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ABSTRACT

Taguchi’s robust design strategy, whose aim is to make processes and products insensitive to
factors which are hard or impossible to control (termed noise factors), is an important paradigm
for improving products and processes. We present an overview of the strategy and tactics for
robust design and demonstrate its usefulness for reliability improvement. Two important
components of robust design are a criterion for assessing the effect of the noise factors and
experimentation according to specialized experimental plans. Recent criticism of Taguchi’s
criterion and his analysis of its estimates has led to an alternative approach of modeling the
response directly. We give additional reasons for using this response-model approach in the
context of reliability improvement. Using the model for the response, appropriate criteria for
assessing the effect of the noise factors can then be evaluated. We consider an actual experiment
and reanalyze its data to illustrate these ideas and methods.

Key words: Censoring, Control and noise factors, Designed experiments, Loss-model and
response-model approaches, Maximum likelihood estimation, Parameter design, Product array,
Signal-to-noise ratios.



1. INTRODUCTION

Genichi Taguchi’s [10] strategy of designing a product or process so that its performance
is insensitive to noise factors, i.e., manufacturing factors that cannot easily be controlled or
factors with which one has little control over such as environmental conditions in which the
product is used, has attracted much attention in recent years. Such products or processes
are said to be robust to the noise factors. His robust design strategy appears to have received
little attention in the reliability field, however. Hence, the motivation for this paper, whose
objectives are to present these important ideas and show how they are useful for reliability
improvement.

The paper is organized as follows. First, we present an overview of robust design in
Section 2, which discusses its strategy and tactics. In particular, two important components
of robust design are a criterion for assessing the effect of the noise factors and experimenta-
tion which use specialized experimental plans. Two approaches for analyzing the resulting
experimental data are discussed: (i) estimating the criterion and then modeling it or (ii)
modeling the response and then using it to evaluate the criterion. The latter approach is
preferred and is referred to as the response-model approach.

In Section 3, robust design is discussed in the context of reliability improvement. Taguchi’s
criterion for assessing noise factor effects in the reliability context, the larger-the-better
signal-to-noise ratio, is presented. Here, we note several criticisms of his criterion which pro-
vide additional reasons for using the response-model approach in this context. Alternative
criteria are also considered.

In Section 4, a reanalysis of an experiment reported by Montmarquet [7] illustrates these
ideas and methods. Note that experiments have been done in the past for studying how
factors affect reliability (e.g., Zelen [12]); Taguchi appears to have been the first to address

the issue of robustness to noise factors.



Notation

LTB larger-the-better

S/N signal-to-noise

Xeontrol vector of control factors

Xnoise vector of noise factors

() loss function

L(xcontrol) loss at Xcontrol

Y response

Y(xcont'rola xnoise) response at (xcontrol, xnoise)

Y; ith response from noise array

Yi ith response

f() joint pdf of noise factors

T target

ML maximum likelihood

MLE ML estimate

C control factor main effect

N noise factor main effect

NxN noise factor by noise factor interaction
CxN control factor by noise factor interaction
CxC control factor by control factor interaction
log,o logarithm base 10

log natural logarithm

X; ith vector of covariate values

B regression parameters or effects

o scale parameter

€ ith error associated with Y;

{t e C} set of censored observations

{t € D} set of actual failures

A; jth level of factor A

Std. Err. standard error

2. AN OVERVIEW OF ROBUST DESIGN

Taguchi’s robust design is also referred to as parameter design because its objective is to

find levels of engineering parameters (called control factors) that yield a robust product or



process, i.e., that minimize the effect of the noise factors. Robust design is therefore strikingly
different than the traditional approach of handling sources of manufacturing variation by
control which can be costly, e.g., purchasing expensive state-of-the-art equipment. Kackar
[4] recounts the now famous story of the Ina Tile Company’s first encounter with robust
design. The company was faced with reducing an unacceptable amount of variation in their
tiles’ size caused by an uneven temperature distribution in the kiln. Rather than purchasing
an expensive kiln which would have better controlled the temperature distribution, it was
found through designed experiments that increasing the lime content in the tile formulation
decreased the tile size variation by a factor of ten. That is, a tile formulation was found that
was insensitive to the existing oven’s uneven temperature distribution.

