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ABSTRACT

In planning a fractional factorial experiment prior knowledge may suggest that some interactions
are potentially important and should therefore be estimated free of the main effects. In this paper
we propose a graph-aided method to solve this problem for two-level experiments. First we
choose the defining relations for a 2™* design according to a goodness criterion such as the
minimum aberration criterion. Then we construct all the nonisomorphic graphs that represent the
solutions to the problem of simultaneous estimation of main effects and two-factor interactions
for the given defining relations. In each graph a vertex represents a factor and an edge represents
the interaction between the two factors. For the experiment planner the job is simple: draw a
graph representing the specified interactions and compare it with the list of graphs obtained
above. Our approach is a substantial improvement over Taguchi’s linear graphs.

Keywords: feasible graphs, linear graphs, minimum aberration designs, interaction graphs, clear
interaction, eligible interaction.

This paper is a substantial revision of "Graph-aided Assignment of Interactions in Two-
level Fractional Factorial Designs", which appeared previously in this series as research
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1 Introduction

In a factorial experiment some background knowledge may suggest that certain interactions
are potentially important. The experimental plan should therefore be chosen so that these
interactions can be studied without being aliased with each other and with the main effects.
Importance of interactions can arise in several contexts. (1) An underlying physical mecha-
nism may suggest a large interaction between some factors. For example, in a circuit pack
assembly process, a machine mounts components onto the surfaces of printed wiring boards
in two steps, epoxy application and component placement. In the first step, an epoxy dis-
penser head covers the board with a pattern of epoxy dots. In the second step a different tool
places components on the epoxy dots in the board. Some important factors in the first step
may include dispensing pressure, dispensing time, dispenser speed, dispenser height, epoxy
type, and epoxy temperature. The important factors in the second step include component
pressure and tool height. The responses are the z-axis and y-axis of the component position.
Process knowledge suggests that the two stepé are independent but the factors within each
step are likely to interact with each other. (This example is based on information provided
by Kwok Tsui.) (2) It is desired to estimate specific interactions even when they may turn
out to be small. For example, to improve the throughput of a casting process, one may con-
sider increasing the line speed. If the main effect of line speed and its interactions with other
key factors such as iron chemistry (e.g. percent of copper, silicon, etc.) are insignificant,
then the speed can be increased to achieve higher throughput without sacrificing quality. It
is therefore important to be able to estimate the interactions between line speed and other
factors. (3) In robust parameter design, the interaction between a control factor (e.g. diam-
eter of pipes) and a noise factor (e.g. flow rate of inlet gas) may be important for making a

product (in this case, a heat exchanger) insensitive to noise variations. For other examples

see Shoemaker, Tsui and Wu (1991) and Wu, Mao and Ma (1990).

The interactions specified by the investigator can be estimated if a design of resolution V
(or higher) is used. Quite often for economic or other reasons a smaller design is preferred, in
which some 2-factor interactions (2fi’s) are aliased with other 2fi’s or main effects. The main
question of interest is how to select a fractional factorial design that allows the main effects

and the set of interactions specified by the investigator, which are called a requirements set



(Greenfield 1976), to be estimable. If the number of interactions is small, such a problem
can often be solved by searching over different fractions until a satisfactory one is found, or
by using the interaction table (see Section 4) to assign factors and interactions. Both require
trial and error and give no clear-cut answer to the existence of solutions. When the number
of interactions is large, the methods become quite unwieldy. Alternatively Taguchi (1959,
1960) proposed a method for assigning factors and interactions based on a class of graphs
which he calls linear graphs. This method has gained popularity in recent years. In Section
2 we briefly review his method and point out some deficiencies. Taguchi (1987, Volume I)

also used linear graphs for other purposes which are not the subject of this study.

In practice it is difficult for the investigator to predict exactly which interactions are
significant. Lack of information or misjudgement may lead to misspecification of significant
interactions. Therefore a satisfactory approach to this problem should meet the following

objectives:

(i) it can estimate all the main effects and the interactions in the requirements set, as-

suming that the other interactions are negligible;
(i) the estimation in (i) should be achieved under less stringent assumptions;

(iii) some interactions outside the requirements set can be estimated under less stringent

assumptions.

Taguchi’s method and several other methods reviewed in Section 4 can only satisfy the first
objective. Hedayat and Pesotan (1992) study the existence and optimality of designs that
satisfy (i).

