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ABSTRACT

In this paper, we display the role that spherical regression can play in the geometric quality
assurance of any finely engineered product, such as automobile parts. A review is given of
spherical regression, with particular reference to diagnostics. Finally, results are presented of a
numerical simulation, that display the power of these diagnostics.
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1. INTRODUCTION

In many industrial settings, e.g., the automobile industry, it is necessary to assess the
geometric integrity of component parts. Traditionally, the procurer of the part has issued
geometric specifications and tolerances against which the supplier’s product is tested. A
physical mould is constructed made of wood, plastic, etc., and an attempt is made to clamp
the part into place. Tolerance is checked with a feeler gauge. Such methods are expensive,
time consuming and of limited accuracy.

More recently, Computer Assisted Design (CAD) has allowed the designer to create
a prototype part in the form of a computer image. It is then possible to generate a data
file that takes the place of the traditional blueprint, or specification. The surface of the
image of the part is covered with a fine mesh and both the spatial coordinates, and the
coordinates of the unit normal vector are generated, at each mesh point. The resulting file
is called the CAD file, and the quality assurance problem is now to test whether a sample
part conforms to the CAD file, to within specified tolerances.

The device used to check the geometric integrity of a part is a Coordinate Measuring
Machine (CMM). The part is held firmly in position, and points on the surface of the part
are touched with the CMM probe. The spatial coordinates of the points that are touched
are accurately measured and recorded. It is important to note that the coordinates so
obtained are with respect to an axis system internal to the CMM. On the other hand
vectors in the CAD file are expressed relative to some coordinate system determined by the
software that created the CAD file. The problem is therefore to construct a transformation
between the two coordinate systems. The CMM measurements could then be transformed
and checked against the CAD data file.

Constructing the transformation is more difficult than might at first appear. Since
the CAD data consists of only a finite number of points, the mesh points mentioned above,
an arbitrarily chosen point on the part will in most instances not correspond to any CAD

data point. Even if such a point did appear in the CAD data, there is no practical way
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of identifying it. Thus it is not possible to construct a transformation by simply matching
CMM points to CAD data points.

A Euclidean transformation is required, z.e.,
z— Az + T, (1.1)

where z, T are 3-vectors, and A is a 3 X 3 rotation matrix. The purpose of this paper is to
display a method of estimating the rotation, followed by outlining diagnostic procedures
that assess the fit so that a statistical determination of whether or not the part is defective
can be made.

A word about what is meant by defective should be made precise. If we think of
a part as simply a three dimensional object, then assuming that this part has distinct
features (see below), one can describe this part as consisting of planar regions as well as
the dimensions; length, width, height, etc. In this paper we consider only the rotational
part of the transformation. Consequently, this will allow a methodology for analyzing
defective planar regions only. To analyze the dimensions as well, one also has to estimate
the translation. The latter issue will not be discussed in the current paper and will be
detailed in a subsequent paper.

The rotation is constructed as follows. First CMM readings are used to estimate
directional features of the part. By directional features, we mean e.g., unit vectors normal
to small planar regions on the part, or a unit vector indicating the direction of some line,
such as a trim-edge. Counterparts to these directions can be found in, or calculated from,
the CAD data file. Then, the methods of spherical regression, see Chang (1986), are
applied to construct the rotation (plus possible reflection) that causes the least squares fit
between these CMM directional data and their CAD data counterparts. Rivest (1989) gives
diagnostics for spherical regression, and these can be used to check the integrity of those
aspects of the part represented by the directional data. Indeed, using these diagnostics for

just the rotation parameter determines that a part is defective in the sense that a collection
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of planar regions in the part do not align with one another in the way demanded by the
CAD data and that it is possible to determine which plane is out of alignment.

At this point we wish to note that the technology employed in this paper is most
useful when the part in question has distinct features such as; flat regions, edges, points,
etc. If the part in question consists solely of smooth curves and surfaces, for example the
wing of an aircraft, or an automobile fender, the techniques outlined in this paper may
not readily be applicable. We note however, that if one is willing to assume local flatness
in some radius of each point relative to some scale, then the techniques outlined in this
paper can be used.