In the tile example, two important components of robust design were mentioned: a
criterion that assesses the effect of the noise factors (i.e., variation) and experimentation (i.e.,
designed experiments). First, we discuss a criterion for assessing the effect of noise factors.
Following the notation used in Welch, Yu, Kang and Sacks [11], a criterion for assessing the
effect of the noise factors (termed the loss statistic or simply loss) at a particular combination

of control factor levels X .01 can be defined for a general loss function I(+) as:

L(xcontrol) = /l(Y(xcontrol, xnoise)f(xnoise)axnoise 9 (1)

where Y (Xcontroly Xnoise) 18 the random quality characteristic observed at a particular combi-
nation of control and noise factor levels (Xcontrot, Xnoise) and f(+) is the joint pdf of the noise
factors X,,is.. In other words, the loss statistic is the expected loss over the distribution
of noise factors. In this formulation, the objective of robust or parameter design then is
to find a product or process design X oniror With minimum loss. As an example of a loss
function, take the situation where the quality characteristic has an ideal value known as the
target 7. Take the loss function to be squared error loss or squared distance from target.
Then I(Y) = (Y — 7')2, with L(Xcontror) in (1) being the average squared error (over the noise
factors’ joint distribution) at a given X ontror-

The other important component of robust design is experimentation; i.e., Taguchi’s tac-
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tics for robust design involve estimating the loss (1) using data collected according to spe-
cialized experimental plans referred to as product (or crossed) arrays. A product array
consist of two plans or arrays, where the control factors are varied according to one array
termed the “control array” and the noise factors are varied according to the other termed
the “noise array”. That is, a row of an array determines the combination of factors levels to
be experimented at. The name product or crossed array arises because all the noise factor
combinations specified by the noise array are experimented at every combination of the con-
trol factors specified by the control array. The experiment discussed in later sections with 11
control factors and five noise factors used the control and noise arrays presented in Tables
1 and 2, respectively. The control array gives 16 combinations of the 11 control factors; at
each of these control factor combinations, the noise factors were varied according to thé eight
combinations given in the noise array. The product array, therefore, specifies 128 (=16x8)
control and noise factor combinations, at which the quality characteristic (e.g., lifetime) is
observed. Note that while a noise factor is difficult or impractical to control in production
or in use, for purposes of the experiment (i.e., to learn about the effect of the noise factors),
the noise factors need to be controlled during the experiment. Recent work by Freeny and

Nair [3] suggests that this is not always necessary but is not discussed here.
Tables 1 and 2 about here.

There are two approaches for analyzing the resulting product array data. Taguchi [10]
originally proposed estimating L(Xcontror) for €ach Xcontrol specified by the control array. The
estimated loss statistics, which he generically calls signal-to-noise ratios, are obtained using
the data from varying the noise factors according to the noise array and then modeled as a
function of the control factors. Shoemaker, Tsui and Wu [8] refer to this as the loss-model
approach. Aelrternatively, Welch et al. [11] proposed modeling the response Y directly as a
function of both the control and noise factors and then evaluating the loss using the estimated
response model. Welch et al.’s [11] rationale for their approach, which Shoemaker et al. [8]

refer to as the response-model approach, was that it would be more likely to find a simple
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model for the response than one for the much more complicated estimated loss. Examples
in Welch et al. [11] and Shoemaker et al. [8] provide convincing evidence for preferring the
response-model approach for this reason and show that the approach also provides more
information. We will give additional reasons for using the response-model approach in the
context of reliability improvement in Section 3.