The main purpose of this paper is to propose in Section 3 a graph—a,ided method that can
meet the three objectives. We use the minimum aberration criterion (defined at the end of
the section), which is more general than the notion of resolution, to capture the objectives
(ii) and (iii). The method consists of two phases as described in Sections 3.1 and 3.2. In the
first phase we obtain, for a given design, all the graphs that represent the sets of estimable
interactions of the design. In the second phase the user draws a graph to represent the main
effects and interactions in the requirements set and then compares it with the graphs for

the minimum aberration design. Either a match is found or the same procedure is repeated
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for the next best design until a match is found. If no match is found for the given run
size, we can either increase the run size or modify the requirements set. (The method also
works for other design criteria.) For many 2-level fractional factorial designs of practical
interest, we have obtained all the graphs for solving the posed problem. These are given in
the Appendix. A computer implementation of the method is described in Section 3.3. In
Section 4 we compare the relative merits of our method with Taguchi’s linear graphs, an
improved method due to Li et al. (1990) and other related methods. All the graph-theoretic

definitions and results are given in Section 5.

Throughout the paper we use 2"~ to denote a 2-level fractional factorial design with n
factors and 2"~F runs. Such a design is defined by a set of relations among its factors, which
are called defining relations. For details, see Box, Hunter and Hunter (1978). The length
of a defining relation is the number of factors it contains. The shortest length among the
defining relations is called the resolution of the design. Usually designs of higher resolution
are preferred. Designs of the same resolution can be further discriminated by using the
following criterion. For a design d let A;(d) be the number of its defining relations with
length 7. For two designs d; and da, d; has less aberration than d, if A;(d;) < Aj(dy),
where j is the smallest ¢ such that A;(d;) # Ai(d;). A design d has minimum aberration
if there is no other design with less aberration than d (Fries and Hunter 1980). Note that

minimum aberration implies maximum resolution.

2 Taguchi’s Linear Graphs

We use the following example to illustrate Taguchi’s method.

Ezample 1. Suppose for an industrial experiment we need to find a design for estimating
11 factors A, B, ---, K and all the 2-factor interactions among A, B, C, D, E and F. The
six factors A to F could all belong to one step of a process such as the epoxy application
of the surface mounting process described in Section 1. Taguchi’s method will proceed
as follows. The 11 factors are represented by 11 points and the 15 interactions specified
above are represented by lines whose ends are the points representing the two factors in

the interactions (see Figure la). This graph is compared with a list of 29 graphs for the



32-run designs, which can be found, for example, in the Appendix of Taguchi (1987). In the
-graphs prepared by Taguchi, a number is attached to each point and to each line. These
numbers represent the column numbers of a 2"~* design, in this case, a 32-run 2!~ design.

" (Arrangement of columns in 2"* designs is explained in the next paragraph.) It turns out
that Graph No. 1 of his list (see Figure 1b) includes the graph in Figure la as a subgraph.
By comparing the two graphs, we can assign the factor names of the graph in Figure la
to the corresponding column numbers in Figure 1b. That is, we assign factors A to F to
columns 4, 2, 1, 16, 15, 8 respectively and their interactions to the columns which represent
their corresponding lines. For example, BC is automatically assigned to column 3 because
B is assigned to column 2, C to column 1 and column 3 is the interaction of columns 1 and
2. The remaining 5 factors are assigned to columns 19, 21, 22, 25, 26 in any manner since
no specified interaction involves any of these factors.

(Figure 1 about here)

Note that the column numbers here and throughout the paper represent the columns in
the 2-level designs arranged in the standard (Yates) order. For 16 runs, the 15 columns are

represented by the 15 factorial effects of a 2* design arranged in the Yates order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

The extensions for 32 and 64 runs are obvious. For simplicity we do not include in this
paper the column numbers for the lines, which can be easily read off the interaction tables
given in Phadke (1989) and Taguchi (1987). For reasons related to run order and split-unit
experimentation, each graph in Taguchi’s collection has three different versions in column

assignment.

This method and a collection of graphs date back to Taguchi (1959, 1960). Since then
the graphs have been called linear graphs, a misnomer due to improper translation. A literal

translation of its Japanese name should be point-line (or vertex-edge) graphs.

Taguchi’s approach has one main advantage over the classical approach. Drawing a graph
to represent the specified interactions is visually appealing. If a matched graph can be found,
it is straightforward to assign factors to columns so that each of the specified interactions is

assigned to a separate column. No computational search is required and it is user-friendly. It
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also serves as a reminder that some 2fi’s in resolution III and IV designs are estimable if we
can assume the other 2fi’s are negligible. The method has some deficiencies, however. First,
statistical properties of the designs represented by Taguchi’s graphs are not considered. The
designs for all graphs but two in his collection are of resolution III (see Table 1). It will be
shown in Table 2, Section 3 that in many cases, better designs in terms of the maximum
resolution or minimum aberration criteria can be found. One exception is a 2°~! design of
resolution V, for which all the 2fi’s are estimable and therefore does not need any graph
method for interaction assignment. Second, for designs with at least 16 runs, the total
number of graphs is too large to be all included in his collection. For example, for the 16-run
de'signs, only 6 types of graphs are given, out of more than 800 types of graphs (Taguchi
1987, p.188). Since his collection is not exhaustive, there is a good chance that a solution
(i.e. a graph) may be missed by using his method. Furthermore, in some important cases,
e.g., the 26-2, 29-5 212-7 designs and 64-run designs with less than 17 factors, not a single

graph is given in his collection (see Table 1).
(Table 1 about here)