We now give a summary of what is to follow. In Section 2, we discuss measurement
errors induced by CMM, along with a method of estimating directional features of the
part, from CMM data. Section 3 is a review of spherical regression along with relevant
diagnostics given by the penetrating paper of Rivest (1989). In Section 4, we present some
simulations with respect to estimating measurement errors induced by the CMM, followed
by two examples illustrating the methodology. The final Section 5, present the results
of a numerical simulation, that displays the power of the diagnostics in situations similar
to those encountered in practice. We include an Appendix which outlines how data is

simulated.
2. MEASUREMENT OF FEATURES

Given a part to be tested it is usually possible to find various directional features that
can be both identified in the CAD data file, and estimated using CMM measurements.
There are two types of directional features: unit vectors indicating the direction of a line
in the part, and unit vectors normal to planar regions in the part. While there are many
ways the former can arise, in practice they are much less used than the latter. For this
reason, we restrict our discussion to the planar situation, which is adequate for the purposes

of this paper.



The procedure is therefore, to identify n planar regions on the surface of the part,
n > 3. The unit normal vectors to these planes in the CAD data coordinate system,
denoted by vi,...,v,, can be found by looking in the appropriate general region of the
CAD data file, for a collection of mesh points with a common normal. The corresponding
normals in the CMM coordinate system (u1,...,uy) are then estimated as described below,
and spherical regression can be used to estimate the orthogonal transformation required

to best fit the transformed (uy,...,uy) to (v1,...,vs), in a least square sense.

2.1. CMM Resolution

Before using CMM measurements to estimate the normal vector to a plane, it is
necessary to consider the nature of CMM measurement error. Typically, a CMM display
consists of the three spatial coordinates it is measuring, expressed in mm. The three
readings change independently of one another, however, only certain coordinate values are
allowed for certain decimal places. Assuming that the CMM always returns the allowed
coordinate value that is nearest to the true value, then the errors on the coordinates are
independent of one another, and are dependent on what is called the resolution of the
CMM, which we denote by e. The unit of measurement of the resolution is known as,
micron, where one micron is 1073 mm. Thus in the situation where ¢ = 5, which is the
situation usually encountered in practice, the third decimal place can only take values of 0
or 5 so that the spatial coordinates have errors of plus or minus 2.5 microns. The resolution
varies from one make and model type of CMM to another, and in the simulation study of

Section 4 we consider € = 5, 10, 25 and 50 microns.

2.2. Estimating Directional Features
In view of this error structure, given points z1,...,z, measured on the surface of a

plane, the normal vector to the plane, u, is estimated by minimizing

Zd(mi;utm = ¢)?, (2.1)
=1
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where d(z;;u'z = c) denotes the perpendicular distance of z; from the plane u'z = ¢ and
B' denotes the transpose of some matrix or vector B. This problem has been of interest
to crystallographers, and a number of solutions have been presented, see Schomaker et. al.
(1959), Blow (1960), Scheringer (1971). A simple solution is to use the method of principal

component analysis. Put

T=m"" in, D= Z(w, —z)(z; — 7)*. (2.2)

The smallest eigenvalue of D gives the minimum value of (2.1), and the corresponding unit
eigenvector, 4, is the estimate of u. To ensure that @ points in the right direction, ¢.e.,
is an outward normal, a point z,,41 can be read by the CMM, above the surface of the

plane. The sign of @ is adjusted so that
ﬁt($m+1 — .’Z’) > 0. (23)