Next, we elaborate on the response-model approach. The product array data is fit by
a model consisting of all C main effects (possibly some C' x C interactions), all C x N
interactions and all N main effects (possibly some N x N interactions). The fact that the
loss (1) changes for different control factor combinations means that interactions between
the control and noise factors must exist. Thus, C x N interactions are necessary for there
to be an opportunity for robustness. For example, see figure la which displays a simplified
relationship between a response Y and one control factor (at two levels) and one noise factor
(over an interval). The interaction is evident since the response over the noise factor interval
depends on the control factor level; figure 1a shows that at control factor level 2, the effect
of the noise factor is substantially smaller than at control factor level 1. Thus, robust design
exploits the existence of interactions between control and noise factors. Note that having a
C x N interaction is not sufficient for an opportunity for robustness as is shown in figure 1b;
the magnitude of the change over the noise factor interval at both levels of the control factor
is the same. Consequently, an N main effect is also needed which explains the inclusion
of both C x N interactions and N main effects in the model. The C' main effects and
C x C interactions indicate the general response value about which the response varies as
the noise factors vary according to their distribution; the amount of variation depends on
the magnitudes of the N main effects and C x N interactions. See Box and Jones [2] for a
mathematical derivation of this response model.

Finally, the response-model approach has led to the proposal that alternative experimen-
tal plans be used. For example, Welch et al. [11] proposed using a single plan or array for

both the control and noise factors. Shoemaker et al. [8], who referred to the single array as a



combined array, explored the economic advantages of combined arrays over product arrayé.
3. APPLICATION TO RELIABILITY IMPROVEMENT

To illustrate the usefulness of robust design for reliability improvement, consider an ex-
periment for improving the lifetime of drill bits (i.e., number of holes drilled before breakage)
used in fabricating multilayer printed circuit boards as reported by Montmarquet [7]. In de-
signing multilayer circuit boards, small diameter holes are desired because they allow more
room for the circuitry. The strength of small diameter drill bits is greatly reduced, however,
so that breakage becomes a serious problem; broken bits cannot be removed from the boards
requiring the boards to be scrapped at a cost of $200-$600. Consequently, identification of
significant factors affecting bit breakage is one of the experimental objectives. Also, factor
levels need to be chosen that give a sufficiently long lifetime to make the fabrication of a
circuit board design feasible.

A product array consisting of a 16 run control array (Table 1) and an eight run noise
array (Table 2) was used to study 11 control factors (A at four levels and B—J‘ and L at
two levels) and five noise factors (M-Q at two levels). The control factors were selected
material composition and geometric characteristics of drill bits such as the carbide cobalt
percentage in a drill bit (factor A) and radial rake (factor F). The noise factors dealt with
characteristics of different types of multilayer circuit boards that would be drilled such as
board material (factor O) and number of layers in a board (factor P). See Montmarquet
[7] for more details. Note that a run (i.e., a particular combination of control factors levels
being used at a particular combination of noise factor levels) was stopped after 3,000 holes
were drilled; 14 (out of 128 or 11%) of the tested drill bits did not fail resulting in censored
data. -

With the drill bit experiment in mind, we consider robust design in the context of reli-
ability improvement, i.e., identifying control factor combinations whose reliability is insen-
sitive to the noise factors. First, we discuss Taguchi’s specific criterion for assessing the

effect of the noise factors which he termed the LTB S/N ratio. For a response Y such
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as lifetime for which large values are desired, Taguchi proposed using the loss function
(y)=[1/v) - 0> =1/Y?in (1). It computes a squared distance on the reciprocal scale
between the response and the ideal but unattainable value oo (whose reciprocal is zero). The
loss in (1) is then estimated for each control factor combination (Table 1) using the eight
' lifetimes corresponding to the noise factor combinations (Table 2). Denoting these eight
lifetimes by Yi, ..., Ys, the loss in (1) is estimated by 8 1(1/Y?)/8. Taguchi typically
applies —10logyo which makes larger values better, thereby giving the LTB S/N ratio as
—10log1o(35_,(1/Y?)/8). Once the LTB S/N ratios are computed, they are then modeled
as a function of the control factors.

In the previous section, a rationale for the response-model approach was given. A com-
plementary view by Box [1] is that by combining the observations from the noise array, the
LTB S/N ratio hides important information. For example, take the case of a single noise
factor which is experimented at low, middle and high values as displayed in figure 2. Note
that the LTB S/N ratio is the same for all four graphs which contain very different informa-
tion about the effect of the noise factors. (Figure 2a has no variability. Figure 2b has the
same mean as figure 2a, but more variability. Figure 2c has a higher mean than figures 2a
and 2b, but more variability. Figures 2a, 2b and 2c are monotonic while figure 2d is not.) A
response-model approach using an appropriate experimental plan could distinguish between
these different cases.

