13 |1.210 17.842 | 0.082  -2.500
1.883 1.417 | 2.504 0.918 14 | 2.260 4.842 | 1.055 0.054
2.077 2.992 | 1.442 0.366 15 | 0.550 1.875 | 0.161 -1.824
2.183 3.667 | 1.300 0.262 16 |(1.180 4.863 | 0.286  -1.251

0O N O O B W N

Table 4: Estimated Parameters for Drive Shaft Data

independent and have a variance of approximately 0.125. So given the null hypothesis,

Hy:®, = 0, we can calculate critical points ¢; and c; such that,

Pr|| any specific estimated effect |< ¢;|Hp] = 0.95, (27)
Pr[| all estimated effects |< c|Hg] = 0.95. (28)

For the given situation, ¢; = 0.69 and c; = 0.97. These lines are plotted on the half
normal plot. From the plot we see that these lines are consistent with our initial

assessment.

Now consider RFM. The analysis for In s? is very similar to that performed for
In@. For the assumed model (24), the variance of In s? is approximately constant for
each run. Therefore, the estimated effects for the factors should be approximately iid
normal variates. The half normal plot for the estimated effects is given in Figure 3.
Also, under the assumption that the only significant source of variation is due to

estimation error, we can calculate the individual and simultaneous 95% critical points
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for the hypothesis that the effects are 0. These points are ¢; = 0.49 and c; = 0.68
respectively. Lines corresponding to these points are indicated on the half normal plot.
These lines are consistent with the conclusions we would reach just from an inspection
of the plot. Therefore it is consistent with the data to assume that estimation error
is the only important source of variation. The half normal plot indicates that there
is clear evidence that factors A and Ec are significant. There is no evidence that any

of the other factors are significant.

Now consider the analysis of 3. The model being used is given by (26). In this case,
the errors associated with the estimated slopes are not constant. Therefore, in general,
weighted least squares (WLS) should be used to estimate the control factor effects.
However, for the present example, we have a design matrix which is nearly saturated
in that only 1 degree of freedom is available to estimate error. We prefer to estimate an
effect corresponding to this degree of freedom and use techniques such as half normal
plots to evaluate significance. Therefore, the estimates obtained using WLS will be
exactly the same as those obtained using ordinary least squares (OLS). We must be
careful in evaluating these estimates since, given the above model, it is not correct
to assume that the estimated effects are independent. Suppose we define the matrix
D as being diagonal with the ith diagonal element 5 + 67?/S,.. Then the covariance
matrix for the estimated effects given the model (26) is (X'D~'X)~1. Therefore,
we must be careful in using techniques which assume independent estimates, such
as half normal plots, in evaluating the importance of effects. A major difficulty is
that for a saturated design matrix there are no available degrees of freedom to obtain
an estimate of 3. This makes it difficult to assess the degree of departure from
independence. Note that if the value of ¢} is large with respect to the range of the
0?/8S,, terms, the off diagonal elements of (X'D~1X)~! will be relatively small and

the half normal plot will give a reasonable representation of the effects. The procedure
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we propose is iterative in nature. First, we select a subset of the control factors which
we suspect are important and refit the model retaining only these factors. The half

normal plot, Figure 3, was used as a guide for this initial selection process.

For this subset of control factors we get refined estimates of the effects as well as an
estimate of o by using an iterative reweighted procedure. Details of this procedure

are given in Section 7.

The half normal plot would indicate only factors D and B1 are significant if the
estimated effects were independent. As this is not the case, the WLS procedure was
used to fit a model which contained factors A, G, CD, El and C as well as D and B1.
The estimated effects are given in Table 5 under R-1. These estimates are consistent
with those obtained for the full model using OLS (first column of Table 5). Finally
the model containing just factors D and B1 was considered. The estimated effects for
this model are given in Table 5 under R-2. Again, the estimates are consistent with
the OLS estimates. The estimated value of o} for this model is 0.1251. Since the
values of s?/Sy. range from 0.0003 to 0.0162, the estimated value of o} is large enough
to support treating the estimated effects as if they were independent. Therefore, the

half normal plot is a valid form of analysis.