The accuracy of the estimate & depends not only on the resolution of the CMM, but
also on the number m of points on the plane, and how widely spread these points are.
The greater the area covered by these points the better, but in practice one has to restrict
this area to remain confident that the points are in fact planar. In Section 5, we simulate
a situation that often occurs in practice: planar normals are estimated using six points
measured around a circle of radius 1 e¢m, and judged by eye to be evenly spread around

the circle.
3. SPHERICAL REGRESSION AND DIAGNOSTICS

Spherical regression is a procedure which statistically estimates an orientation param-
eter based on spherical data. The problem was originally solved by MacKenzie (1957),
and the solution has been developed by Moran (1976), Stephens (1979) and Chang (1986).
Rivest (1989) developed diagnostic procedures for the concentrated Fisher-von Mises dis-

tribution. Kim (1991) examined spherical regression in a decision theoretic framework
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and obtained Bayes estimators for the unknown rotation under general conditions. Ap-
plications of spherical regression have included: crystallography, see MacKenzie (1957);
the motion of tectonic plates, see Chang (1986, 1989) and Rivest (1989); and, vector car-
diogram orientation, see Prentice (1989). To the best of our knowledge, this is the first
application of spherical regression techniques, to an industrial setting, in particular, to

quality assurance.

3.1. Estimation of Rotation

Let u be a random vector distributed on the two dimensional unit sphere S? having
density f(u!Av) with respect to the invariant measure on S?. Here veS? is fixed and
known, and the unknown parameter of interest A, is a 3 X 3 rotation matrix. Thus the
collection of all 3 x 3 rotation matrices SO(3), is the parameter space.

Given a random sample uy,...,u,, and the corresponding set vq,...,v, of design

points, the objective in spherical regression is to estimate the unknown rotation A so as

to,
n
mineso@n " Y llui — Avill%, (3.1)
=1
where || - || denotes the usual Euclidean distance. This is equivalent to,
n
maergo(g)n_l Zquv,-. (3.2)
1=1

Following MacKenzie (1957), we have,

n1 Z utAv; = n HrU'AV = n e AVU?, : (3.3)
i=1
where U = (u1,...,un), V = (v1,...,vn) and trM denotes the trace of some square matrix
M. Write,
n~ VU = 0,A0%, (3.4)
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where Oy, O, are rotation matrices, and A = diag(A1, Az, |A3]), with Ay > Ay > |A3] > 0.
This is sometimes called a modi fied singular value decomposition, see Stephens (1979).

From (3.3),
n~HMrAVU = trOS A0 A. (3.5)

As A ranges over SO(3), so too does OLAO;. Since elements of SO(3) have entries of

absolute value less than or equal to unity, (3.5) is maximized when
0;:401 = I, or A= 02071: (36)

We denote A;s = O20% and call it the least squares estimator of A. We note that if
A1 > A2 > |As| > 0, which would occur for large n, then A, is unique. Chang (1986)

showed that if AeSO(3) is the true parameter, then

A, — A, (3.7)

. — n .o . . .
as n — oo, provided n™! Y7 v;v! converges to some positive definite matrix as n — oo.

In Figure 3.1, we illustrate the procedure involved.

3.2. Diagnostics

Suppose the distribution of the u's is that of a Fisher-von Mises distribution,
f(u'Av) = (k) texp{rutAv}, ' (3.8)

where ¢(k) = £ 'sinhk. Here £ > 0 in addition to AeSO(3), is a parameter of interest.

Define
0  —=viz v
W= | v 0 —vi1 |, (3.9)
—V;2 Vi1 0

where v; = (vi1,vi2,vi3)%, 2 = 1,...,n. It was shown by Rivest (1989) that

2nk(l — 1) =d Xop_3, (3.10)
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as k — oo for each fixed n, provided ) ! , W!W; is nonsingular, where “—;” means

convergence in distribution and
n
r=n""Y " uld,uv. (3.11)
=1

We note that the approximation is op(n_l/ 2), hence the approximation is very good, see
Rivest (1989, 309).

For each fixed v;, let v;(1) and v;(5) be mutually orthogonal unit vectors perpendicular

to v; for each ¢ = 1,...,n. Thus (vi,vi(1), vi(2)) form an orthonormal basis for R®. Define
€; = (vi(l)’ vi(Z))tAfsuh (312)
for : = 1,...,n as the residuals of spherical regression. We note that the motivation for

defining (3.12) comes from ordinary linear regression. Indeed, residuals in the latter can
be thought of as the orthogonal projection of the data onto the complementary subspace
spanned by the design matrix. Notice that the situation is similar in (3.12) in the spherical
regression context. This insight was first pointed out by Rivest (1989).

