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ABSTRACT

An N x N Hadamard matrix can be used to construct a saturated two-level design with N runs
and N - 1 factors. Furthermore, if an interaction column of the matrix is not fully aliased with
any of the N - 1 columns of the matrix, it can be used as a supplementary column for studying
an additional factor. For some small Hadamard matrices studied by Plackett & Burman (1946),
the number of such interaction columns is very large, thus allowing the construction of
supersaturated designs whose number of factors far exceeds the run size. A general method of
construction along these lines is proposed. Efficiency of the constructed designs is studied by
using three criteria.
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1. INTRODUCTION

Supersaturated designs allow more factors than the run size to be studied. For
an N x M design matrix to simultaneously estimate the effects of M factors, we
must have N — 1 > M, where N is the run size. In some practical situations runs
may be expensive and the number of factors to be studied can be large. It may then
be desirable t‘o use a supersaturated design for screening pﬁrpose. In many experi-
ments, particularly those in engineering investigations, the numbeir of factqrs with
relatively large effects is small, often not exceeding 5 or 6. Under this assumption
of effect sparsity, supersaturated designs can be used effectively for studying a large
number of factors and still allowing the important ones to be estimated simultane-
ously. Booth. & Cox (1962) first adopted this approach in constructing systematic
supersaturated designs. Previously Satterthwaite (1959) suggested the use of ran-
dom balance designs, which were criticized in the accompanying discussion. Watson
(1961) suggested an alternative idea by groupiﬁg the factors into sets of factors.
A much smaller design is used to study the grouped factors. If a grouped factor
ié found significant in the analysis? then the factors in the group will be studied
in a subsequent experiment. Otherwise they will be screened out. Although it is
rhore acceptable than the random balance design, it requires strong assumptions to
ensure that a grouped factor is significant if and .only if at least one of its factors is
significant. In practice such assumptions are often much stronger and more difficult

to verify than the effect sparsity assumption.



In this paper we construct supersaturated designs by utilizing partially aliased
interactions. The efficiencies of the constructed designs are high when effect spar-
sity holds. A good example of partially aliased interactions is given by the 12-run
Plackett-Burman design in Table 1. Let 75 denote the column obtained by multi-
plying éntry—wise the i** and j** columns. It is not equal to any of the 11 columns
of the matrix and has 1/3 or — 1/3 correlation with each of the 11 columns. In
factorial experiments zj is called the interaction between factors ¢ and j. If 45 has
a correlation 1 or — 1 with one of the 11 columns, say column k, then it is said to
be fully aliased with factor k. Otherwise it is partially aliased. Note that for 2-level
designs defined by a group of defining contrasts (Kempthorne, 1973), any interaction

is either orthogonal or fully aliased with any other main effect or interaction.

(Table 1)

The idea of the proposed construction is simple: supplement a saturated design
with columns defined by its partially aliased interactions. The difficulty is what
partially aliased interactions should be chosen. In §3 we give one such method and
in §4 we elaborate and improve the method in the construction of 12-run and 20-run
design that can accommodate up to 66 and 124 factors respectively. Thre¢ criteria
for design efficiencies are given in §2. In §5 we compare our designs with those
constructed by Booth & Cox (1962) and Lin (1992). Analysis of data from such

experiments is briefly discussed in §6.



2. DESIGN CRITERIA

To compare different supersatumted designs, Booth & Cox (1962) proposed the
following criterion. Let s;; be the sum of cross products between columns : and
j of a design. Define E(s®) to be the average of s over all pairs (i,j). Since
E(s?) = 0 for orthogonal designs, it is a measure of non-orthogonality under the
strong assumption that only tvs%o out of the M factors are active. In this paper we
prefer to use E(s?)/N? since it is the average of squared correlations over all pairs
of columns. This criterion is equivalent to a determinant criterion commonly used
in optimal designs. Let X;; be the N x 2 matrix consisting of columns ¢ and j. If

the entries of each column are either 1 or —1, then lX;-’; Xij

= (N? — s};) and its
average over all pairs equals (N? — E(s?)). Therefore E(s?)/N? can be interpreted
as a measure of D-efficiency loss relative to orthogonal designs.

We can extend this criterion to situations with more than two active factors. Let

f be the number of active factors. Define the D-criterion
1/f (M
/ (f ) : ' (2.1)

where the summation is over all possible N x f submatrices X; of the full design

1
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matrix and M is the total number of columns in the design matrix. Taking the f*®
root in (2.1) makes D; a-more realistic measure of efficiency. An alternative to (2.1)

is the A-criterion given by
1 1 -t (M -
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Since A; > 1 in general and equals 1 for orthogonal designs, we can also use Ay —1
to measure nonorthogonality. If one X7 X; is singular, A; becomes infinite while Dy
is still well-defined. Since in reality only sorﬁe subsets of f factors are active, Dy is
a more reasonable criterion in case one or Iﬁore XT X; are singular.