In the reliability context, there is a more compelling reason for using the response-model
approach since censored data naturally arise; i.e., all the units may not fail by the end of the
experiment. Consequently, the LTB S/N ratio cannot even be properly evaluated; to use the
censoring time (i.e., the duration of the experiment) could be misleading. Next, we discuss
how existing statistical methods which handle censored data can be used to implement the
response-model approach.

In the following, we assume a Weibull regression model for the lifetimes (Chapter 6 of



Lawless [5]). A convenient representation for this model is:
log(yz) = xiTﬂ + o¢, i = 1) sy N (2)

where the {y;} are the observed lifetimes, the {x;} are the corresponding vectors of covariates
values, 3 is the vector of location parameters, o is the scale parameter and the {¢;} are iid.
standard extreme-value r.v.’s, whose probability density function (pdf) and survivor function
(Sf) are exp(w — ezp(w)) and exp(exp(—w)), respectively. That is, the {y;} follow a Weibull
distribution. In the robust design context, the covariates consist of an intercept, the C' main
effects, possibly some C' x C interactions, the C' x N interactions, the N main effects and
possibly some N x N interactions.

Standard ML estimation methodology can easily handle both failure and censored data.
The MLE’s for (3, 0) are found by maximizing the following likelihood:

L(8,0) = T1(1/o)exp(((y: — xi"B)/o] - exp((y: — %" B)/0)) I] exp(exp(—(y: — %" B)/))

i€eD i€C 3)
Note that {i € D} denotes those observations which are failures and {i € C} denotes
those observations which are censored. Standard errors for the MLE’s can also be obtained
(Lawless [5]). Various commercially available software perform these computations. For
example, we used SURVIVAL, the SYSTAT survival analysis module (Steinberg and Colla
[9]) to reanalyze the drill bit experiment.

Once the response has been modeled, recommendations for setting the important control
factors need to be made. For a simple model with few noise factors, they may be apparent
from inspection of the model directly; i.e., by observing what the significant effects are and
their magnitudes. See Shoemaker et al. [8] for an example. For complicated models, as is
the case for the drill bit experiment, however, this approach may be tedious if not difficult.

An alternative is to specify some meaningful criteria and use the model to evaluate them.
For example, the loss in (1) can be calculated for a specified distribution of the noise factors.

In practice, because it may be difficult to specify such a distribution, one might simply



evaluate the criterion over the noise combinations specified by a noise array. Note that
the noise array used in the experiment need not be used here; in fact, one can use a full
factorial plan (i.e., all possible combinations). The noise combinations can also be weighted
appropriately to reflect their probabilities of occurrence. Similarly, the loss in (1) can be
calculated for all poSsible combinations of the control factors.

In Section 2, we noted Box’s [1] criticism of the LTB S /N ratios; as he pointed out, they
hide important information about the general level and amount of variation of the observa-
tions. Consequently, other appropriate criteria could be considered and then evaluated. For
example, in the robust design framework, besides requiring high reliability on average, one
also desires as little dependence as possible on the noise factors (i.e., small variation). Thus,
the mean and variance (or standard deviation) of the response over the noise factor distri-
bution might be evaluated. If there is no control factor combination that simultaneously
maximizes the mean and minimizes the variance, then tradeoffs between the two need to be
made. Based on a worst case approach, the minimum mean response over the noise factor
distribution provides another criterion that could be evaluated. These additional criteria
as well as the LTB S/N ratio are compared in the reanalysis of the drill bit experiment

presented next.
4. REANALYSIS OF DRILL BIT EXPERIMENT

Based on the response-model approach, a Weibull regression model consisting of an inter-
cept, C main effects, one C x C interaction (D x E), N main effects, two N x N interactions
(MxP,MxQ) and all the C x N interactions was fit by ML estimation as described in the
previous section. Tables 3a and 3b present the MLE’s and their respective standard errors
with the significant effects in bold face. Note that factor A had four levels, so the main effect
is represented by linear, quadratic and cubic components and denoted by Az, Ag and Ag,

respectively. Also, the intercept is denoted by Int.

