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ABSTRACT

In modern industrial settings, a prototype product is often created in the form of a computer
image via Computer Assisted Design (CAD). After the first group of prototype products are
made, their geometric features are measured with a Coordinate Measuring Machine (CMM). The
quality assurance problem here is to develop (statistical) methods to check the geometric integrity
of the products against design specifications. An existing method (Chapman and Kim, 1992)
uses spherical regression to analyze the directional features such as straight lines and planes. In
this paper, we develop a new method in which the proposed measure of geometric quality is easy
to calculate and has good statistical properties. In addition, our method can be used to check
more general geometric qualities.

Key words and phrases: Geometric quality assurance, Computer assisted design, Coordinate
measuring machine. '



1 Introduction

In modern industrial settings, a prototype product is often created in the form of a computer
image via Computer Assisted Design (CAD). The specifications of the prototype product
are stored as a CAD file. However, when a product is actually made, it is always different
from its design due to various manufacture errors. For instance, a manufactured door may
fail to fit into the body of the car. Various efforts have been made in industry to solve this |
kind of problem. A direct approach is to control the geometric variations of the manufactured
products. This gives rise to the problem of how to judge the geometric quality of manufactured
products. We follow Chapman and Kim (1992) to call this the geometric quality assurance

problem.

Traditionally, a high quality mould is made to examine whether a product is of satisfactory
quality. In doing so, the product is placed against the mould to see whether or not it fits.

This method is, as far as we are aware, still in wide use in practice.

Another technique depends on the availability of a Coordinate Measuring Machine (CMM).
The product is held firmly and a number of points on the surface of the product are measured
relative to the coordinate system of the CMM with high precision. We call these measurements
the CMM data. The geometric features of the product are then calculated and compared with
the CAD file.

In this paper, we are interested in developing methods to compare the CMM data with the
CAD file. It is understood that the coordinate system for the CMM data and the coordinate
system for the CAD file are different in general and are usually not linked in a known manner.
Therefore, in order to make the CMM data and the CAD file comparable, some transformation
has to be applied to thee CMM-data. Suppose that a transformation for this purpose can be
found, the next question is how to judge the difference between the CMM data and the CAD
file. In general, the CAD file can be used to locate the surface of the designed product.
But, since no product is perfect, and there is always measurement error, points in the CMM

data file may not all fall onto the surface in the CAD file. A measure of this departure is



then necessary, and the problem of geometric quality assurance is essentially to define a good

measure and use it to quantify the geometric quality of the product.

The first such effort is made by Chapman and Kim (1992). They propose to use the
spherical regression method to analyze the directional features of a product such as the unit
normal directions of planes. The quality of the product is judged by the closeness between
the measured directions and the designed directions. This method can be applied to products
whose directional features are most important. In this paper, we propose a new method that
can be used to examine geometric features such as lines, planes, curves, or general surfaces.
Computations associated with our method are easy to perform and our proposed measure of
geometric quality has nice properties. Simulation results show that the new method is very

sensitive to various simulated manufacture errors.

The organization of the paper is as below. The problem of geometric quality assurance
will be described with more details in the next section, together with the proposed method
and some properties of the proposed method. Simulation results will be presented in Section

3. Some remarks are given in Section 4 and a short proof in the appendix.

2 Problem Formulation

2.1 Description of the problem

Although the products in practice may have very complicated shapes, we use a simplex to
explain our idea. Let us assume that the product has the shape as shown in Figure 1. The
surface of the simplex consists of four planes, and we denote it as S = S; U S2 U S3U S4. In

general, we assume that the surface of a product consists of m sub-surfaces and denote them

by Si,-- -, Sm.