We can then form the statistic

2 _ (n —5/2)etx; e,
Poon(1—r) — S te;’

(3.13)

where
¥ = (’U,’(z), —vi(l))t[I - n_l(I — S)_l](vi(z), —-v,-(l)), (3.14)

fori =1,...,n, where S =n"1 Y "  v;vf. We once again note that (3.13) is motivated by
ordinary linear regression, in that (3.13) is an adaptation of Cook’s test for outliers, see
Rivest (1989). We have that, o

12 —q Fons, (3.15)

foreach7=1,...,n as kK — oo.
The parameter, k > 0, records the amount of concentration of the data u, around A'v,

with greater concentration being determined by large values of k. Consequently, (3.10)
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can be used to form the test, Hy : Kk > ko against Hy : Kk < Ko, where the k¢ would
represent the amount of allowable tolerance. With respect to the latter, a variety of ways
of obtaining k¢ could be used, depending on the situation involved along with engineering
practices. One way of obtaining x¢ would be to base it on the CMM resolution, so that
the amount of allowable tolerance is that which is induced by measurement error in the
CMM. In fact this is how it is done in the simulations of Section 4, where we will further

discuss this point. By (3.10), a rejection region of approximate size o would be given by,
2nko(1 —7) > X3n_3 ar (3.16)

where X,Z,,a is the upper a*® percentile of a chi square distribution with v degrees of freedom.

Another aspect involved in quality testing would be to find out whether the i** data
point is an outlier, thus indicating that point to be defective, particularly if the above Hy
is rejected but the data is still concentrated. Thus (3.13) could be used along with (3.15).
Indeed, let the null hypothesis be, that the i** data point be regular, i.e., not defective.

Then an approximate size a rejection region would be,
t; > Faan-5,a) (3.17)

where F, , o denotes the upper at! percentile of an F' distribution with v and p degrees of
freedom. We once again note that this procedure is similar to Cook’s procedure for testing

for outliers in ordinary linear regression, see Rivest (1989).

3.3. Further Remarks

We remark that although the diagnostics are developed when the errors are distributed
according to the Fisher-Von Mises distribution, it is felt that all of the above results
should generalize to a wider class of distributions. This would follow because for very
concentrated errors, one essentially is approximating the curvilinear surface S?, linearly,

i.e., by it’s tangent plane. Since k is controlling the amount of variability around the
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preferred direction, when « is large one can essentially ignore the curvy part and just rely
on the linear part.

We remark that the theory of spherical regression, as outlined here, has been developed
for the parameter space SO(3). This is because the applications for which the theory has
been developed have required that a rotation matrix be estimated. It is interesting to note
that in the quality assurance problem, the parameter space O(3), of all orthogonal 3 x 3
matrices, is more appropriate. This is because CAD data files can be expressed in either
left or right hand coordinate systems and there is often no way of knowing which has been
used, when testing a part. An orthogonal matrix will accommodate both situations.

In the O(3) parameter space case, the solution to the problem,

n
minco(s) Y lui — Avill?, (3.18)

=1
is largely the same as that presented above. The only difference is that in (3.4) we allow
O1, O3 to be orthogonal matrices. This is then the usual (rather than modified) singular

value decomposition: see e.g., Golub and Van Loan (1983). As before,
A = 0,08, (3.19)

and the two coordinate systems (CAD and CMM) are compatible if det(A;;) = 1, incom-
patible if det(A;s) = —1. If the latter turns out to be the case, one can make appropriate

modifications to the CAD data so that the parameter space would once more be SO(3).
4. SPHERICAL REGRESSION AND DIAGNOSTICS: APPLICATIONS