3 A Graph-Aided Method

In this section we propose a method that combines the appealing features of Taguchi’s
approach and good design properties afforded by the classical approach. To ensure that
the designs represented by the graphs have good properties and to avoid the enumeration
of unnecessarily many graphs, the proposed method first chooses a design according to a
goodness criterion. In this paper we use the minimum aberration criterion. Starting with
a minimum aberration design, there are numerous ways of assigning the factors and some
interactions to distinct columns so that the defining relations of the design are satisfied. Any
such assignment is called feasible. Each feasible assignment can be represented by a graph as
shown in Section 2. Such a graph is called a feasible graph. Two graphs are isomorphic if one
can be obtained from the other by relabelling the vertices. If a complete set of nonisomorphic
feasible graphs is available, then the graph representing the specified interactions, which we
call the requirements graph, can be compared with this set of graphs. If a matched graph is

found, the column assignment of factors and interactions proceeds as in Taguchi’s original



recipe. If no matched graph can be found, no feasible assignment exists. One can then
repeat the same procedure with the second best design (of the same run size) according to
the minimum aberration criterion and possibly continue with the third best, etc. until a
feasible assignment is found. If none can be found, one can either increase the run size or

modify the requirements. Further discussion is given in Section 3.2.

Note that the proposed method works equally well for other criteria which may be more
appropriate than the aberration criterion or reflect some a priori knowledge on the effects.
The gist of our approach is to “find the best design according to a prescribed criterion subject

to the requirement that all the main effects and the specified interactions be estimable.”

The method consists of two phases. In the first phase, a complete set of nonisomorphic
feasible graphs is constructed (see Section 3.1). For a given 2"~* design, this work is required
only once. As long as these graphs are available, no user’s effort is required in this phase. In
the second phase, the user obtains a solution by comparing his requirements graph with the
feasible graphs constructed in phase I. The detail is given in Section 3.2. Sometimes feasible

graphs will be referred to simply as graphs.

3.1 Construction of Nonisomorphic Feasible Graphs

We use Example 2 to illustrate the construction method.

Ezample 2. Find a design for which the 6 factors A, B, C, D, E, F and the following
interactions AB, BC, CD, CF, DE, EF, DF are estimable (assuming other interactions are
negligible.)

First consider a 26~2 minimum aberration design in which the factors are labeled 1, 2, 3,

4, 5, 6 and the defining relations are
I =1235 = 2346 = 1456.
The alias relations of the 15 2fi’s are given below,
12 =35, 13 =25, 14 = 56,24 = 36,

34 = 26, 45 = 16, 23 = 15 = 46.



They form 7 groups, each of the first 6 having 2 members, the last group having 3 members.
Within each group one 2fi is estimable if the others in the same group are assumed to
be negligible. Therefore at most seven 2fi’s are estimable. Each set of seven 2fi’s can be
represénted by a graph. Altogether there are 192 (=2° x 3) graphs, out of which only seven
are nonisomorphic (given in the Appendix). Isomorphic graphs should be counted once since
they correspond to the same interaction assignment after renaming the factors. In Section

5 we give a method for testing graph isomorphism.

The enumeration method needs improvement when a large number of graphs are being
tested. For example, the 2!°~° minimum aberration design has 5,242,880 graphs under test.
By exploiting some symmetry in the groups of aliased 2fi’s, this number can be drastically
reduced. This is demonstrated with a simpler example, the 26=2 design in Example 2. The

feasible graphs of this design can be divided into two groups, namely,

12, 13 =125, 14 =56, 24 = 36,
group 1:
34 =26, 45=16, 23 =15 =46.

35, 13 =25, 14 =56, 24 =36,
group 2:
34 = 26, 45=16, 23 =15 = 46.
By switching the labels of 2 and 3, and of 1 and 5 in group 2, group 2 becomes group 1.
Therefore the isomorphism test need only be carried out in group 1. This cuts by half the
total number of graphs. Indeed, after group 2 is deleted, further reduction can be achieved
by repeating a similar relabelling procedure for group 1. By applying this method to the
210-5 design, the number of graphs under test is reduced from 5,242,880 to 32,768.