When a prototype product is made, its geometric features are measured with a CMM. To

fix the idea, we denote the surface of the manufactured simplex as S=35US,US;US, and



measure 6 points on each of 5,-, t = 1,...,4. In general, for m sub-surfaces, we denote the
jth measurement on S; by Yij, where 1 = 1,...,m and j = 1,...,n;. Note that usually, we

cannot identify the corresponding points on S;. However, it is reasonable to assume that
Ry,; +T == + eﬁj + e:;-, (2.1)

where z;; are the unidentifiable points on §; that correspond to y;;, €;; are the manufacture
errors, e}; are the measurement errors, R is a 3 x 3 rotation matrix and T is a 3 x 1 translation
vector. When there are no manufacture errors and measurement errors, R and T together

will transform the coordinate system of the CMM data to that of the CAD file.

We have made an implicit assumption. That is, we can identify the sub-surfaces both
in the CAD file and from the manufactured product. This is a reasonable assumption in
practice. To simplify the problem, we further assume that e{; and ef; are independent of
each other and are normally distributed. Note that in practice, it may not be possible to
distinguish between e; and ej;. But for our purpose, we write e;; = e;; + €;; and assume that

e;; are independent and identically distributed as trivariate normal N3(0,0%l;3), where I3 is

the 3 x 3 identity matrix and o? is a positive constant.

We do not discard a product simply because it has a tiny manufacture error. In fact, the
real issue in practice is to decide how much manufacture error is acceptable in the presence of
measurement error. We assume that the geometric quality of a product can be judged by the
size of 02, That is, whether a product is of satisfactory quality depends on whether o2 < o2,
where o2 is determined by the practical requirement on the manufacture precision and the
precision of the CMM. In other words, we interpret the geometric quality assurance problem
as a statistical hypothesis testing problem; the hypothesis to be tested is H,: o? < g%, It
is noted that in Chapman and Kim (1992), a similar hypothesis has been stated using the

concentration parameter of the Fisher-von Mises distribution on the sphere.

From model (2.1), one may try to estimate T', R and o? by using the ordinary linear

regression approach. This does not work directly because z;; are unidentifiable points on S;.



Instead, we suggest fitting the model by minimizing

QT B) = 35" p*(Ryis + T, 5:) (2.2)

=1 j=1

over all possible T' and R, where

p(y, Si) = minges;d(y, z)

and d is a distance which we choose as the Euclidean distance.

Let T and R be a translation and a rotation that produce the global minimum of Q(T, R).

We will study the properties of Q(T, R) and its usage in the next subsection.

2.2 Some properties

Intuitively, Q(T, R) should have a chi-square distribution when the errors are normal. How-
ever, this is not true in a strict mathematical sense. Nevertheless, we are able to claim the

following properties:
Let S = U%, S; be the surface of a designed product in the CAD file. Assume that all S;
are planes. Then under model (2.1) and definition (2.2), we have

1. The distribution of Q(T, R)/a? does not depend on o?.

2. Let R, and T, be one of the true transformation parameter sets between the coordinate

systems of the CMM data and CAD file, then

Q(T,R)/0? < Q(To, Ro)[0* ~ X*

m
1=1

where the degrees of freedom for x? is Y1, n;.

3. If the normal directions of S; do not fall into a single plane, then
Q(T) 1:2)/0'2 < Xz

where the degrees of freedom for x? is 7, n; — 3.



The proofs of these properties are straightforward except for that of property 3. We leave
it in the appendix.

Property 1 ensures that Q(T, fi) /o? is a pivotal. We can therefore test the hypothesis H,
as follows: Let F,, denote the upper a-pefcentile of the distribution of Q(T, 1‘2) /o2. We reject

H,: 0? < 02 when Q(T, 1;’,) /% > F,, where 0 < a < 1is the predetermined significance level.

Although we do not know the exact size of F,, Property 2 and 3 can give a good upper
bound for it. Moreover, since T and R together have 6 free parameters, we expect Q(T', R)/o?
to lose 6 degrees of freedom in the chi-square distribution after minimization with respect to

T and R. This conjecture is supported by our simulation results but not theoretically so far.

When some of S; are not planes but curved surfaces, we expect the above properties to
remain approximately true provided o2 is small. The rational is that smooth surfaces are flat
in a small area. Also, we believe that the size of o compared to the size of a product must
be small in practice; otherwise, we do not need very precise devices to detect the problem in
the geometric quality of the product. Therefore, the above mentioned approximation is likely

to be good even when some S; are curved surfaces.