Booth & Cox (1962) observed an interesting connection between the Ay and the
E(s?) criteria. Assuming that |s;j| /N are sufficiently smaller than 1 for all : and
j, they showed that, in our notation, A; ~ 1 + (f — 1)E(s?)/N?. A significant
implication of this approximation is that, although the E(s?) criterion is based on
f =2, (f —1)E(s?)/N? can be used as a measure of A-efficiency loss for any f.
However, as demonstrated in §4, this approximafion can be poor when some |s;;| /N

are not small, which is more likely to occur for larger f.

3. A GENERAL CONSTRUCTION METHOD

A Hadamard matrix is an N x N orthogonal matrix of 1 and —1, where N must
be a multiple of four. Without loss of generality, one of its columns consists of all
1’s. Since this column cannot be used for studying factors, for design purposes it is
removed from the matrix. We call the remaining N X (N — 1) matrix a Hadamard
design. Denote its N — 1 columns by ¢1, ¢z, ..., ¢y—1. An interaction column c;;
is defined to be the entry-wise product of ¢; and ¢;, which we use as a column of
a supersaturated design. Plackett & Burman (1946) gave Hadamard designs for
various values 'of N and discussed their use in factorial experiments. We will refer
to them as PB designs. The smaller ones with N = 12, 20, 24 and 28 are more
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popular among experimenters. Many of the PB designs can be obtained by cyclic
generation of the first row. Take the 12-run design in Table 1. Rows 2 to 11 are
obtained from cyclically permuting the signs in the first row. Then add the row of
—1’s as the last row. Similarly the 20-run PB design can be constructed by cyclic
generation from its first row (+ -+ 4+ ————4+ -4+ —++++——+).

Among the ¢; and ¢, the pairs (ci, ¢;), (¢, ¢j), (¢ij, cix) are orthogonal, where
i # 3 # k. For computing the E(s?) value, we have to evaluate c?ckg and cichkl,
where ¢ # j # k # {£. For cyclic designs, there is a cross balance among the c¢;’s.
Therefore we need to compute these values only for z = 1.

From an N x (N —1) Hadamard design, we can construct an N x M supersatu-
rated design for N < M < 2N -3, Whid’l consists of ¢y, ..., cy—1 and (M — N +1)
columns chosen from the N — 2 interaction columns ¢;,;, where j # ¢, and 1, is fixed.
For cyclic designs, we can choose i, = 1 without loss of generality. For noncyclic

cF Ciojl N-1! over i and j. See the discus-

designs, we can choose 7, to minimize max
sion after (3.2). From the previous discussion the only pairs of columns that may
be non-orthogonal are (c;, Cio'j) where i # i, # j. The E(s?) value of the proposed
design has a simple formula based on the following fact:

N-1

ST (cf cjp)? =N? forany j#k. (3.1)

i=1

Its proof is simple. Since the ¢;’s form an orthogonal basis, the left expression is

equal to N||¢jx||? = N2



Since the other pairs of columns are orthogonal, we have

B~ r - w4y (%) 52)

for the proposed designs with N < M < 2N —3. Even for M = 2N -3, E(s?)/N? =
(2N —3)~!, which indicates a small loss of efficiency.
Since E(s?) is a constant independent of the choice of design, further discrimi-

cf ¢;,;| N~! over all possible 1

nation may be made by examining the maximum of
and j. If N is a power of two and the columns ¢;’s form a subgroup, i.e., any cji
is equal to one of the ¢;’s, the maximum value is N. Since ¢; ; is fully aliased with

one of the ¢;’s in this case, they cannot be used to construct supersaturated designs.

Among designs with max |c! ¢; ;| N™' < 1, in view of (3.1), we want the values of

with ¢ # i, # j to be as evenly distributed as possible. The most extreme

T o .
c’i c"o]

4

case is the 12-run PB design which has N~! |czT Cioj| = 75 = 3 for any @ # i, # j.

For the 20-run PB design, out of the 19 N !

