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ABSTRACT

The essential feature of an observational study performed on a process is that data are
collected without deliberately changing the process. Control charting, a type of observational
study, has traditionally been used to establish and maintain process stability. Once stability is
achieved, the charting activity controls the process variability but does not reduce it further. This
paper goes beyond control charting by proposing the use of charting techniques in conjunction
with observational studies for continuous variation reduction, i.e., continuous improvement. It
requires that the classification of special and common cause variation be abandoned and that
instead simply sources of variation be considered. The basic strategy is to design the sampling
plan to identify the largest sources of variation currently operating. As improvements are made,
the sampling plans and corresponding analysis methods are updated. Consequently, most of the
charting effort becomes an off-line activity. The necessity of upfront planning is discussed. It
is concluded that lack of such upfront planning and purposeful sampling has resulted in the
ineffective use of charting and explains a large part of the frustration that many have experienced
using it.
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Introduction

We define an observational study of a process to be one which collects data from a process
without deliberately changing it. For example, control charting is a widely used type of
observational study that is performed on many processes. Here we refer to charting as all
activities surrounding the use of a control chart. These include planning, collecting data,

analysis and making recommendations. Traditionally, charting has had several purposes:

e to provide a process record
e to signal the need for adjustment

e to establish and maintain stability.

None of these purposes is consistent with the concept of continuous improvement, i.e.,
variation reduction. For example, the argument has been made that once process stability is
attained, only common cause variation remains in the process and that systematic changes to
the process are required to achieve improvement. Such changes are considered to be outside
the scope of traditional charting.

In this paper, we propose using charting to continuously reduce variation. Some immedi-
ate consequences of the proposal are that the charting has a much larger off-line component,
more planning and review is required and a different terminology to describe process behav-
ior is needed. Moreover, since this activity is beyond the domain of a local operator, the
approach requires the use of a broad-based team with knowledge of the entire process under
study.

Juran and Gryna (1980) discuss chronic and sporadic problemé with the process. Sporadic
problems result in large, immediately apparent process changes and can be detected by the
traditional uses of control charts. Resolving a chronic problem, a breakthrough in Juran’s
terminology, requires a different approach which is usually a change to the system. In

statistical terms, a process intervention or experiment is required to achieve a breakthrough.



In this paper, we focus on the progress that can be made towards a breakthrough without
such interventions in the process.

One of the key distinctions made in traditional charting is that between common (chance)
and special (assignable) causes of variation. While this distinction is always made, there

seems to be little agreement on definitions. For example, Deming (1986) writes,

“Shewhart used the term assignable cause of variation where I use the term
special cause. I prefer the adjective special for a cause that is specific to some
group of workers, or to a particular production worker, or to a specific machine,

or to a specific local condition.”

and

“The term common causes for faults in the system ....”

Contrast this with Grant and Leavenworth (1988) who write,

“Variability of the quality characteristic may follow a chance pattern or it may
behave erratically because of the occasional presence of assignable causes that

can be discovered or eliminated.”

Deming seems to be separating operator controllable from other causes of variation.
Grant and Leavenworth separate the causes on the basis of their detectability. This is
an important point because the ability to detect a cause of variation depends heavily on
the design of the data collection scheme. More recently, Pyzdek (1990) argues that the
classification of causes as special or chance is detrimental because it inhibits overall variation
reduction. He prefers to classify causes as visible or hidden. A visible cause has a known
effect; a hidden cause is one whose effect has not yet been identified. This idea is important,
but misses the point that what is visible depends on how you view the process. That is, a

cause of variation may be visible with one data collection scheme, but hidden with another.



The treatment of causes of variation in various textbooks on statistical process control
suggest that there is a confusion over how causes should be classified. Different classifications
are made using criteria based on the magnitude of transmitted variation, detectability of the
source of variation, control over the remedy and whether a cause has been identified or not.
To avoid this confusion, we use the term “source of variation” and emphasize the relationship
between the way the process is monitored (“the view of the process”) and its ability to detect
the source.

MacKay (1988) suggests that sources of variation follow a Pareto principle. Consequently,
a process can be continuously improved by identifying and removing the largest of the cur-
rently operating sources of variation. This strategy is iterative in that today’s relatively
unimportant source of variation may become tomorrow’s largest. Note that a different sam-
pling scheme may be required to detect this second source.