This section discusses.the practical aspects behind using the methodology outlined
in the previous section. The examples that will be discussed, are simulated data, where
the simulations attempt to capture the type of situation normally encountered in practice.
The way in which the data is simulated, is outlined in the Appendix. In the following, we

will outline how k¢ can be chosen, followed by two illustrations involving data.
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4.1. Estimating «g
Define,

s=1-r, (4.1)

It follows from (3.10) that, s is distributed as approximately, (2n&)™'x3,_5, when £ > 0
is large. Thus, if we observe a random sample si,..., sy, then by the usual derivations,

the maximum likelihood estimator is,

2n —3
k= 4.
& 2ns ’ (4.2)
where 3 denotes the sample mean. Further,
. 2n —3
V(Z’I‘(K/) ~ m (43)

Thus by comparing (4.2) with (4.3), the amount of variability in & is very small when &
and N are large.

Therefore, to get a good estimate of the magnitude of the error induced by CMM
resolution, samples (of s) of size 1000 are generated for a geometrically perfect part, for
variety of scenarios obtained by varying n, and e (the resolution of the CMM). Values of n
are considered between n = 3 (the minimum number required to uniquely determine A;;)
and n = 10 (about the largest number commonly used in practice). It is found that for
fixed €, & did not vary significantly with n. Table 4.1 gives a summary of the simulations.
We emphasize that the usual CMM resolution encountered in practice is 5 microns, thus a
fair estimate for k¢ is approximately 36,000,000. The interpretation of the latter is simply

the error likely to be encountered due exclusively to measurement inaccuracy of the CMM.

4.2. Examples
We present below two examples of situations that could arise in practice and outline
how the diagnostics are to be used. The discussion will begin with the normal vectors of

both the CAD and CMM data so that we are assuming that the manufactured part has
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been measured by a CMM with the normal vectors computed as outlined in Section 2.2.

In both situations, n = 10, e = 5 with the rows representing the spatial normals obtained

by CAD and CMM.

Example 1
CAD CMM
0.000000 -0.500000 0.866025 -0.700302 -0.658766 0.274960
-0.433013 0.250000 0.866025 -0.604233 0.025961 0.796385
0.433013 0.250000 0.866025 -0.011011 -0.604895 0.796229
-0.206651 -0.213993 0.954726 -0.736907 -0.409955 0.537498
0.057891 -0.010208 0.9998271 -0.471301 -0.522491 0.710548
-0.287907 -0.030644 0.957168 -0.697914 -0.261490 0.666738
0.074708 -0.493985 0.866255 -0.646279 -0.710247 0.279056
-0.004769 -0.147224 0.989092 -0.581310 -0.540085 0.608594
-0.058984 -0.014313 0.998156 -0.553530 -0.439435 0.707461
0.045825 -0.488085 0.871592 -0.665685 -0.688735 0.287241
By (3.6), the least squares estimator is
0.685065 0.523684 —0.506399
A = | —0.728482 0.492350 —0.476347 | . (4.4)
—0.000130 0.695231 0.718786
In this example, we have,
(4.5)

2nko(1 —r) = 15.429,

where ko = 35,745,557. Thus the p—value of (4.5), in comparison with a chisquare random
variable with 17 degrees of freedom, is 0.565. Thus based on (3.16), we cannot reject the
null hypothesis that the manufactured part is not defective.

We also present the p—values associated with each datum using (3.5).
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Test for outliers

it datum 1 2 3 4 ) 6 7 8 9 10
t? 0.426 0.089 0.012 5.848 1.78 0.964 0.700 0.215 0.906 0.826
p—value  0.660 0.915 0.988 0.013 0.202 0.404 0.512 0.809 0.425 0.457

The itt datum refers to the it" row of the data. Notice that all the p—values are insignificant
at 0.01, although the 4** datum is significant at 0.05. Thus if there is a suspicion that the
manufactured part is defective, it would be with regard to that planar region. We note

however, that (3.16) is not significant, so it is likely that datum is not an outlier.