In resolution IIT designs there are some 2fi’s that are aliased with main effects. These
2fi’s are not eligible for graph construction since the main effects must be estimable. For
the purpose of graph construction we call a 2fi eligible if it is not aliased with any main
effects. Any 2fi of a resolution IV design is eligible. Among the eligible 2fi’s, some may not
be aliased with any main effects or other 2fi’s. We call them clear. Clear 2fi’s are estimable
under the weaker assumption that 3-factor and higher order interactions are negligible. To
distinguish clear 2fi’s from the others, we use dashed lines for them in the constructed graphs.
This graphical distinction serves a useful purpose, i.e. it allows the user to assign the more

important 2fi’s in the requirements set to the dashed lines in the graph.



We use a simple example to illustrate the concept. In the 26-2 design defined by I =
125 = 2346 = 13456, 12, 15 and 25 are ineligible since each is aliased with a main effect.
Among the 12 eligible 2fi’s, 13, 14, 16, 35, 45, 56 are clear since they do not appear in 125 or
2346 of the defining relations; the other six appear as three aliased pairs, 23 = 46, 24 = 36,
34 = 26. There are four nonisomorphic graphs for this design, each with six dashed lines
(clear 2fi’s) and three solid lines (eligible but not clear 2fi’s).

By implementing this method and the graph isomorphism test in Sections 5 and 3.3, we
can obtain graphs for many useful 2-level designs. Some of them are given in the Appendix
and summarized in Table 2. In the Appendix we only consider designs that have a small or
moderate number of nonisomorphic graphs. For 26-% and 2773, we give a complete list of
designs arranged in the order of the aberration criterion. For 28=* and 2°3, we only give the
best and second best according to the aberration criterion. To save space, we only consider
the minimum aberration designs for the remaining cases. Underneath each graph we give
its degrees d = (d;). If two graphs for the same design have identical d, we also give their
respective extended degrees D = (D;) underneath d. (Definitions of d and D are given in

Section 5.) In most cases we can use d and D to distinguish nonisomorphic graphs.
(Table 2 about here)

Some pertinent points about the graphs.

1. A design with less aberration may have a smaller number of eligible 2fi’s or of clear
2fi’s (see column 4 of Table 2). For example, the minimum aberration 2°~2 design
has seven eligible 2fi’s and no clear 2fi’s while the third best design according to the
aberration criterion has nine clear 2fi’s out of nine eligible 2fi’s. Of course the latter
design has the disadvantage that five of its six main effects are aliased with some 2fi’s.

This is the kind of trade-off users have to make.

2. For most designs our definition of graph isomorphism does not take into account the
difference between solid lines and dashed lines. Only for small designs do we make the
distinction. For example the graph for the 2{j;' design with I = 234 is identical to that
for the 27! design. The former graph may be preferred since all the three 2fi’s are
clear. This is particularly useful when the 2fi’s between factor 1 and the other three

are important.



3. Certain subgraphs are of interest in design applications. Three types are considered
here. A complete subgraph means that every 2fi between the factors (i.e. vertices)
in the subgraph is estimable. The surface mounting experiment in Section 1 is one
such example. In the last column of Table 2, we give the number of vertices in a
maximal complete subgraph. The second type has the degrees (n,1,...,1), where the
interactions between a specific factor (say, the line speed in the casting experiment in
Section 1) and n other factors are important. The third type is the bipartite graphs.
A simple example is the last graph for the 26-2 design with I = 125 = 2346. The six
factors are divided into two groups, each of three. There are nine 2fi’s between groups,

none within groups.

4. The graphs for the 8-run designs were given by Taguchi (1960, 1987). The graphs for
the 2772 and 2§;* designs were found by Li et al. (1990). As pointed out by Li et
al., the seven graphs for the 25,2 design and the 17 graphs for the 27 design can be
obtained as subgraphs of those for the 23;* design.

Finally we note that, although the graph enumeration is based on the defining relations,
the graphs provide a set of explicit solutions to the interaction assignment problem. Finding
a solution directly from the defining relations can be laborious and frustrating. Use of the

graphs can greatly reduce this tedious work.

3.2 Assignment of Factors and Specified Interactions

This is the second phase of the proposed method. We suggest the following steps for simul-
taneous assignment of factors and specified interactions. Call the set of specified interactions

a requirements set.

1. Choose a 2" * design with n being the number of factors.

2. If the number of factors that appear in the specified interactions does not exceed the
number of vertices in a maximal complete subgraph (last column of Table 2), assign
these factors to the vertices of this subgraph and the remaining factors to other vertices

in any manner. Otherwise, go to step 3.



3. Draw a graph to represent the factors and the specified interactions by vertices and
edges respectively. Compare it with the complete set of feasible graphs for this design.
If it is isomorphic to a graph or subgraph in the set of feasible graphs, assign the factors

and interactions to the columns as indicated on the latter graph. Otherwise, go to step
4.