6 Discussion of the Drive Shaft Experiment

In analyzing the data it is important to consider the objective of the experiment. Box
(1988, 1966) identifies two types of feedback, empirical and scientific, which can occur
as the result of an experiment. Empirical feedback uses some definite rule to determine
the response taken as the result of the experimental outcome. For example, suppose
we consider the experiment simply as a mechanism to identify recommended control

factor settings. The recommended settings are those the analysis predicts will yield
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Model

Factors Full R-1 R-2
Intercept || 1.403 | 1.399 | 1.406
A 0.324 | 0.330 -
B1 -0.529 | -0.524 | -0.532
B2 0.056 - -
B3 0.048 - -
C 0.255 | 0.262 -
D -0.583 | -0.580 | -0.574
El -0.291 | -0.320 -
Eq -0.031 - -
Ec -0.085 - -
F1 0.133 - -
F2 0.005 - -
F3 |-0.012| - -
G -0.312 | -0.342 -
CD -0.301 | -0.298 -
e -0.189 - -
&5 - 0.0117 | 0.1251

Table 5: Estimated Effects for 8
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the optimal output. Questions of statistical significance are not important since the
recommended settings for “nonsignificant effects” are arbitrary choices which should
have little impact on the system. For scientific feedback the goal of the experiment
is to enhance the investigator’s knowledge of the system. This may result in the
investigator using the knowledge gained from the experiment (as well as knowledge
from other sources) to determine a future course of investigation. For this type

of feedback, questions of significance are relevant. We will consider both types of

feedback for comparing PMM and RFM.

Consider PMM and RFM with respect to scientific feedback. First consider per-
formance measure modeling. Factor A is the only clearly significant effect. The half
normal plot for In & indicates that effect Ec and possibly effect D are large enough to
warrant further investigation although not clearly significant. Now consider response
function modeling. Figure 3 contains the half normal plots for ,é and In s2. The anal-
ysis for 3 indicates that effects D and B1 are significant. From the half normal plot
for In s? it would appear that effects A and Ec are significant. It seems somewhat
unusual that the cubic orthogonal contrast for factor E has been identified as being
important. The cubic contrast for E is partially aliased with a number of two factor

interactions as follows:

E(Ec) = pge + (paxr1 + pBixe + pBaxp1)/V5 — 2(kaxp + pexrs + pexrz)/ V5.

It may well be that one of these interactions is causing the observed effect. In partic-
ular, since A is clearly significant the interactions involving A should be considered

as strong possibilities.

It is instructive to consider the results for factors A, Bl and D more carefully.
Factor A is significant in the analysis of In s2, and In & but not ,[§ . So there is evidence

that A affects o as well as the performance measure, w, but no clear evidence that

21



RFM g8 D Bl
In s? A Ec
PMM Ind | A (Ec) (D)

Table 6: Significant Effects

it effects 8. We would conclude that the new testing machine gives more precise
readings and this is mainly the result of a smaller measurement variance. Factors
Bl and D are a different matter. There is evidence that Bl and D affect 8 but no
clear evidence that either affects o or w. This means that in both cases we cannot
reject either the possibility that the factor has no effect on o or the possibility it
has an effect on o large enough to offset its effect on 3. It may be that a person
familiar with the measurement system can determine which of these possibilities is
more plausible. Notice that for the analysis using In @, B1 is overlooked entirely and D
is considered marginally significant. Table 6 summarizes the effects which were found

to be significant by the different analyses. The marginal effects are in parentheses.

Now consider the question of empirical feedback. In particular, consider Taguchi’s
approach of using the experiment as simply a method of determining factor levels.
The PMM approach is very straightforward to apply in this situation. Factors A, B,
F, and G are all qualitative and therefore the recommended settings are simply the
best marginal settings. For factors C and D, the recommended settings depend on the
calculated effect of the CD interaction as well as the main effects. Factor E is the only
quantitative factor. The fitted cubic model is used to determine the recommended

setting for this factor over the range studied in the experiment.