. + 3
values, 1 =1, ..., 19, one is %,

czT Cioj
sixteen are %, and two are 0. Although the maximum is %, it only occurs once. The
rest take % or 0. There are two more Hadamard matrices of order 20 constructed
by M. Hall Jr. From them we can construct supersaturated designs with N = 20

and 20 < M < 37. It turns out that each of them has the same distribution of the

N.—l

¢l ¢c;,;| values as the 20-run PB design. For the 24-run PB design, out of the

23 values of N7!|cf ¢;,;|, nine are 3 and the rest are 0. For other PB designs, these

values can be found in an unpublished paper by Lin and Draper.
To accommodate more than 2V —3 columns, we must understand the correlation
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structure between ¢;; and ¢k, ¢ # j # k # £. Since this can be quite tedious for
general designs, we will not consider it here. Only the 12-run and 20-run designs

are studied in detail in the next section because of their nice correlation structures.

4. SUPERSATURATED DESIGNS OF 12 and 20 RUNS

For the 12-run PB design, it is easy to show that |¢f cjk| = cg;. cre| = 4 for any
i # 7 # k+#{, and = 0 otherwise. Therefore any supersaturated design consisting
of the ¢;’s and some of the c;;’s has its E(s?) value equal to 16p, where p is the
percentage of non-orthogonal pairs of columns. A good design should minimize
the value of p. The following construction appears to give the best values of p
for designs with M columns, 12 < M < 66. Arrange the 66 columns by taking
1, ..., c11 as the first 11 columns and lexicographically ordering the remaining 55
interaction columns c;;, i.e., ¢;; precedes cg, if ¢ < k,or 1 = k and j < {. For 12 <
M < 21, it coincides with the general construction in §3 and p=9(M —-11)/ (Aé[)
For 22 < M < 30, the columns consist of three groups: (i) ¢, 7 = 1, ..., 11,
(i) ey, ¢ = 2, ..., 11, (ili) ¢, @ = 3, ..., M —19. Each column in (ii) and
(iii) is non-orthogonal to nine columns in (i). Each column in (iii) is also non-
orthogonal to eight columns in (ii). The total number of non-orthogonal pairs is
(10 + M —21) x 9+ (M —21) x 8 and p = {90 + 17(M — 21)}/ (]‘24) Similarly,
for 31 < M < 38, the columns consist of four groups: (i) and (ii) as before, (iii)
Coiy 1 =3, ..., 11, (iv) ¢34, @ = 4, ..., M —27. By using the same argument, the total
number of non-orthogonal pairs is (10+9+ M —30) X9+ (9+M —30) x8+(M —30) x 7
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and p = {243 + 24(M — 30)}/ <A2/I) The p values for the remaining cases can be
obtained similarly.

The ordering of interaction columns can be justified by a simple argument. Con-
sider the 22" factor cg3. Once it is introduced, we should bring in the other cy;’s
because they are orthogonal to each other, and the correlation structure of c,; with
those in (i) and (ii) is the same as any other ¢;;. If, instead, c45 were used as the
23 factor, it would introduce one additional nonorthogonal pair between cy3 and
css. The same argument applies to the subsequent factors.

In Figure 1 we plot the efficiency loss E(s?)/N? = £ p for 12 < M < 66. It is
surprisingly small. For M = 66 , it is less than 8%. We also plot the A-efficiency loss
Ay —1 and its approximation (f —1)E(s?)/N? for f = 4 and 5. The approximation
consistently underestimates the Ay — 1 value and the error becomes larger as f
and M increase. For f = 3 which is omitted in Figure 1, the approximation is
more satisfactory and the error never exceeds 23%. Since As is finite, any five
columns of the designs are linearly independent. In Figure 2 we plot the Dy efficiency
for f = 3,4 and 5. The Dy-efficiency loss is smaller than the Aj-efliciency loss.
Recall that the Af or Dy efficiency is relative to a hypothetical orthogonal design
Whiéh does not exist for M > N. Therefore either measure of efficiency loss is an
upper bound. ‘As remarked in §1, the number of active factors f is usually small in

practice. Therefore the small efficiency loss of the proposed design strongly suggests

its effectiveness in screening.