4. Choose the next best 2"~* design according to a goodness criterion. Go to step 2.

If the design in step 1 is of resolution V, all 2fi’s are estimable and there is no need to
go through the whole exercise. Initially the 2"~* design in step 1 should be chosen to be
a best design according to some goodness criterion such as minimum aberration. This and
step 4 ensure that the resulting design has good properties. If for a fixed run size, either no
solution exists or only a poor solution is available, one should either increase the run size or
modify the requirements set so that a satisfactory solution can be found. For example, by
comparing the two graphs that do not match, one can easily determine the smallest number
of 2fi’s that must be sacrificed in the requirements set. The requirements set should be
treated with some flexibility since in practice, except for some obvious ones, it is difficult to

guess exactly which interactions are significant or important.

If the requirements graph drawn in step 3 has fewer edges than the feasible graphs, it
is compared with the subgraphs of the feasible graphs. This requires an additional step of
finding subgraphs with the same d and D as the requirements graph. Algorithms for testing

graph isomorphism in step 3 are discussed in Section 5.

We use Example 2 to illustrate these steps.

Ezample 2 (continued).

1. Choose the 26~ minimum aberration design as given in Section 3.1.

2. There are 6 factors that appear in the interactions but only 4 vertices in a maximal

complete subgraph.

3. A graph is drawn to represent the factors and interactions (Figure 2). Its d and D
are respectively (3 33 22 1) and (8 8 8 6 4 2), which match graph no. 6 for this

10



design. The two are isomorphic. Therefore, by checking the column numbers in the
16-run saturated design, factors A, B, C, D, E, F are assigned to columns 7, 8, 1, 4,
14, and 2 respectively and the seven interactions AB, BC, CD, CF, DE, EF, and DF

are assigned to columns 15, 9, 5, 3, 10, 12, and 6 respectively.

(Figure 2 about here)

Example 3 serves to illustrate the possibility of a no match in step 3.

Ezample 3. Same as Example 2 except the set of interactions is changed to {AB, AF, BC,
CD, CF, DE, EF}.

1. Same as in Example 2.
2. Same as in Example 2.

3. The graph (see Figure 3) representing the factors and interactions has d=(3 32 2 2 2)

which does not match any of the 7 graphs for the 26~2 minimum aberration design.

4. Choose another 26=2 design with the defining relations I = 125 = 2346 = 13456. It is
the second best according to the aberration criterion. It has four nonisomorphic feasible

graphs, among which the last graph contains the graph in Figure 3 as a subgraph.

(Figure 3 about here)

3.3 Computer Implementation

The method as described in Sections 3.1 and 3.2 is “manual” but can also be automated with
a computer. Manual assignment has some advantages. It encourages the investigator who is
usually a nonstatistician but is familiar with the subject matter, to be more involved in the
choice of design. It enhances a better understanding of the problem. If the manual method
does not lead to a solution, the investigator gains enough knowledge from the process which
helps him or her to decide which interactions in the requirements set can be dropped so that

a solution can be obtained without increasing the run size.
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On the other hand a computer implementation of the proposed method will be fast and
easy to use. This is especially appealing when the number of nonisomorphic graphs is large

or the graphs are too complex. Two automated versions are considered here.

If the number of nonisomorphic graphs is not too large, say, at most in the thousands, each
of these graphs can be stored together with the d and D values. Each time a requirements
set is submitted by the user. The algorithm codes it as a graph with d and D values. The
latter graph is then compared with the stored graphs using a graph isomorphism algorithm.

The rest is straightforward.

If the number of nonisomorphic graphs is too large to be enumerated or stored, a more
involved algorithm is required. It first “draws” a graph for the requirements set as in the
first version. Then for a given design it generates the graphs sequentially using the method
of Section 3.1. Each time a graph is generated, it is “compared” with the drawn graph. If
they are isomorphic, a solution is found and the search is terminated. If all the graphs are
exhausted without a match, no solution exists. The algorithm will then generate another
design according to the method of Section 3.2, or the user is asked to submit another design.
In the worst case the amount of search can be prohibitive. If a solution exists, the amount
of work is more modest since the solution is usually found long before all the graphs are

exhausted. For more complex problems, this algorithm needs improvement.

4 Comparison with Taguchi’s Approach and Related
Methods

By building on the strength of Taguchi’s graph approach(see Section 2), our proposed method
has some additional advantages. First it guarantees that the selected design has good prop-
erties as dictated by the user through the goodness criterion. Second our method can identify
a complete set of solutions to the problem subject to computing constraints. Therefore it

either finds a solution or informs the users to increase the run size or modify the problem.