When an S; is one dimensional, such as a curve, each measurement on S; will contribute
2 degrees of freedom to the chi-square distribution instead of one degree of freedom. Thus,
informally, the total degrees of freedom of a good approximate chi-square distribution for the

most general case is

v =3 n; x {3 — dim(S)} — 6, (2.3)

=1

where dim(S;) = 2 if S; is a surface, and dim(S;) = 1if S; is a curve. However, when a
product is invariant with respect to certain transformations, the loss of degrees of freedom
will be less severe. For example, if the product is a sphere, then rotation is unnecessary,
and the loss of degrees of freedom should be 3. Obviously, when v is large, this difference is
negligible.



2.3 Computation

Unlike linear regression, there exists no analytical solution to our minimization problem. We
therefore consider solving the problem by numerical method. It is well known that almost all
smooth functions are convex around its minimum points. The success of applying a nonlinear
program to locate a minimum depends heavily on the choice of good initial values. Luckily,
there is a very natural way to find a good initial value in our problem using its geometric

characteristic.

Again, we use our simplex example to explain the idea. From the CAD file, we locate
three points O, A and B. We choose O as a new origin, and set OA as a new x-axis. We
then choose the upward normal direction to the plane containing O, A and B as a new z-axis,
and choose our new y-axis by forming a right-hand coordinate system Scap with the new
x and z axes. After this, we express our CAD file in terms of this new coordinate system
Scap. For our CMM data, we can add three measurements O, A and B if such measurements
do not exist yet. Then we can set up a new coordinate system Scapa just as we do for our
CAD file and express our CMM data in terms of Scmm. (However, if there do not exist
natural reference points O, A and B on the product, one may have to explore other features
of the product. For example, if the product is a sphere, one can make use of the symmetry
property.) Due to manufacture and measurement errors, system Scam is in general different
from system Sc4p. But the physical closeness between (O, A, B) and (O.,A,B) guarantees
that Scauar is very close to Scap. Therefore, in terms of the new coordinate systems, we can

choose zero translation and identity rotation as our initial value for T' and R, respectively.

More formally, since any rotation R can be written as the multiplication of three rotations

R;, R; and R;, where

cosf; —sinb; 0 cosf, 0 —sinf, 1 0 0
Ry =] sinf; cosf; 0 |,Rz= 0 1 0 yR3=1| 0 cosf; —sinfb; |,
0 0 1 sinf, 0 cos#, 0 sinfs cosf;

we can therefore minimize Q(7T', R) with respect to 6;,6;,0; and T with initial values 0.
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When all of S; are planes, the expression for Q(T, R) can be further simplified as
m ng
Q(T7 R) = Z E(Ryu +T - a;, vi)za (2.4)
1=1 j=1

where (-,-) denotes the usual inner product in three dimensional Euclidean space, a; is an

arbitrary point on S;, and v; is a unit normal vector to S;.

3 Simulation

We conduct a limited simulation study to illustrate the method developed in section 2. Ex-
ample 1 below deals with products that consist of planes only, while Example 2 deals with

products that consist of various shapes.

Example 1. This is the example we have discussed. The assumed product consists of four
planes. The unit normals of the four planes are v; = (0,0,—1)" (the bottom plane), v, =
(=1,0,0)* (the right plane), vs = (0,—1,0)* (the left plane), and v4 = (1/v/3,1/v/3,1//3)*
(the top plane), respectively. Six points z;; evenly distributed on each plane are measured.
In our simulation, we use model (2.1) to generate y;; for ¢ = 1,...,4 and j = 1,...,6. The
random number generator GO5DDF from the NAG library is used to generate e;; for a range

of o values.