Tables 3a and 3b about here.



As can be seen from Tables 3a and 3b, the relationship between the response and the
control and noise factors is too complicated to make control factor level recommendations
simply by inspecting the model. Consequently, the mean, standard deviation, minimum
mean and LTB S/N ratio over all possible combinations of noise factors (32 = 2°) were
evaluated at each of all possible combinations of control factor (4096 = 4 x 2°) and then
ranked appropriately (out of 4096, with 1 being the best). Table 4 presents the best five
control factor combinations for each criterion along with the other criteria and their ranks.
Several observations can be made: (i) the combination least sensitive to the noise factors (i.e.,
smallest standard deviation) ranks rather poorly according to the other criteria, especially
the mean reliability; (ii) the other three criteria identify many of the same combinations; in
fact here, the LTB S/N ratio does quite well — the approximate relation between the LTB
S/N ratio and the mean and standard deviation criteria given by Maghsoodloo [6] can be
used to explain why the LTB S/N ratio tends to be driven by the mean criterion; this is
especially true here, where values for the mean criterion are much larger than that for the
standard deviation criterion; (iii) there is little difference between the top few combinations.
From Table 4, a good choice of factor levels would then be A4D;B;CoFyGoH 12 E J, Lo,
where the subscripts denote the recommended level of their respective factors. Note that

this combination is also rather robust to the noise factors.
Table 4 about here.

In the original analysis (Montmarquet [7]) which modeled the LTB S/N ratios (using
the censoring times as actual failure times), factors A, D, C, F, H, E, J and L were iden-
tified as important, which resulted in the recommendation A4D,C,FyH,E,J,L,. Based on
the estimated response model, Table 5 presents the criteria for this combination with the
remaining factors B, G and I being allowed to vary. Note that the odd combinations which
include the best combination recommended by the response-model approach are relatively

better than the even ones; this can be explained by factor I which has a much larger main
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effect than factors B or G. Thus, the response-model approach provides additional important

information about this experiment that the loss-model approach hid.

Table 5 about here.

ACKNOWLEDGEMENTS

I thank Will Welch for helpful comments on an earlier version. This research was sup-
ported by General Motors of Canada Limited, the Manufacturing Research Corporation of

Ontario, and the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. G. Box, “Signal-to-Noise Ratios, Performance Criteria, and Transformations (With

Discussion),” Technometrics, vol 90, 1988 Feb, pp 1-40.

2. G. Box, S. Jones, “ Designing Products that are Robust to the Environment,” Univer-

sity of Wisconsin-Madison Center for Quality and Productivity Improvement Report

56, 1990.

3. A. E. Freeny, V. N. Nair, “Robust Parameter Design with Uncontrolled Noise Vari-
ables,” AT&T Bell Laboratories Statistical Research Report No. 95, 1991.

4. R. N. Kackar, “Off-Line Quality Control, Parameter Design, and the Taguchi Method
(With Discussion),” Journal of Quality Technology, vol 17, 1985 Apr, pp 176-209.

5. J. F. Lawless, Statistical Models and Methods for Lifetime Data, 1982; John Wiley &

Sons, Inc.

6. S. Maghsoodloo, “The Exact Relation of Taguchi’s Signal-to-Noise Ratio to His Quality
Loss Function,” Journal of Quality Technology, vol 22, 1990 Jan, pp 57-67.

11



10.

11.

12.

F. Montmarquet, “Printed Circuit Drill Bit Design Optimization Using Taguchi’s
Methods — .013” Diameter Bits” Sizth Symposium on Taguchi Methods, 1988; Ameri-
can Supplier Institute, Inc., pp 70-77.

. A. C. Shoemaker, K. L. Tsui, C. F. J. Wu, “Economical Experimentation Methods for

Robust Design,” Technometrics, vol 33, 1991 Nov, pp 415-427.

D. Steinberg, P. Colla, SURVIVAL: a Supplementary Module for SYSTAT, 1988; SY-
STAT Inc.

G. Taguchi, Introduction to Quality Engineering, 1986; Asian Productivity Organisa-

tion.