From comparing the results in Tables 1 and 2, the advantages of our approach become
transparent. For the 16-run designs, we can use resolution IV designs for 7 and 8 factors

whereas the designs for Taguchi’s graphs have only resolution III. His Graph No.5 for the
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210-6 design is the only one with minimum aberration in his collection. Since only six graphs
are given, it is quite likely that his approach will find no solution when it actually exists.

We return to Example 1 to illustrate the difference between the two approaches.

Ezample 1 (continued). Our approach works as follows.

1. Choose a 2!1~¢ design with resolution IV.

2. There are six factors that appear in the set of interactions. The design in step 1 has a
feasible graph (Figure 4) which has a complete subgraph with 6 vertices. Assign the

six factors to columns 1, 2, 4, 8, 21, 26 and the rest is straightforward.

(Figure 4 about here)

For this problem Taguchi’s graph (Figure 1b) also has a complete subgraph with six
vertices. But the corresponding design has resolution III, that is, the main effects for the
five factors representing columns 15, 21, 22, 25, 26 are aliased with some 2fi’s. The design
in step 1 does not have this shortcoming since it is of resolution IV. On the other hand,
Taguchi’s graph can accommodate five more 2fi’s than our graph (Figure 4). As observed in

Section 3.1, there is a trade-off between higher resolution and more eligible 2fi’s.

Li and Chiou (1989) first pointed out that the 28~* and 272 designs for Taguchi’s linear
graphs have resolution III. Li et al. (1990) found graphs for some resolution IV designs. They
do not consider resolution III designs or adopt a goodness criterion (such as the aberration

criterion) for comparing designs.

For the rest of the section, we discuss several other methods. A method, which has been
around for a long time, is based on the table of interactions. In such a table, the column
number of the interaction between any two columns of a saturated 2-level design is given
in an appropriate entry. An interaction and its two factors are assigned to the respective
columns according to the table. The same step is repeated for other interactions in the set. If
they are all assigned to different columns, a solution is found. Otherwise it may be repeated

by trial and error.

A graph version of the interaction table was suggested by Kacker and Tsui (1990). They

constructed an interaction graph in which half of the columns in the interaction table were
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represented by its vertices and the remaining columns by its edges according to the relations
in the table. Their suggested method of column assignment for factors and interactions is,
apart from a few elaborate rules, very similar to the one for the interaction table. Since
both are based on trial and error, there is no guarantee that a solution can be found or
that the impossibility of solution can be declared when none exists. Like our method, it is
quite simple and use of graphs encourages user’s participation. As remarked by Kacker and
Tsui (1990), the interaction graph method is difficult to implement for more than 16 runs.
Because of visual complexity any graph method becomes impractical when the number of
edges in a graph is large, say more than 20. Such is the case for many 32-run designs and

most 64-run designs.

By modifying a method of Greenfield (1976), Franklin and Bailey (1977) proposed a
method for 2-level designs, which does not use graphs. Franklin (1985) extended it to p”-level
designs, p being a prime. It is an iterative method and therefore does not have the appeal
of simplicity. Like linear graphs and interaction graphs, it cannot ensure good properties of
the design generated. On the other hand it is automatic, fast and can handle higher order
interactions. It would be interesting to compare this method and the automated methods

in Section 3.3.

5 An Algorithm for Testing Graph Isomorphism

First we review some graph-theoretic terms. A graph G is defined by a set V(G) of elements
called vertices, a set E(G) of elements called edges, and a relation of incidence, which as-
sociates with each edge either one or two vertices called its end. Two vertices u and v of
G are said to be adjacent if uv € E. The degree d(u) of a vertex u is the number of edges
incident with u. A vertex of degree 0 is called an isolated vertez. A graph H is said to be
a subgraph of a graph G if V(H) C V(G) and E(H) C E(G). A graph is complete if every

pair of vertices is adjacent.

Two graphs G; and G, are isomorphic if G5 can be obtained from G; by relabelling
the vertices of G;. The graph isomorphism problem is that of finding a good algorithm

for determining whether two given graphs are isomorphic. A quantity associated with a
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graph is a graph-invariant if it is invariant under an isomorphic map. The degree sequence
d=(d,...,d,), where d; are the degrees in descending order of the v vertices of a graph, is a
graph-invariant. For each vertex 7, define its extended degree to be D; =} d;;, where d;; are
the degrees of all vertices adjacent to ¢. For a graph we use D = (D;) to denote its extended
degrees. Then the set {(d;, D;)}!_, arranged in descending order of d; is a graph-invariant

which better discriminates nonisomorphic graphs than d.

For a review on efficient algorithms for testing graph isomorphism, see Read and Corneil
(1977) and Hoffman (1982). However not all the existing methods are suitable for our
propose. For most practical experiments the corresponding graphs have a moderate number
of vertices and edges. Therefore implementing a sophisticated general purpose algorithm
is expensive and may not work effectively for such graphs. Instead we adopt the following

simple algorithm.

