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ABSTRACT

Fractional factorial (FF) designs with minimum aberration are often regarded as the best designs
are commonly used in practice. There are, however, situations in which other designs can meet
practical needs better. A catalogue of designs would make it easy to search for "best" designs
according to various criteria. By exploring the algebraic structure of the FF designs, we propose
an algorithm for constructing complete sets of FF designs. A collection of FF designs with 16,
27, 32 and 64 runs is given.
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1 Introduction

An outstanding problem in experimental design theory is the choice of “good” two-
level and three-level fractional factorial designs which are commonly used in practice.
A key question is how to choose a fraction of the full factorial design for a given run
size and number of factors. Box and Hunter(1961) first approach the problem by
introducing the notion of resolution as a goodness criterion for designs. Since designs
of the same resolution may not be equally good, Fries and Hunter(1980) suggest
the minimum aberration criterion to further discriminate designs. The minimum
aberration criterion was already used implicitly in the construction of designs in
the classic work at the National Bureau of Standards(1957, 1959). As argued and
demonstrated in Section 2, when there is no design with resolution V or higher,
maximum resolution and minimum aberration do not always lead to best designs.
Different situations call for use of different designs. Since we cannot anticipate all
the goodness criteria for designs, it seems impractical to give optimal designs for each
criterion. A more realistic approach, adopted in this paper, is to give a catalogue
of designs which are judged to be good by the minimum aberration criterion. Qur
rationale is that useful designs are in most cases good according to the minimum
aberration criterion. For designs with 16 and 27 runs, we give a complete catalogue.
For 32 and 64 runs, the number of designs is too large to be all included. Only
five to ten designs are given in most cases. An algorithm for enumerating designs is
presented in Section 3. Some comments on the designs in the catalogue are given in

Section 4.

2 Definitions and Motivations

A s™* fractional factorial design, which has n factors of s-levels and 8™ * runs, is



uniquely determined by k independent defining words. A word consists of letters
which are names of factors denoted by 1,2,...,n or A, B,.... The number of letters
in a word is called word-length and the group formed by the k defining words is the

defining contrast subgroup. The vector
W = (Ay,...,4,) (1)

is called the word-length pattern, where A; denotes the number of words of length
¢ in the defining contrast subgroup. The concept of resolution, proposed by Box
and Hunter (1961), is defined as the smallest » such that A, > 1. It is a useful and
convenient criterion for selecting practical designs.

Goodness of a design, however, cannot be fully judged by its resolution. Consider,

for example, the following two 2772 designs:
dy : I = 4567 = 12346 = 12357,

dy : I = 1236 = 1457 = 234567.

Both have resolution IV, but have different word-length patterns
w(d) = (0,0,0,1,2,0,0), and W(d,) = (0,0,0,2,0,1,0).

The design d; has three pairs of aliased two-factor interactions (2fi’s), e.g., 45&67,
46857, 47&56, while d, has six pairs. This is because d; has one 4-letter words while
d; has two. To further characterize or discriminate fractional factorial designs, Fries
- and Hunter (1980) propose the following criterion. For two designs d; and d, with r
being the smallest value such that A,(d;) # A.(dz), we say that d; has less aberration
than d; if A,(d1) < A.(d>). If there is no design with less aberration than d;, then d;



has minimum aberration(MA). Obviously, for given n and k, a MA design always
exists. However, we do not know whether it is unique in general. See Chen (1992).

For small number of factors (up to 11) and run size (up to 128), Box, Hunter and
Hunter (1978, p.410) provides a useful catalogue of 2-level fractional factorial designs
with minimum aberration. Franklin (1984) constructs more minimum aberration
designs. Chen and Wu (1991) and Chen (1992) investigate some theoretical properties
of MA designs and construct MA 2"~ * designs for k¥ < 5 and any n.

Both definitions of resolution and minimum aberration are based on the hierar-

chical assumption:

(i) lower order effects are more important than higher order effects,
(2)

(i1) effects of the same order are equally important.
The minimum aberration criterion can rank-order almost any two designs. In general
it is a good design measure unless these two conditions are grossly violated. However,
in some practical situations described later, the hierarchical assumption does not
hold and better designs can be found. The second but more subtle point concerns
its reliance on the word-lengths of the defining contrasts. Although minimizing the
numbers of short-length words usually leads to the estimability of more lower order
effects or under less stringent assumptions, combinatorial complexity of the defining
contrasts makes the relation between lengths and estimability less certain. This point
is best illustrated by the following example (due to C.F.J. Wu).