Again by (3.6), the least squares estimator is

Example 2
CAD CMM
0.000000 -.500000 0.866025 -0.700229 -0.658418 0.275980
-0.433013 0.250000 0.866025 -0.604435 0.026290 0.796221
0.433013 0.250000 0.866025 -0.011082 -0.604670 0.796399
-0.206651 -0.213993 0.954726 -0.737032 -0.409668 0.5357547
0.057891 -0.010208 0.998271 -0.471198 -0.522807 0.717384
-0.287907 -0.030644 0.957168 -0.697980 -0.261241 0.666766
0.074708 -0.493985 0.866255 -0.646241 -0.710077 0.279578
-0.004769 -0.147224 0.989092 -0.581317 -0.540115 0.608561
-0.058984 -0.014313 0.998156 -0.553386 -0.439561 0.707496
0.045825 -0.488085 0.871592 -0.665560 -0.688920 0.287087

Als -

In this example, we have,

0.685124  0.523623 —0.506383

—0.728426 0.492591
0.000099

0.695106

2nko(1 —r) = 49.880,

—0.476182 | .
0.718907

(4.6)

(4.7)



where ko = 35,745,557. Thus the p—value of (4.7), is 0.001, so that based on (3.16), we

can reject the null hypothesis and conclude that the manufactured part is defective.
Again, we present the p—values associated with each datum using (3.5). We note that

for this example, the latter is more meaningful since the overall test is declaring the part

to be defective.

Test for outliers
ith datum 1 2 3 4 5 6 7 8 9 10
t? 27.722 0.254 0.082 0.201 0.656 0.041 0.492 0.280 0.303 0.411
p—value  0.001 0.779 0.921 0.820 0.533 0.960 0.621 0.759 0.743 0.670

Notice that all except the 1*® datum, the p—values are insignificant at any reasonable
value. Thus given (3.16) classifies the manufactured part as being defective, one would
suspect that by (3.17), the defect is in the 1** planar region.

Indeed, the tests did a very reasonable job in declaring the part to be defective and
locating the source of error. In example 1, the only aberration in the data, came from
measurement error. In example 2, we had distorted the first planar region by 0.001 radians

through one of the axis.
5. FURTHER SIMULATIONS

In this section, we report some of the other simulations performed.

5.1. Diagnostics with One Displaced Normal

For n = 3 and 10, one normal is arbitrarily chosen and displaced by an angle ¢. Data
is generated for 100 trials of the part, for a given CMM resolution ¢, the idea being to
simulate 100 tests of the same defective part. The statistics r and t? are calculated for
each trial. The value ¢ = 0 is included, to simulate a geometrically perfect part. We would

also like to point out, that the latter could serve as a way of testing the calibration of the

CMM.
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The criterion used for rejecting the part, i.e., declaring it defective, is, following (3.16),

2nk(l —r) > Xgn—3,0.05’ (5.1)

where % is the maximum likelihood estimate of x based on the sample drawn from the
perfect part and represents the uncertainty due to the resolution of the CMM. Tables 5.1a,
5.1b display the results for n = 3 and n = 10 normals, respectively. From these tables
one can ascertain the machine resolution required to detect a given angular displacement,
for example, a CMM with 5 micron resolution is adequate for detecting displacements of
0.001 radians, whereas a 10 micron resolution machine is not.

To attempt to identify which normal is displaced, we use (3.17) and identify the 7*2

normal as displaced if

t7 > F 2n-5,0.05- (5.2)

Table 5.2 shows the frequency with which the displaced normal is correctly identified as
being displaced, in 100 trials. The ability to detect the displaced normal increases with n,
as can be seen by comparing parts (a) and (b) of Table 5.2. For n = 3 the only situation
considered that adequately allows identification of the displaced normal is the extreme
situation where ¢ = 0.01 radians and € = 5 microns. A comparison of Tables 5.1b, 5.2b
indicates that when n = 10 the ability to identify the specific normal displaced, via (5.2),
slightly exceeds the ability to declare the part defective overall, via (5.1).