This paper concentrates on designing sampling schemes to detect sources of variation,
Juran’s “diagnostic journey.” This corresponds to choosing rational subgroups in traditional
charting. Once a source of variation is identified, action must be taken to reduce its effect,
the “remedial” portion of the journey. Otherwise, no improvement will occur and the effort
will be wasted. Concepts involving a statistical component such as moving quality upstream
or Taguchi’s method for desensitizing a process to a source of variation can play an important
role in the “remedial journey” but are not discussed here. Besides identifying a source of
variation, the sampling plans also allow its magnitude to be evaluated. While not discussed
here, its relative contribution to overall process variation can then be assessed if the overall
process variation is known. In fact, before undertaking such a study, it makes sense to know
what the overall process variation is, because removing an identified source of variation may
result in little process variation reduction.

The paper is organized as follows. First, “charting” is embedded into a systematic prob-
lem solving approach which sets the stage for a discussion of the design of a data collection

scheme. Our approach proposes a classification scheme for potential sources of variation and



employs two general principles in designing a data collection scheme. Here, we consider a
simplified process of a machining operation to illustrate our approach. Next, some simple
tools that can be used to analyze the collected data are discussed. The paper concludes by

pointing out some strengths and limitations of the approach.

A Problem Solving System

There are many versions of a step-by-step approach to problem solving (e.g., MacKay

(1988)). These versions are different packaging of the following steps:
e problem selection and definition
e process description
e input identification and prioritization
e planning of data collection
e analysis
¢ solution generation and confirmation
e implementation and standardization.

The use of a system to solve prdblems is important because it enforces discipline, defines
roles and responsibilities and, in the long run, is more effective. Some brief comments on
the first few steps follow.

The first step is a management function and ensures that important problems are con-
sidered and that appropriate resources (people, training, time, etc.) and on-going leadership
are available. The second step is the task of the problem solving team that requires a clear
description of the process associated with the problem, specification of measurable process

outputs that can be used to quantify the problem as it currently exists, and the setting of



specific goals and schedules for the resolution of the problem. The third step requires a
listing of all potential sources of variation (e.g., by a cause and effect diagram) and infor-
mation on what is known about each source (known or unknown cause of variation, possible
magnitude of its effect, responsibility for its control, etc.). This information can be used
to assign priorities to the sources of variation. The objective here is to select a few of the
highest priority sources for the initial study.

To illustrate our discussion, consider the following simplified process of a machining
operation as displayed in Figure 1. The variation in shaft diameters from a final machining
operation has caused assembly problems downstream and a continuous improvement effort
is undertaken to reduce this variation. The machine carrying out this operation has two
grinding heads performing the same operation and receives parts from a rough grinding
machine. Both heads have the same lubricant and power supply and the same operator is
in charge throughout a shift. There are two shifts per day and approximately four rod lots
are used each shift. The first three steps of the problem solving process have produced the

following:
e selected problem: reduce diameter variation
e process description: as displayed in Figure 1
e measured output: diameter

e input identification and prioritization:

operator grinding head
rod lot tool change
lubricant temperature power supply

diameter after rough grind

The next step is to plan the data collection scheme for investigating the effects of the priori-

tized sources. We assume in what follows that the chosen sampling scheme does not involve
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a deliberate process change. That is, it is an observational study because no intervention is
made in the process. Besides observational studies, designed experiments is the other major
approach for data collection. Reasons for preferring observational studies over experiments
are that there is no interference with production, no risk of producing poor quality output by
deliberately changing the process, low cost, etc. Note that observational studies have long
been used by the social and health sciences for investigating human populations (Cochran
(1983)), where it is often impossible to conduct a designed experiment. To the best of our
knowledge, this paper is the first to propose using observational studies in the industrial

setting for continuously improving processes.

Sampling Designs for Different Sources of Variation

We assume that the outputs of the process to be measured have been identified along with
the potential sources of variation or inputs; that is, the first three steps in the problem solving
process described in the previous section have been done. (We will use interchangeably the
terms input and source of variation.) Using the Pareto principle for sources of variation,
the objective of the study is to identify those inputs whose changes transmit large changes
to the outputs. There are two obstacles, however. First, while a large number of inputs
have been listed, only a few can be simultaneously dealt with in an investigation. This is
why the inputs must first be prioritized and then only the highest of these be considered.
Second, the “current noise” in the process may cause so much variation in the output that the
transmitted change induced by an input is masked. As we will describe, sampling schemes,
purposely designed, can help to alleviate this difficulty.