(Figures 1 & 2)

Next we consider the construction of supersaturated designs with 20 runs. As in

83 weuse I, = {c;; 1 =1, ..., 19} and -
L={ci i=2, ..., 19} (a1

for the first 37 columns, where ¢; are the columns of the 20-run PB design. To choose
the remaining columns, we need to understand the correlation structure among the
¢;’s and cjx’s. As pointed out in 83, the distribution of Icfcjki overt =1, ..., 191is
independent of j and k. Therefore we need only to examine the value of lcficjkl for
i # j # k # 1. The cyclic property of the 20-run PB design ensures that we can
choose the first subscript of ¢ to be 1. Out of the (138) = 816 triplets (¢,7,k), 48
take the value 12 and the remaining ones take the value 4. These 48 triplets are:
237,249, 25tg, 2619, 285, 2tots, 2t1ts, 2t4t7, 3413, 35t,, 3616, 38t§, 39t5, 3tots, 3t1t4, 4517,
478, 4toty, 4t tg, 4t4ts, 4tsty, 569, 5710, 585, Sisty, Slgty, 6Tts, 6814, 61ots, 6111,, 6i7ts,
T9t,, Ttite, Ttats, Thate, Stoty, Statr, Stats, Otots, Ot1ts, Wtats, Mate, tobrte, titsty, tatsts,
t2i6t7, tatgto, tatste, where t; denoteé the (10 +2)t® column of the 20-run PB design.
They provide the solution to the following question: find jk such that Ici';cjkl =4
for all 7. There are only nine of them: 2t3,3t7,46, 5t1, Tte, 89, tots, tate, tsts. Based on
this information we are ‘ready to construct designs with M > 38. As in the 12-run
case we can use Cy, ¢ = 3, ..., 19, for 38 < M < 54, but unlike the former, the

8th

ordering of c,; matters. It is obvious that 2¢3 should be the 38" column since it has
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the smallest correlations with the columns in (4.1). For simplicity we will drop ¢
and only retain the subscript in the following definition of groups of columns. So
we use

II = {2ty, 2, i #£15, >3} (4.2)

for the 38th to 54t columns. For the next 16 columns we can use
II1T = {3t;, 3t4, remaining 3¢’s }.

The choice of 3t; as the first column in 11 is obvious. We choose 3t; as the next
column because it has the smallest correlations with the columns in 11, which follows
from |k, c| = |3, c1(i-1)| = 4 for all i > 3. By elaborating on this argument, we

can choose the remaining columns up to M = 124 in four groups:

v = {46,4tg,4t5, remaining 44’s},
V = {5t,57,5t9,5t, remaining 5i’s},
VI = {89,8t,86,8t4,8ty, remaining 8¢’s},

VII = {tgtg,t26, tzte, tgtl, t2t3, tgtg, remaining tzi,S}.

In VII the first six columns are chosen so that the :*® column has the smallest
correlations with the columns in the i*" group. The same criterion is used for
choosing the first five columns in VI and so forth.

By exploiting the correlation structure we can further improve these designs.
Take, for example, M = 39. Choosing 3t; for the 39* column gives a smaller E(s?)
value than choosing 23 or other 2i’s as in (4.2). Although 23 is orthogonal to 2t3, it
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has correlation 3/5 with 17 in the group I;. On the other hand, 3¢; has correlation
1/5 or —1/5 with the columns in I; and with 2¢5. By following the same argument,
we can choose Ttg, tots, 23 for the 40" to 4274 columns. The resulting designs for
M < 42 are better than the designs given in (4.1) and (4.2) in terms of the E(s?), A;
and Dy criteria with f = 3,4,5. In Figure 3 we plot the vaiues of Ay and Dy for

f =3,4,5. The efficiency loss appears to be very small.

(Figures 3)

5. COMPARISON WITH OTHER DESIGNS

Lin (1992) proposed an ingenious method for constructing supersaturated designs
of order N x M with M < 2N —2. Starting with a 2N x (2N —1) Hadamard design,
choose a column as the branching column and retain only the N rows that have +1
in the branching column. Then the 2N —2 columns other than the branching column
form a supersaturated design of order N x (2N —2). If the original Hadamard design
is obtained from cyclic generation, any column can be used as the branching column.
Otherwise a complete search is warranted. For M < 2N — 2, the best M columns
can be found by computer search. By comparison, Lin’s designs are more flexible in
the choice of run size because our construction requires the existence of Hadamard
matrix of order N while his requires the same for 2/N. On the other hand ours can

accommodate more than 2N — 2 factors as illustrated in §4.
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In Table 2 we compare these two classes of designs and those by Booth & Cox
(1962) using the E(s?) criterion. We do not use E(s?)/N? for comparison since
E(s?) values are given in the tables of Booth & Cox‘ and Lin. The table does not
include designs with N = 20 since they are not given in either paper. For N = 12
the designé in the last column (under “Wu”) are those constructed in §4. For N _ 24
and M = 30 and 45, the designs under “Wu” are those constructed in §3 based on
the 24-run PB design and ¢, = 1. For M = 46, we use the 2 X 5 interaction column

~

as the 46" column.