It is also possible for (5.2) to indicate that one of the true (undisplaced) normals is
displaced. Table 5.3 indicates the frequency of this occurrence. It should be noted when

reading Table 5.3 that there are 9 true normals when n = 10 and only 2 when n = 3.

5.2. Diagnostics with More than One Displaced Normal
In practice, situations are likely to be encountered where more than one normal is
displaced. Since it is impractical to simulate all possibilities, we will illustrate the method-

ology with a few simple examples.
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The simulation of the previous section is repeated but with three normals displaced
rather than one. All three displacements are through the same angle ¢, but about different
arbitrary axes. In the n = 3 case all normals are displaced and for n = 10 the three to be
displaced are chosen randomly from among the ten.

Results of applying criterion (5.1) are given in Table 5.4. On comparison with Table
5.1, the improved detection capability that one would anticipate, is apparent.

Criterion (5.2) is less effective in this situation. In no circumstances are all three
displaced normals simultaneously correctly identified. Table 5.5 shows the frequency of
detection of one or two of the displaced normals, in 100 trials.

We conclude by remarking that it is possible to construct examples where three nor-
mals are displaced by rotation through an angle ¢ about selected axes, and (5.2) fails
to detect any of the three displaced normals at any time. Further analyses as well as

simulations are currently being done.
5. DISCUSSION

Traditional methods of assessing the geometric integrity of any finely engineered prod-
uct requires the use of fixtures. The fit is then tested with a feeler gauge. Fixtures are
expensive to construct and transport and the degree of accuracy obtained may be insuffi-
cient, depending on the tolerance specified by the procurer of the part.

Through CAD technology one can design a perfect part on a computer screen. Fur-
thermore a manufactured part can be spatially measured by a CMM after which the quality
assurance is to see if the CAD and CMM data conform. We have shown how techniques
of spherical regression as well as associated diagnostics are then important tools to sta-
tistically assess whether or not the manufactured part meets the prespecifications within
some level of tolerance.

We note that this is the first application of spherical regression techniques to an
industrial setting and expect the ramifications to be an important contribution of statistics

to quality assurance.
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APPENDIX

The data for the simulations and the examples are created in the following way:

e n planar regions are identified on a part (n > 3);

e the corresponding unit normal vectors vy,...,v, are located in the CAD
data file;

e six points are measured with a CMM on the surface of each of the n
planes. Each set of six points is suppose to have been spaced around a
circle of radius 1 em.

The steps taken in the simulation are:

Step 1, let
vo =(0,0,1), 6; =mi/3+ w;, y; = (cosb;,sind;,0) (1< <6),

where w; is a uniform variate in the range (—0.057,40.057). The purpose of the wis is to
simulate the inaccuracy that arises when the CMM operator judges by eye that the points
are evenly spaced around the circle.

Step 2, rotation matrices Rj (1 < j < n) are selected with the property that Rivo, Ravo,

R3v¢ are mutually orthogonal. Put
vi =Rjvg (1<j<n).

The above orthogonality requirement is included to avoid the degenerate situation where
all the normals are nearly in the same straight line.

Step 3, an arbitrary rotation R is applied to all the data. Then
uj=Rv; (1<j<n)
are the ‘true’ CMM normals, and if we put

zji=RRjy; (1<j<n,1<1<6),
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the vectors 1, 2,. .., are the CMM points that would be used to estimate u vz;a the
method of Section 2.