Since different views of the process require different sampling schemes, their construction
begins by selecting a key input to be investigated; it is a bonus if other inputs can also be
investigated with the same scheme. It is important to recognize that, to a large degree, the
nature of the inpuf determines the sampling plan. With this in mind, we classify the inputs

into three broad types:



Stratification (ST): Examples are machines, lines, pallets, shifts, opera-
tors, fixtures, etc. Each stratum usually has a fixed
effect on the output and can be sampled from at dif-
ferent time periods. The strata are usually deter-
mined qualitatively. Also, it can easily be determined

in which stratum the process is operating.

Scheduled Changes (SC): Examples are batches, lots, tool changes, etc. These
inputs are characterized by a predictable length of
time between input changes (i.e., a scheduled change)
and have a variable effect on the output from one in-
put change to another, The input changes are usually

defined qualitatively.

Unscheduled Changes (UC): Examples are lubrication temperature, line pressure,
viscosity, etc. Characteristics of these inputs are that
the length of time between input changes is unpre-
dictable, the input changes are defined quantitatively

and the inputs can be measured on-line.

A source of variation cannot be identified unless it is traceable. It must be possible
to identify the operators, machines, lots, etc. which produce each sampled output. For
unscheduled inputs, the input value corresponding directly to each sampled output must be
determined. For example, if humidity is not monitored, itv can never be identified as a source
of variation.

Regardless of the input’s nature,‘ there are two basic principles that should be followed

when designing a sampling scheme.



I. Keep as many other inputs as possible constant while the key input under

study changes.

II. Replicate I for as many changes in the other inputs as possible.

Principle I is equivalent to blocking in designed experiments which reduces the noise
component of the output so that the magnitude of the key input effect is more apparent.
Principle II is the same as replication in designed experiments and provides the opportunity
to assess the key input’s effect on the output under varying production conditions. By
replication, the consistency of the effect can be examined. Thus, observational studies can
incorporate two of the guiding principles used in designing experiments.

Next, sampling plans employing Principles I and II will be described for investigating the

prioritized inputs of the grinding operation. The classification of these sources is:

operator (ST) grinding head (ST)
rod lot (SC) tool change (SC)
lubricant temperature o) power supply (UC)

diameter after rough grind (UC)

Sampling Designs for Stratification Inputs

First, we consider a sampling design for grinding head and then operator.

Example 1: Grinding Head

Many inputs affect both heads simultaneously. The sampling plan consists of selecting
two consecutive rods from the rough grind operation and finishing them simultaneously on
the two heads (Principle I). Repeat this procedure to obtain outputs from pairs representative
of production (Principle II); i.e., over as many different level combinations of the other inputs
as possible.

The selection of pairs of rods as described in the sampling scheme holds all other inputs

constant while the two rods are being finished. It is assumed that before the rough grinding
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operation the two consecutive rods had a similar past history.

Example 2: Operator

Very few inputs have a common effect on both operators’ output. Among the prioritized
inputs, only grinding head has a constant effect on output while operators change. The
sampling plan consists of the following. Each time during the investigation that the process
is operating within an operator, collect a sample representative of the output from each
head (Principle I). Repeat this for each operator over a range of levels for the other inputs
(Principle II).

The sampling scheme in Example 1 is a suitable design if the pairs of rods are selected
to give a sample representative of the output during the period of time an operator is on
duty. Moreover, this sampling scheme provides the opportunity to investigate the effect of
both ST inputs. It is easier to detect head-to-head differences than operator-to-operator
differences, however, since more other inputs are held constant as heads change than as
operators change. Note that the operator effect cannot be distinguished from that of another
input which changes from shift-to-shift. For example, the effect of an operzitor for a previous
step in the process is confounded with that of the final machining operator. If the same
operators always work together, there is no way of separating their effects; this can only be

accomplished by an intervention.