For any two graphs G; and G5, we first test whether the degrees and extended degrees
{(d;, D;)} of Gy match those of G;. If not, the two are not isomorphic. If the first test is
passed, we use the following method to complete the test. Let Vj; (and resp. V5;) be the set
of vertices in Gy (and resp. G3) with the same (d;, D;). Test the isomorphism of Vj; and V5
by first labelling the vertices and edges in Vj; and then permuting the vertices in Vo; until
one permutation is found, whose set of edges matches that of the labelled Vj;. If no such
permutation can be found, the two graphs are not isomorphic and the test is aborted. In
the worst case it takes [](n;!) permutations, where n; is the size of V}; (and also of V3;). But

the average number of permutations is much smaller.
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graph design graph design

resolution resolution
number type number type
Lg
(1,2) 24-1 - IV
Lie
(1) 25! \4 (2) 273 I
(3,4,6) 28-4 II1 (5) g10-6 III
L3,
(1) 2u-s I (2) 213-8 I
(9) 214-9 II1 (3,4,6) 215-10 III
(7,11,12,13) 216-11 III (5) 217-12 III
(8) 218—13 III (10) 220—15 III
Lgyg
(5) 217-—11 III (1) 223—17 1II
(2,3) 2%-20 I (4,9) 222 I
(6,7) 229-23 III (10) 231-25 III
(8) 232—26 III

Table 1: Taguchi’s linear graphs and their corresponding designs.
The graph numbers are from Taguchi (1987).



#of

# of vertices

. .
Design  Generators nonisomorphic ﬁ: z;l:li?:;;;:; of complete
graphs subgraphs
8 run '
25 I=1234 2 3(0) 3
277 I=234 1 3(3) 2
237t I=124=135 1 2(0) 2
16 run
2552 I =1235 = 2346 7 7(0) 4
p I =125 = 2346 4 9(6) 4
282 I=125=1246 1 9(9) 2
2577 I=125=346 1 7(5) 3
212 I =1235 = 2346 = 1347 17 7(0) 3
213 I =1235 = 1246 = 347 15 8(2) 4
217 I = 12345 = 236 = 1237 5 8(4) 3
203 I =1235 = 1246 = 127 3 6(0) 3
213 I =125 = 1246 = 247 1 7(6) 3
284 I= 113285 2346 = 1347 0 70) 3
284 I= 1122::,8 2346 = 1347 93 701) 3
wip e e s oo ;
2977 I _ zlfgz 12;;6 1347 14 6(0) 3
- I = 1235 = 2346 = 1347
211 = 1248 = 169 = 34t, 22 5(0) 3
_7 I = 1235 = 2346 = 1347
Hr = 1248 = 169 = 34ty = 24t; 10 4(0) 3
I =1235 = 2346 = 1347 '
21378 = 1248 = 169 = 34t = 24¢, 4 3(0) 3
= 14t2
I = 1235 = 2346 = 1347
21379 = 1248 = 169 = 34¢, = 24t 2 2(0) 2

= 141, = 23t3




#of

# of vertices

.. .
Design  Generators nonisomorphic ?;f ‘; ;Iczli 2”:;12,51; of complete
graphs subgraphs
32 run
2752 I = 23456 = 13457 2 18(15) 6
I = 23456 = 13457
8—3
21y — 12458 7 20(13) 6
I = 23456 = 13457
9—4
21 = 12458 = 12359 66 21(8) 6

I = 23456 = 13457
10-5
21y = 12458 = 12359 = 1234¢, 1676 21(0) 6

64 run
2%° I = 12347 = 13568 = 34569 2 33(30) 8
I = 12347 = 13568 = 34569 :
10—-4
219 _ 1235¢ 3 39(33) 8
I = 3457 = 12348 = 1269 ‘
11-5
21y = 2456t = 1456t 14 44(33) 8

Table 2: Summary of graphs for 2" * designs. The (10-+i)-th factor is represented by
t;. The number of clear 2fi’s is given in brackets in column 4.



[ ] [ ]
A 4
I ° F B ° H 2% 8 2
K. E C ° J l% 1 1
D 16
(a) (b)

Figure 1: Graph a represents the specified interactions in Example 1.
Graph b is found to match the requirements.

Figure 2: Graph represents the specified interactions in Example 2.



Figure 3: Graph represents the specified interactions in Example 3.

ls 2 4 .25

Figure 4: This graph gives a different solution than Taguchi’s Figure 1b.



Appendix

Nonisomorphic feasible graphs for some 2"~* designs.