For RFM the strategy is to calculate the effects for B and s? separately. The

effects are then combined to determine the preferred level for each factor. The results
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PMM RFM
Factor | In(8%/s?) | B lns?
A 1 1
B 3 3
C 1 1
D 2 2
E 33.4 34.0
F 1 1
G 2 2

Table 7: Recommended Control Factor Settings for Empirical Feedback

of both analyses are given in Table 7. The recommended settings for all qualitative
factors are the same. The recommended settings for E are only slightly different
(34.0 vs. 33.4). In this example the type of empirical feedback we are considering is

insensitive to the modeling procedure.

7 General Modeling Procedure for RFM

The general procedure we propose for response function modeling is as follows.

1. Estimation of Regression Coeflicients
Estimates of B and o? are obtained for each run in the experiment. In this
paper we only consider the standard least square estimators. However, in certain

situations it may be valuable to use estimators which are more robust to outliers.
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2. Model Identification for o2
The general procedure is to obtain maximum likelihood estimates using (24) as
the model. This is a straightforward process provided the design matrix is not
saturated. In this case the MLE’s for ®, are the usual least squares estimates
obtained by solving
X'lns? - X'X0, =0,

where In s? is the vector of In s? terms. The MLE for o2 is obtained by solving
52 = (1/v)(Ins? — XO,)(Ins? — X0,) — (2/v).

The estimate of o2 is constrained to be non-negative. So if the solution is

negative, 62 is taken to be 0. Now, we can calculate an estimated variance for
each Ins? as 62 + 2/v. Therefore, an estimated covariance matrix for ©, is
(62 +2/v)(X'X)!. In most cases, the design matrix used will be orthogonal
and scaled so that the estimated effects have equal variance. This will result
in an estimated covariance matrix of the form (62 + 2/v)kI. Therefore, it is

relatively easy to calculate critical values ¢; and c¢; such that

Pr[| any specific estimated effect |< ¢;|H,] = 0.95, (29)

Pr[| all estimated effects |< c3|H,] = 0.95. (30)

We recommend that a half normal plot of the effects with lines at ¢; and c,
be produced. This is an effective visual tool in assessing the importance of the

factors.

The situation is only slightly more complicated when the design matrix is sat-
urated. In this case we cannot obtain a direct estimate of o2. However, given
the design matrix is orthogonal and properly scaled, the estimated effects will

be independent and have equal variance. Therefore, a half normal plot can
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be used to assess which effects are significant. An estimate of o2 can then be
obtained when only this subset of effects is included in the model. Note, that
the estimates of @, are not affected. This estimate of 02 can now be used for

subsequent inference.

. Model Identification for 8

First, consider the case where the dvesign matrix is not saturated. The coef-
ficients for the model given in (26) can be estimated by using an iteratively
reweighted procedure. This procedure uses the equations generated by differ-
entiating the log likelihood function for (26) by @4 and o3. In these equations
each o7 is replaced by the corresponding s?. The procedure starts by using the

OLS estimates of @4 to obtain an estimate &g of a',_z-,. from solving
— D(0h + 52/ Sua) ™t + D(B: — xi®p)*(0F + 87 /Suu) = 0. (31)
Then new estimates for @4 are obtained by solving
X'D'B-X'D'X0@g =0,

where 3 is the vector of B;s and D is a diagonal matrix with ¢th diagonal
element equal to &5 + s7/S,.. These two steps are repeated until the estimates
for @5 and o} converge. If the estimated value of o} is large with respect to
the s?/S,. terms, then the off diagonal elements of the estimated covariance
matrix, (X'D~1X)"?, will be small with respect to the diagonal elements and
we can treat the estimated effects as being approximately independent. In this
case, we recommend using a half normal plot as well as approximate critical
values for testing hypotheses of the type given in (29) and (30) to evaluate the
significance of the control factor effects. If this is not the case, a more rigorous

procedure is required. Since the covariance between estimated effects cannot be
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neglected, some kind of search procedure is required to identify the subsets of
control factors which produce good final models. The search procedure can be
simplified by using the initial analysis to divide the control factors into three

groups:

(a) Those factors which clearly should be retained in the model.

(b) Those factors which are marginal in that it is not clear whether they should

be retained in the model or not.

(c) Those factors which can safely be eliminated from the model.

Only models which contain the factors in (a) and a subset of the the factors in
(b) need be considered. Usually, the number of factors in (b) is small enough so
that an exhaustive search can be done. A number of criteria, including Akaike’s
information criteria (AIC) (Miller 1990), are available which can be used to

assess the suitability of the models.