Sampling Designs For Scheduled Change Inputs
A useful aid in designing a sampling scheme for key scheduled change inputs is to make a

time-line of when the these inputs change. A time-line for the machining operation is given

below.
operator 1 operator 2
lot1 | lot2 | lot3 | lot4 | lot5 | lot6 | lot 7 | lot8 e
tool 1 | tool 2 | tool 3 | tool 4 | tool 5 l tool 6 |



Note that lot and tool changes are nested within operator changes in this scenario. Also,

both heads operate throughout all changes of the prioritized inputs.

Example 3: Lot

It is assumed that within tool change there is a tool wear effect; i.e., the tool wears and
it affects the output. If the output is randomly sampled during the period when a lot is
being machined then the lot effect will be confounded with the tool wear effect. A more
effective sampling strategy is as follows. For the two consecutive lots within a tool change,
observe the output for the last n pairs (say 2 to 5, where the pairs refer to the two rods
being simultaneously ground on the two heads) of the first lot and the first n pairs of the
second lot (Principle I). Repeat this over a number of shifts (Principle II).

It is crucial that lot number, tool change number and shift be traceable. It is also assumed
that the last n rods and the first n rods are representative of their respective lots. Note that

this sampling plan is not appropriate for assessing an operator effect.

Example 4: Tool Change

Here, we consider the difference between the rod diameters produced just preceding and
following a tool change so that the tool change effect is a composite of several effects including
tool wear and tool differences. The sampling plan consists of observing the output for the
last n pairs before a tool change and the first n pairs after the tool change. (Principle I).
Repeat this over a number of shifts (Principle II).

Note that this sampling plan is not appropriate for assessing either an operator or lot

effect.

Sampling Designs For Unscheduled Change Inputs
Recall that unscheduled change inputs must be traceable. It may require hard work
and some ingenuity to devise a tracking system. For example, if the diameter of the rough

ground shaft is the key input in the machining operation, a tracing method is needed to
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relate the incoming diameter to the diameter after final grind. A sampling strategy for this

unscheduled change input is considered next.

Example 5: Diameter After Rough Grind

The sampling plan consists of sampling within head and operator, measuring the diameter
before and after the final grind (Principle I). Repeat over all heads and operators for a number
of lots. Collect sufficient data to prepare scatter plots within each stratum of the ST inputs.
(Principle II).

A suitable sampling scheme to assess the effects of the incoming diameter is the one
suggested for the stratified inputs. This same scheme is also suitable for assessing the effects

of lubrication temperature and power supply.

Some Comments

The machining operation example demonstrates how the two basic design principles can
be used to develop sampling schemes. Note that the same sampling scheme could be used
to assess several of the inputs and might have been easily overlooked unless careful planning

had taken place. Other inputs may require different sampling plans, however.

Analysis

In the proposed approach, the sampling scheme is designed to assess the effect of a
specific input. As a consequence, the analysis will depend on the sampling sch(;me and can
be done off-line. Note that even when several inputs require the same sampling scheme,
their respective analysis will be different. The analysis can usually be done using the simple
graphical methods that form part of Ishikawa’s (1982) seven basic tools: trend charts, control
charts and scatter plots.

Recall that Principle I for designing sampling schemes is that data should be collected

in blocks if possible. Within each block, output measurements for each key input value are
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collected while as many of the remaining inputs as possible are kept constant. This principle
suggests that the analysis for assessing whether the ST and SC inputs affect the output
average be a comparison of the output averages for the different key input values within
each block. By collecting data for a number of blocks (Principle II), a consistent pattern in
these averages across the blocks can be looked for; such a pattern suggests that the input
has an effect.

In the machining example, when grinding head (Example 1) is the key input, differences
between the heads can be plotted. A pattern of points consistently above or below zero in the
plot would suggest a head effect. For example, see Figure 2 which plots the difference between
head 1 and head 2 and illustrates the situation where head 2 produces larger diameter rods.
The effect could then be confirmed computationally with a paired t-test by using the variation
in the differences of individual pairs of head data as a measure of noise.

When operator (Example 2) is the key input, averages for each operator within a shift
can be plotted separately for each head. The averages for both heads may also be combined
and plotted for each operator across shifts. One operator’s points falling consistently above
another operator’s suggests ‘an operator effect. For the chart with heads plotted separately,
any apparent patterns could be confirmed computationally in this case with an unpaired
t-test using the variation of the output within head and operator as a measure of noise.
Note that this requires that several replicates be taken within a single shift, i.e., the output
needs to be sampled more than once within a single shift. For situations when there are
more than two strata (e.g., operators), the strata means can be compared graphically using
Ott’s (1975) analysis of means or computationally by an appropriate analysis of variance.