In each graph the number for a vertex denotes the column number of the corresponding
factor. The column mumber of an interaction, represented by a line in the graph, can be
obtained from the column numbers of its two vertices through the interaction table. A
dashed line represents a clear 2-factor interaction, i.e. not aliased with any main effects
or other 2fi’s. (More important 2fi’s in the requirements set should be assigned to dashed
lines.) Below each graph is its degrees and extended degrees ( l()ii:::,%'.,)’ where d; are arranged
in descending order. If there is only one graph with a given d=(d;), D; are not given. In
these graphs isolated vertices are omitted. Note that they correspond to factors which do
not appear in the specified interactions. We do not give them since they can be obtained
from the table next to each design. In the table the column numbers of the n factors are
given. Any column number in this table that does not appear in the graph can be assigned

to any factor that does not appear in any of the specified interactions.



241 . 1-1234

Factor# 1234

Col # 1247

4 7
’
2
.
3111
241 . 1034 Factor# 1234
Col # 1246
?4 ’.6
: Rl
. o’
3111

232 . 1=124=135

Factor# 12345

Col # 12435




262 . 1-1235=2346 Factor# 12345 6

Col # 1248714

1 4 1
14
o8 2 o’ 8
532211 442220 433310
4 2 14 1 8 7 7 2
[ ® *——9 ?
1 l 8 o’ o 2 o4 4 8 3!
433211 422222 333221
888642
1 4
2
ot o 8
333221

777663



Factor# 123456

Col

125=2346

I

.
.

562

# 1248314

\

~ @teccccccccccmcaa

~

444330

533331

333333

443322



Factor# 123456

Col

125=346

I

.
.

562

# 1248312

333333

Factor# 123456

Col

1=125=1246

.
.

562

# 124837

532211



27-3 . 1=1235=2346=1347

Factor# 123456 7

Col

# 124871413

2 4 7
/\%M
8 13
@

6221111

4 2
t—
‘8
44222
4 2 14
»— .
o o
433211
13 2 14
@ ¢ ®
7
8 1 4
.\ |
4322111

7765443

532211

14 _13 _8
\\<l1/\\\z/f

4

T4 2 ®

4421111

14

13

7

4322111
8877141

.2 13
j//\\\
4 1
®

13

7

422222

7

2 _13
?_———0
14
4 8
]

5222111

4 2

43331

14 2 8
®

1 13
°
4322111
8775234
14 2 7
®
1
® o
333221
888462



273 . [=1235=2346=1347 Factor# 123456 7

(continued) Col # 124871413

14

® ‘1— ® .————f

4 38
333221 3322211 3322211
777663 7665332 6456533
1413 2 8 14 7 13
T o —o—9 ? ® ?
iz
7 1 4 8 4 1
® L ® ® —o———o
3322211 2222222

7655423



273 . 1=1235=1246=347 Factor# 123456 7

Col # 124871112

12
”“\
2 o Tee
4 1%
®
8 7 8 7
6222211 5332210
12 12
2 ”"od \\\~~ 1 2 “",' *s\‘
11 4 11
[ ] [ ]
8 7 8 7
5322211 4433200
12 12
JPL TSR LB
ll® 4 1%
=
8 7 8 7
4432210 4422211

101088811



273 . 1=1235=1246=347 Factor# 1234567

(continued) Col # 124871112

4
®
8 7 8 7
4422211 4333210
9966844
12 12
o RSN
2 e 1 2 .- el 1
li® 4 lle
8 7 8 7
4332220 4332211
12 12
LB .
2 ',-"’ s\“~~ 1 2 ’—"‘ ~~“~‘ 1
lie 4 11
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273 . 1=1235=1246=347
(continued)

Factor# 1234567

Col # 124871112
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e
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Factor# 1234567
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27'3 S |
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27'3 :

1=1235=1246=127

Factor# 12345 6 7

Col

# 12487113
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28-4 . 121235=0346=1347=1248

Factor# 123456 7 8

Col # 12487141311
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28-4 . 1-1235=2346=1347=1248

Factor# 123456 7 8

(continued) Col # 12487141311
2 13 7 2 1411 2 113
*—o Y 'Y
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®
4 1 4 ll 4 1 8
ot ool P
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66624422 44444444
11 8 2 13 14 4 2 11 14 7 8
* ® Y ° ®
1 4 i 4
o ® & 7
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14 2 13 1 14 11 4 13 14 2 11 7
° T ° ° o’ T o—+o
4 1 1
of ¢’ 7 ¥ 2 4 48
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1413 2 14 4 13_11
ool o> ¢° —o o0
7 1 4 8 1 2
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3322211 3322211 32222111
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284 . 1=1235=2346=1347=1248

Factor# 123456 7 8

(continued) Col # 12487141311
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#2
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& ol ¢’ ol o &
32222111 2222222

55434232
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210-6.  1-1235-2346=1347=1248
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2 11-5,  123457=12348=1269

(continued) =2456t0=1456t1
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