A more difficult situation arises when the design matrix is saturated. We recom-
mend the following procedure. First, produce a half normal plot of the estimated
effects obtained using OLS. This plot can be used to divide the control factors
into three sets as was done previously. The model containing all factors from
sets (a) and (b) should then be fitted and an estimate of o5 obtained using (31).
If the estimated effects for this model are quite close to those for the original
model and the covariance matrix estimated by (X’D~!X)~! has relatively small
off diagonal elements, then it is reasonable to use the original half normal plot to
evaluate the relative importance of effects. Otherwise, as before, an exhaustive
search of models which contain the factors in (a) and subsets of those in (b)
can be done using AIC or related methods to evaluate the relative suitability

of the models.
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In general the procedures may identify several models as suitable. Practical
knowledge of the system and subsequent experimentation should be used to

determine a final model.
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Appendix: Model Justification for w

In considering an estimator for w = 8%/0?, it makes sense to consider functions
of ,3 and s since (B, s) is minimal sufficient for (8,0). The most obvious choice
would simply be & = [32/s?. Taguchi rejects this estimator on the grounds
that 3% is not unbiased for B2. This is not a valid argument as there is no
compelling reason to require an unbiased estimator. Further, although Taguchi’s
alternative, @, can be constructed from the quotient of an unbiased estimator of
(? and an unbiased estimator of 0%, @ is not unbiased for w. It is straightforward
to derive, from (13) and (3), that

v w 2 1
v—2 v—28u

E(@) =

In most practical situations, there will be very little difference between & and

@. From(11) we have

Therefore,



for large f. Note, that the F-statistic, f, should have a large value for the

measurement system to be useful (see Section 3).

Now, consider possible transformations of the estimator. Major reasons for
transforming the response variable are to stabilize the error variance, to obtain

a parsimonious model, and to make the error terms approximately normal.

Stabilization of error variance can be assessed from theoretical considerations.
First, note from (13) and (14) that E(®) is linear in w and V(@) is quadratic
in w. This would suggest that some type of logarithmic transformation may be
useful. Consider transformations of the form In(@ + c), where c is constant with
respect to w. The delta method can be used to approximate the variance of this
transformation:
V()
[E(@) + <]*
(e +@)* + (v — 2)(Sal +250,w)
ki
(5wt o)
(v—2)(5;2+257 w) — 2¢* (St +w) — c*?

' [ * (Sal+w+ ) » (32)

where k; = 2/(v — 4) and ¢ = c*v/(v — 2). Clearly, if we let ¢* = (v — 2)S_},

Vin(@+c)] =~

then the coefficient of w becomes 0 in the numerator of the second term of (32).

Therefore, we obtain

Vin(@+v/Sw)] = k [1 - E::_ 13/(111)25)'_5;;“2]

N ki [1-(r-1)(r-2)S2w? + 0(w™)].  (33)

Compare this to the variance of In@& which can be approximated from (32) by

taking c* = 0:
Vné] =~k [1+2(v — 2)Splw™ + O(w™?)] . (34)
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This indicates that the transformation In(& + v/S?,) should stabilize the error
variance at lower values of w than In®. For sufficiently large values of S,,w

either transformation will effectively stabilize the error variance.

Note that Taguchi’s SN ratio (3) is equivalent to taking ¢* = (2 — »)r~1S;} in
(32). From (32),

Ving] ~ ki [1+2(v — 2)(v + 1) Splw™ + O(w™?)]. (35)

173

The w™! term is slightly larger in this expression than that for V(In®). This is

another reason for not favoring the use of Taguchi’s SN ratio.

Figure 4 compares the variance of In®, In® = In(@ —1/S4y), and In(@ + v/Syu)
as a function of S,,w when v = 8. All three variances convei'ge to 0.5. As a
rough guide, it appears that all three transformations are adequate for values
of Syuw above 30. However, there is a distinct advantage in using In(® + v/ S,.)

for values of S,,w between 10 and 30.
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Figure 4: V[In(3%/s? + c)] against S,u8%/0? for v = 8
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