In this example, the simplified formula (2.4) is used for minimization directly. To see
whether our proposed method of choosing initial transformation works, we need to choose
three points for setting up a new coordinate system for the CAD file, and another three
points for setting up a new coordinate system for the CMM data. These points are chosen as
0 = (0,0,0)*, A =(1,0,0)* and B = (0,1,0)* for the CAD file, and random errors are added
to them to give O, A and B for the CMM data. The four other points on each of the four

planes in (2.4) are chosen as a; = a; = a3z = (0,0,0)* and a4 = (1,0,0)".

For each value of o, we repeat the simulation 10,000 times. The subroutine E04JAF from

the NAG library is used to find the minimum of (2.4). It turns out that the subroutine can



find the minimum for sure over 98% of times. In other cases, the subroutine is still able to
find a minimum but it does not meet the criteria built in the subroutine. However, we find
that these minima are good enough for our purpose. Also, Property 1 in section 1 is found

to hold during the simulation. Therefore, we can concentrate on one o value to study the

distribution of Q(T, R)/o>.

For o = 0.05, we compare Q(T', R)/0.05? with the chi-square distribution on 18 degrees
of freedom, because v = 4 x 6 x 1 — 6 = 18. The following are some selected upper tail

probabilities:

a 0.500 0.400 0.300 0.200 0.100 0.050 0.025 0.010
P(Q/0.05% > x%;,) 0.5016 0.3981 0.3027 0.2006 0.0989 0.0516 0.0283 0.0117

where P(x%s > x%s.) = @, and the second row is the proportion of Q/0.05? that exceed
X35 o Cleatly, x}s approximates the distribution of Q/0.05% very well. See also Figure 2 for a
graphical comparison. Property 3 in section 2 concludes that 3, is an upper bound for Q/ o’

in this example. This is confirmed from the above simulation.

Instead of assuming that all manufacture errors are random, we now add some sys-
tematic errors as well. One way to do this is to assume that in (2.1), z;; are points on
new planes S! (i = 1,...,3) whose normal directions are v; = (0,0.04471018,—0.999)",
vy = (—0.998,0.06321392,0)*, and v3 = (0.07740155,—0.997,0)*. We repeat the above simu-
lation with ¢ = 0.05 and find the following results:

a 0.500 0.400 0.300 0.200 0.100 0.050 0.025 0.010
P(Q/0.05% > x35,) 0.9541 0.9267 0.8889 0.8232 0.6973 0.5742 0.4634 0.3309.

See also Figure 3 for a graphical comparison. In terms of testing the hypothesis stated in
section 2, H,: o? < 0.05% is more likely to be rejected than accepted. In other words, a
product with systematic manufacture errors will more likely be judged to have unsatisfactory
geometric quality by our method. Also, if a product has large undesirable manufacture
variation (¢ > 0.05), then according to property 1, it is likely that the product will be

rejected using our method.



Example 2. In this example, the assumed product is like a screw; see Figure 4. The top 5,
is part of a sphere with a radius equal to 1.5 unit. The main body S, is a cylinder. Since it
is possible that the locations and shapes of some curves are also important, we define S3 as
the bottom circle, Sy as the circle on top of the cylinder and Ss as the edge of S;. The last
three objects are one dimensional. Six evenly spaced points z;; are taken from each of S;,
i=1,...,5, and model (2.1) is again used to generate y;; for: = 1,...,5and j = 1,...,6.

For a range of o values, we repeat the simulation 10,000 times. For o = 0.05, we have

a 0.500 0.400 0.300 0.200 0.100 0.050 0.025 0.010
P(Q/0.052 > x3%;,) 0.4964 0.3952 0.2968 0.1966 0.0964 0.0478 0.0238 0.0097
P(Q/0.05% > x2,,) 0.5413 0.4374 0.3367 0.2269 0.1169 0.0591 0.0303 0.0119.

Because v = 646412412412 —6 = 42, one may expect x2, to be as a reference distribution.
However, x2, approximates the distribution of /0.05? better than x2, does. This is because
the product is invariant to rotation about z-axis. This example illustrates that the distribution

of Q(T, f?.) /o? also depends on the physical shape of the product.