W. J. Welch, T. K. Yu, S. M. Kang, J. Sacks, “Computer Experiments for Quality
Control by Parameter Design,” Journal of Quality Technology, vol 22, 1990 Jan, pp
15-22.

M. Zelen, “Factorial Experiments in Life Testing,” Technometrics, vol 1, 1959 Aug, pp
269-288.

12



Table 1: Control Array for Drill Bit Experiment

row A DB CPFGHTIEIJL

1 2 2 2 2 2 2
1
2 2 2 2 2 2 2 2 11

1
2 2 2 2

1

1
1
2
2

1 2 2 1 1 2 2 1 2
1 2 2 2 2 2
2 2 2 1

1
1

1

1

1

1

1

1
1

2 21

2

2

1 2 2 2

2

2
2
2
2
1

1
1
2
2
1
1

1
1

1 2 21

1

2

3
4

T2 2 2

812

10

1113 2
1213 2

13 | 4

14 | 4

1514 2
16|14 2

Table 2: Noise Array for Drill Bit Experiment

row M N O P Q

1 2 2 1

2

6




Table 3a: MLEs and Standard Errors for Drill Bit Experiment

Effect | MLE Std. Err. | Effect | MLE Std. Err.
Int 6.182 0.047 | E 0.051 0.043
Ay, 0.279 0.021 (| J -0.231 0.043
Aq -0.268 0.043 | L -0.272 0.043
Ac 0.071 0.018 || DE -0.225 0.041
D -0.265 0.043 | M 0.179 0.058
B -0.048 0.043 | N 0.136 0.047
C -0.194 0.043 | O 0.898 0.059
F 0.154 0.042 | P 0.862 0.057
G 0.132 0.048 | MP 0.237 0.057
H 0.218 0.048 | Q 0.548 0.057
I -0.272 0.044 | MQ 0.036 0.057




Table 3b: MLEs and Standard Errors for Drill Bit Experiment

Effect | MLE Std. Err. || Effect | MLE Std. Err.
ArM | 0.030 0.027 || HO 0.107 0.061
AgM | 0.097 0.060 || IO -0.429 0.054
AcM | -0.040 0.023 || EO -0.376 0.061
DM 0.086 0.059 || JO -0.039 0.059
BM 0.005 0.046 || LO 0.294 0.059
CM 0.038 0.059 |{ AP |-0.013 0.027
FM -0.073 0.046 || AQP |-0.123 0.061
GM 0.236 0.054 || AP 0.035 0.023
HM 0.011 0.061 | DP 0.269 0.059
IM -0.090 0.054 | BP 0.213 0.048
EM 0.095 0.061 || CP -0.119 0.059
JM 0.149 0.059 || FP -0.070 0.048
LM 0.123 0.059 || GP 0.022 0.054
AN |-0.047 0.021 || HP -0.080 0.061
AgN | 0.076 0.043 | IP 0.195 0.054
AcN 0.003 0.018 | EP 0.143 0.061
DN 0.017 0.043 {| JP 0.156 0.060
BN -0.094 0.042 || LP -0.194 0.060
CN -0.046 0.043 || ALQ 0.007 0.027
FN 0.025 0.042 | AQQ |-0.174 0.061
GN 0.049 0.048 || AcQ 0.031 0.023
HN -0.012 0.047 || DQ 0.037 0.059
IN -0.111 0.044 || BQ -0.037 0.048
EN 0.019 0.043 || CQ -0.060 0.059
JN -0.065 0.043 | FQ | -0.031 0.048
LN -0.054 0.043 | GQ 0.139 0.054
ALO 0.024 0.027 || HQ 0.079 0.061
AqO 0.034 0.061 || IQ -0.117 0.054
AcO 0.006 0.024 || EQ -0.184 0.061
DO 0.181 0.058 || JQ 0.042 0.060
BO -0.136 0.047 || LQ 0.202 0.060
CO 0.026 0.058 || o 0.350 0.030
FO -0.061 0.047
GO 0.277 0.054