(Table 2)

The designs by Booth & Cox have larger F(s?) values than fhe other two classes.
For M < 2N — 3, our designs are at least as good as Lin’s designs. For smaller M
ours are better. The most interesting findings are: (i) Lin’s design for M = 2N — 2
has the smallest value, (i) Lin’s designs for M = 2N —2 and 2N — 3 have the same
E(s?) value. Both deserve further investigation. The interior performance of our
designs for M = 2N —2 can be explained in part by its construction. The (2N —2)th
column uses a 2 X k intervention for some k > 2, which has nonzero correlations

with the majority of the 1 x j interactions in the N*® to (2N — 3)*® columns.
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6. ANALYSIS

Columns of a supersaturated design are not mutually orthogonal. Therefore stan-
dard analysis techniques for orthogonal designs, e.g., half-normal plots and analysis
of variance are not applicable. Although we cannot estimate all the factor effects
simultaneously, we can use forward selection in regression analysis to select a model
(or several models) consisting of a smaller number of factors. Alternatively we
can use subset selection procedures such as C,. Knowledge on the dependency of
columns of the supersaturated design will put an upper bound on the subset size.

If only a small number of factors are identified as important, we can go beyond
screening by entertaining some interactions among the factors identified. One such
analysis strategy is suggested by Hamada & Wu (1992). However, by the nature of |
our construction some interactions cannot be entertained. Take, for example, the
12 x 21 design in §3 and §4, whose columns consist of 1,...,11 and 12,z = 2,...,11.
Suppose that factors 1 and 2 turn out to be significant and it is desired to study
their interaction. It would not be possible because it is fully aliased with the 12th
factor. To minimize the chance of full aliasing, it is advisable to assign column 1
to a factor leé,st likely to be important. Similarly, if as in §4, 2i,7 = 3,...,11 are
introduced as the next 9 factors, column 2 should be assigned to a factor thought

to be less important.

14



ACKNOWLEDGEMENTS

I thank Boxin Tang for computational assistance. Research supported by the
Natural Sciences and Engineering Research Council of Canada, General Motors of

Canada, and the Manufacturing Research Corporation of Ontario.

REFERENCES

Booth, K.H.V. & Cox, D.R. (1962). Some systematic supersaturated designs. Tech-

nometrics 4, 489-95.

Hamada, M.S. & Wu, C.F.J. (1992). Analysis of designed experiments with com-

plex aliasing. J. Quality Technology 24, 130-7.

Kempthorne, O. (1973). Design and Analysis of Erperiments, Krieger:Malabar,

Florida.

Lin, D.K.J. (1992). A new class of supersaturated designs. Technical Report,

University of Tennessee. To appear in Technometrics.

Plackett, R.L. & Burman, J.P. (1946). The design of optimum multifactorial ex-

periments. Biometrika 33, 303-25.

Satterthwaite, F. (1959). Random balance experimentation. Technometrics 1,

111-37 (with discussion).

Watson, G.S. (1961). A study of the group screening method. Technometrics 4,

371-88.

15



Table 1. A 12-run Plackett-Burman design

1 2 3 4 5 6 7 8 9 10 11
1 1T -1 1.1 1 -1 -1 -1 1 -1
-1 1 1 -1 1 1 1 -1 -1 -1 1
1 -1 1 1 -1 1 1 1 -1 -1 -1
-1 1 -1 1 1 -1 1 1 1 -1 -1
-1 -1 1 -1 1 1 -1 1 1 1 -1
-1 -1 -1 1 -1 1 1 -1 1 1 1
1 -1 -1-1 1 -1 1 1 -1 1 1
1 1 -1 -1 -1 1 -1 1 1 -1 1
1 1 1 -1-1-1 1 -1 1 1 -1
-1 1 1 1 -1-1-1 1 -1 1 1
1 -1 1 1 1 -1 -1 -1 1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
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Table 2. E(s?) values of some designs due to Booth & Cox (1962), Lin

(1992), and the author.

(When no design is available, it is indicated by — in the table.)

N =12

M BC Lin Wu

16 7.06 6.27 6.00

18 968 659  6.59

21 - 6.86  6.86
22 — 6.8  T7.40
24 10.26 - 8.17

N =24
M BC Lin Wu

30 12.06 11.59 9.27
45 - 12.80 12.80

46 - 12.80 13.29
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Efficiency loss

f=2

12 21 30 39 48 57 66

Figure 1. Aj-efficiency loss (indicated by — ) of 12-run designs with M factors

and its approximation (f — 1)E(s?)/N? (indicated by ...).
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Figure 2. Dy-values of 12-run designs with M factors.
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