Separate plofs of operator averages for each head have an additional advantage. They
provide an assessment of the consistency of an operator effect for each head, i.e., an inter-
action effect between head and operator may be suggested. Also note that while the effects
of ST inputs on the output average has been the focus, their effects on the output variation

can be assessed with R charts. For example in the machining example, separate R charts of
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within operator ranges for each head could be used to assess the effect of head and operator
on the output variation. '

For SC inputs, such as lots in the machining example, the effect on the output varies from
one change to another so that there is no point in looking for trends. The pertinent question
is whether, within a sampling block for lots, the between-lot variation exceeds that expected
from the within-lot variation. This question can be addressed by constructing appropriate
X and R charts. Recall that for each head, the last n rods before the lot change and the first
n rods after the change were sampled. The R chart is constructed by first computing the
ranges for these “subgroups” of size n, plotting them and calculating the appropriate upper
control limit. See Figure 3 for an example which illustrates a process where the with-in
lot variation is consistent. To assess the between-lot variation (i.e., a lot effect), construct
an “X chart” by plotting the difference of averages between the two lots in each sampling
block. The center line is zero and the control limits account for the difference of averages
(rather than a single average) being plotted (i.e., i\/(Q)AgR, where A, is the appropriate
constant (Grant and Leavenworth (1988)) and R is the average range from the R chart).
Many out-of-control points such as those displayed in Figure 3 indicate a lot effect. -

The effects of UC inputs can be assessed by scatterplots of output versus input values.
Principles I and IT imply that there should be enough data available for separate scatterplots
for each stratum of an important SC input. Consequently, interactions between ST and UC
inputs can be studied; plotting the data for both heads on the same graph using different
plotting symbols to distinguish between the heads may reveal different relationships between
output and temperature (i.e., different intercepts or slopes).

Note that in the series of analyses described above, a subsequent analysis of an input
may be influenced by the analysis of a previously studied input. For example, if an analysis
of an ST input suggests that it has an‘effect, subsequent analyses of the remaining inputs.

might be done separately for each strata of that ST input.

We have presented some general approaches for analyzing data from the various input
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types and related them to the machining example. The particular methods are necessarily
problem specific. We have emphasized a graphical approach which is simple to do, easy to
interpret and therefore, a useful first pass at analyzing the data. We have also mentioned
more sophisticated analyses that can detect smaller input effects and can be pursued if

necessary.

Summary

In this paper, we have concentrated on designing sampling schemes to identify specific
sources of variation; different “views of the process” are needed to assess the effects of
different sources. The analysis of the data is done off-line and is largely based on the seven
basic tools. This approach provides a powerful strategy for making the “diagnostic” portion
of Juran’s journey. While control charts are often suggested as a tool for this journey,
they only take one view of the process. Moreover, we believe that control charting is more
appropriate for providing a process record and for maintaining stability by signaling the need
for adjustments.

In contrast with designed experiments, this non-interventionist approach costs less, is
easier to implement and does not interrupt production. Note, however, that confounding
of effects may present interpretation problems, the process cannot be changed to assess an
effect, the natural range of variation may not be large enough to detect an effect and the
duration of the study may be longer than that for a designed experiment. The first problem
may be alleviated by rerouting the flow of some of the samples, i.e., an intervention, although
perhaps a minor one. For example, suppose that the rough grind operation in the machining
example also has two heads and rods finished in head 1 of the final grind normally come
from rough grind head 1. Then some rods from the other rough grind head will need to be
rerouted to the final grind head 1 in order to decouple the potential head effects of the two
operations.

Continuous improvement requires an iterative approach. Regardless of what strategy
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is used, improvement will not take place unless the “diagnostic journey” is followed by a
“remedial journey.” As sources of variation are eliminated or their effects reduced, new
sources will become important. In order to assess these new sources, their own special
sampling scheme will be needed.

We have emphasized the necessity of upfront planning. In conclusion, we believe that the
lack of such planning and purposeful sampling has resulted in the ineffective use of charting

and explains a large part of the frustration that many have experienced using it.
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