The above data simulates a part that is geometrically perfect, and has been measured
without any error, 7.e., the CMM has ¢ = 0. The algorithms of Sections 2 and 3 would

lead to estimators

d; =u; (1<7<n), (4.5)

and a rotation matrix

A, =R (4.6)

A.l. Putting in Errors

Different scenarios are considered, by varying n and the resolution €, of the CMM.
The basic idea of the study is to simulate measurement errors on the CMM readings z j;
consistent with the error structure discussed in Section 2.1, so that the x induced by the
resolution of the CMM would be the allowable tolerance x¢. By taking many iterations,
would be estimated for each scenario. Once « is estimated for parts that are geometrically
perfect, the estimate %, would serve as the tolerance level, i.e., Ko = &. We then simulate
“defective” parts by displacing one or more CMM normals by some small angle ¢. This is
achieved by setting

zji=RRy; (1<i<6)

for one or more values of j, where Rf is R; composed with a rotation through an angle ¢
about an arbitrary axis. The diagnostics (3.16) and (3.17) can now be tested, for various

angles ¢.
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Figure 4.1. Graph of In(&) versus CMM resolution, ¢, for n =10
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Table 5.1. Number of parts rejected in 100 trials, using criterion (5.1), with number of
normals (a) n = 3, (b) n = 10. One normal is displaced ¢ radians, and € (microns) denotes
machine resolution.

(a) n=3
¢ (radians)
0 0.001 0.002 0.005 0.010
5 7 97 100 100 100
€ 10 2 34 97 100 100
(microns)
25 3 9. 31 95 100
50 9 9 13 46 96
(b) n=10
¢ (radians)
0 0.001 0.002 0.005 0.010
5 5 99 100 100 100
€ 10 5 27 95 100 100
(microns)
25 4 10 20 97 100
50 5 6 4 32 99
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Table 5.2. Number of parts rejected in 100 trials, using criterion (5.2), with number of
normals (a) n = 3, (b) n = 10. One normal is displaced ¢ radians, and e (microns) denotes
machine resolution.

(a) n=3
¢ (radians)
0 0.001 0.002 0.005 0.010
5 2 21 33 80 95
€ 10 4 9 25 44 66
(microns)
25 8 10 12 22 33
50 8 8 4 9 10
(d) n=10
¢ (radians)
0 0.001 0.002 0.005 0.010
5 4 100 100 100 100
€ 10 3 66 100 100 100
(microns)
25 4 12 41 100 100
50 | 2 2 12 59 100




Table 5.3. Number of parts rejected in 100 trials, using criterion (5.2), with number of
normals (a) n = 3, (b) n = 10. One normal is displaced ¢ radians, and € (microns) denotes
‘machine resolution. -

(a) n=3
¢ (radians)
0 0.001 0.002 0.005 0.010
5 13 0 0 0 0]
€ 10 9 4 0 0 0
(microns)
| 25 12 7 4 1 0
50 9 10 8 5 0
(b) n=10
¢ (radians)
0 0.001 0.002 0.005 0.010
5 34 1 0 0 0
€ 10 | 30 13 1 0 0
(microns)
25 37 .30 15 0 0
50 36 43 | 25 7 0
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Table 5.4. Number of parts rejected in 100 trials, using criterion (5.1), with number of
normals (a) n = 3, (b) n = 10. Three normals are displaced ¢ radians, and € (microns)
denotes machine resolution.

(a) n=3
¢ (radians)
0 0.001 0.002 0.005 0.010
5 8 100 100 100 100
€ 10 1 72 100 100 100
(microns)
25 6 13 45 100 100
50 3 9 26 69 100
(b) n=10
¢ (radians)
0 0.001 0.002 0.005 0.010
5 4 100 100 100 100
€ 10 7 86 100 100 100
(micromns)
25 5 17 55 100 100
50 2 8 10 87 100
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Table 5.5. Number of parts rejected in 100 trials, using criterion (5.2), with number of
normals (a) n = 3, (b) n = 10. Three normals are displaced ¢ radians, and € (microns)
denotes machine resolution.

(a5 n=3

¢ (radians)
0 0.001 0.002 0.005 0.010
4 8 39 71 98 100
€ 10 12 29 47 83 96
(microns)
25 10 13 14 43 70
50 10 18 13 21 38
(b) n=10
¢ (radians)
0 0.001 0.002 0.005 0.010
5 11 72 79 90 100
€ 10 8 53 62 84 95
(microns)
25 13 18 46 66 79
50 13 19 22 50 78
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