Next, we introduce systematic manufacture errors into the product. Let z,;,5 = 1,...,6
be on a new sphere S} whose radius is 1.6 unit. We repeat the simulation and find the

following results:

a 0.500 0.400 0.300 0.200 0.100 0.050 0.025 0.010,
P(Q/0.05%* > x%;,) 0.9317 0.8958 0.8455 0.7669 0.6253 0.4896 0.3721 0.2515.

Also see Figure 6. In terms of testing the hypothesis stated in section 2, products with

systematic manufacture errors are more likely to be judged to have bad geometric quality.

4 Some Remarks

From our simulation study, we can see that our method is rather successful in detecting unde-
sirable large random or systematic manufacture errors. For the simple examples considered,

it takes a fraction of a second to do the computation for one simulation.
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Our simulation also reveals that x? is indeed a good approximation to the distribution of
Q(T, fZ) /a*. However, our preliminary study (results are not shown here) shows that x2 is
unlikely to be the true distribution. Some work is therefore needed to confirm that x2 is a

good approximation in general.

Related to the geometric quality assurance problem, it is desirable to know which partic-
ular part of the product is not of satisfactory geometric quality. A possible answer is to break
the total sum of squares into sums of squares due to each of S;,z2 = 1,...,m. Another more
formal possibility is to drop the points on S; in turn and fit the rest of data. This will reveal
which part of the product is of the worst quality. Further research is necessary to develop

diagnostic tools along these directions.

When the product has a sophisticated surface, the numerical calculation may not be as
simple as it appears in our simulations. However, we believe that this is not a difficult problem
for computer experts. We also believe that it should not be difficult to develop a computer
program to implement our proposed method.
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Appendix

Proof of Property 3. Following the notation in section 2.3 and model (2.1), and noting

that any vector lying on the plane S; must be orthogonal to v;, we can write
QT,R) = > 3 (Ry;+T — aivi)’

= Z Z(R(e,_, ei.),vi)® + Z Z Re;. — T,v;)?
i=1j=1 =1 j=1
where e;. = nj' 7, e;;. Thus,

me(T R) < ZZ R,(eij — €:.),v:)% + nzrin;ni(Roe;. —T,v;)?

=1 j=1
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where R, is any fixed rotation matrix. Clearly, the last two terms in the above inequality
are independent of each other. The first term has a chi-square distribution with degrees of

freedom Y7, (n; — 1).

Since R, is fixed, without loss of generality, we can assume that R, = I5. The solution for
T in the second term is then
X m m
T = (Z n;v.-vf)‘l(z nivivie;).
i=1 i=1
It is not difficult to verify that \/n;v}e;. are independent and identically distributed standard
normal random variables. Let y be the column vector with /n;vle;. as its ith component,
and let C be the matrix with n;v{(X7%, niv;vf)~1v; as its (i,)th element. Then the second
term becomes y*(I — C)y. Because the matrix I — C is idempotent, it follows that the second
term has a chi-square distribution with degrees of freedom equal to

tr(I-C) = m-— Z{nk'vi(z n;v;08) log}
k=1

=1

m m
= m—tr{d_ m(d_ niviv)) Tvevp} =m — 3.

k=1 =1
This proves Property 3.
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Figure 1: The simplex product, Example 1.
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Figure 2: The simulated density (the histogram) when the manufacture errors are equal to

the specified tolerance level 0.05, and the density for x25 (the solid line), Example 1.
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Figure 3: The simulated density (the histogram) when some systematic manufacture errors

are added to the simplex product, and the density for x5 (the solid line), Example 1.
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Figure 4: The screw-like product, Example 2.
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Figure 5: The simulated density (the histogram) when the manufacture errors are equal to
the specified tolerance level 0.05, and the density for x2; (the top plot), or the density for x2,
(the bottom plot), Example 2.
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Figure 6: The simulated density (the histogram) when the radius of the sphere is made 0.1

unit larger than designed, and the density for x2;, Example 2.
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