Table 4: Best Combination Levels for Various Criteria

five largest means

levels mean std dev LTB S/N min mean
A DB CTFGHTIE J L]|value rank | value rank | value rank | value rank
4 2 1 2 1 1 1 2 1 2 2| 8877 11 1.084 497 || 18.776 2| 7.122 4
4 2 2 2 1 1 1 2 1 2 21| 8877 21 1.064 469 || 18.781 1| 7.088 7
4 2 1 2 1 2 1 2 1 2 2]|8.613 310903 205 | 18.552 4 | 7.150 3
4 2 2 2 1 2 1 2 1 2 2|8.613 4 | 0.681 66 || 18.618 317116 5
3 2 1 2 1 1 1 2 1 2 28571 511 1.396 1246 || 18.312 10 || 6.128 71

five smallest standard deviations

levels mean std dev LTB S/N min mean
A D B CVF G H I E J L|value rank | value rank || value rank || value rank
4 2 2 1 2 2 2 1 1 2 116.209 2171 | 0.325 1 15.825 1071 || 5.540 199
4 2 2 1 1 2 2 1 1 2 1/|6.517 1629 | 0.325 21 16.249 735 | 5.848 117
4 2 2 1 2 2 1 1 1 2 116.829 1102 || 0.325 3| 16.658 463 | 6.160 66
4 2 2 1 1 2 1 1 1 2 17137 674} 0.325 41 17.043 271 | 6.468 35
1 2 2 1 1 2 1 1 1 2 1]5.321 3306 | 0.418 51 14.439 2233 || 4.414 835

five largest LTB S/N ratios

levels mean std dev LTB S/N min mean
A D B CVF G H I E J L]|value rank || value rank || value rank || value rank
4 2 2 2 1 1 1 2 1 2 2|8.877 21 1.064 469 || 18.781 1| 7.088 7
4 2 1 2 1 1 1 2 1 2 2] 8.3877 1 1.084 497 | 18.776 21 7.122 4
4 2 2 2 1 2 1 2 1 2 2|8.613 4 1 0.681 66 || 18.618 317116 5
4 2 1 2 1 2 1 2 1 2 2]|8.613 310903 205 | 18.552 4 | 7.150 3
4 2 2 2 2 1 1 2 1 2 2|8.569 8 1.064 470 || 18.461 5| 6.780 17

five largest minimum means

levels mean std dev LTB S/N min mean
A DB CUVF G HTITE J L|value rank | value rank | value rank || value rank
4 2 2 2 1 1 1 1 1 2 218.333 20 || 0.815 120 | 18.299 11 || 7.424 1
4 2 2 1 1 1 1 1 1 2 217945 88 || 0.594 32 || 17.934 41 || 7.274 2
4 2 1 2 1 2 1 2 1 2 2]|8.613 310903 205 | 18.552 4 || 7.150 3
4 2 1 2 1 1 1 2 1 2 2|8.877 1 1.084 497 | 18.776 21 7.122 4
4 2 2 2 1 2 1 2 1 2 28613 4 1 0.681 66 || 18.618 31 7.116 5




Table 5: Performance of Original Recommendation for Various Criteria

levels mean std dev LTB S/N min mean
A DB CTPFGHTIE J L|value rank | value rank | value rank | value rank
4 2 1 2 1 1 1 1 1 2 2|8333 18 |{ 1.272 938 | 18.124 21 || 6.600 25
4 2 1 2 1 1 1 2 1 2 2|887 1 1.084 497 | 18.776 2| 7.122 4
4 2 1 2 1 2 1 1 1 2 2|8.069 53 || 1.541 1691 | 17.618 86 || 5.052 384
4 2 1 2 1 2 1 2 1 2 2|8613 310903 205 | 18.552 4 || 7.150 3
4 2 2 2 1 1 1 1 1 2 2/|8333 20 || 0.815 120 || 18.299 11 || 7.424 1
4 2 2 2 1 1 1 2 1 2 2887 21 1.064 469 || 18.781 1] 7.088 7
4 2 2 2 1 2 1 1 1 2 2]8.069 54 || 1.054 446 || 17.900 44 |1 5.938 98
4 2 2 2 1 2 1 2 1 2 2|8.613 4 | 0.681 66 || 18.618 31 7.116 5




Figure 1: Example Response Functions and Opportunity for Robustness
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Figure 2: Hidden Information by Larger-The-Better Criterion
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