Consider the minimum aberration 2°~* design, which has the word-length pattern

(0,0,0,6,8,0,0,1,0) and the defining contrast subgroup

I =1236 = 1347 = 1389 = 2467 = 2689 = 4789



= 12458 = 12579 = 14569 = 15678 = 23459 = 23578 = 34568 = 35679
= 12346789 .

Under the relative weak assumption of negligible 3-factor and higher order interac-
tions, all the main effects and the eight 2fi’s (15, 25, 35,45, 56,57, 58, 59) are estimable.
(Note that 5 does not appear in any of the words of length four.) In Wu and Chen
(1992), any 2fi that is not aliased with any main effect or other 2fi’s is called clear.
So this design has eight clear 2fi’s. Consider then the second best design in terms of
the aberration criterion, which has the word-length pattern (0,0,0,7,7,0,0,0,1) and

the defining contrasts

I =1236 = 1278 = 1347 = 1468 = 2348 = 2467 = 3678
= 12459 = 13589 = 15679 = 23579 = 25689 = 34569
= 123456789 .

Although it has seven words of length four, one more than the MA design, both 5

and 9 are missing in these seven words. Therefore it has 15 clear 2fi’s,
(15,25, 35,45,56,57,58,59,19,29, 39,49, 69, 79, 89).

From the estimation point of view, it is far superior to the minimum aberration design.
This illustrate the need of finding designs other than MA designs.

In some experimental situations the assumption 2(ii) does not hold. As argued
in Wu and Chen(1992), there are practical situations in which certain interactions
can be a priori identified as being potentially important and should be estimated
clear of each other. In order to accommodate a set of specified interactions, one may

have to choose a design with worse aberration. For example, consider the choice of



a 272 design, in which the following interactions (13, 14, 16,23, 34, 35, 36,45,56) can
be estimated clear of each other and of the main effects (assuming the other 2fi’s
are negligible). By using a graph representation Wu and Chen (1992) show that the
resolution III design with I=125=2346 meets the requirements while the MA design
with I=1235=2346 does not. Broading the choice of designs will make it possible to
find flexible graph‘s otherwise nonexistent.

There is indeed a whole class of problems that do not satisfy the assumption 2(i)
and 2(ii). In parameter designs(Taguchi, 1987), the factors are divided into two types:
control factors and noise factors. Since the noise factors are not controllable except
when special efforts are made, estimability of the noise main effects is usually less
important than that of the control-by-noise interactions. This violates 2(i). Simi-
larly estimability of the noise-by-noise interactions is less important than that of the
control-by-noise interactions, which violates 2(ii). As a result, neither the resolution
nor the aberration criterion can guarantee a good statistical design for this type of
experiments. A simple example is used to illustrate the point. Consider the resolution
IIT design d given by I=ABCr=1st=ABCst, and the resolution IV deSign d, given
by I=ABCr=BCst=Arst, where A, B, C are three control factors and r, s, t are three
noise factors. Under the assumption that 3-factor and higher order interactions are
negligible, A, B, C, As, Bs, Cs, At, Bt, Ct are estimable in d;, whereas only the main
effects A, B, C, 1,5, t are estimable in dy. Since it is much less important to be able to
estimate the three noise main effects r, s, t in d; than to estimate the six control-by-
noise interactions in d;, design d; is preferred in spite of its lower resolution. Further
discussion on planning techniques for parameter designs can be found in Shoemaker,
Tsui and Wu(1991).

The overall conclusion is that, practical situations can be different from one to the
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other and they may sometimes contradictory. Using a single criteria such that the
minimum aberration criterion for selecting designs exclusively cannot meet practical

needs. It is hence desirable to collect good designs in a catalogue.

3 Construction Method
3.1 Basic Idea

If a design d; can be obtained from d; by relabelling the factor numbers in the
defining contrast subgroup or by change of signs, we say d; is isomorphic to d;. Since
isomorphic designs are essentially the same, it is sufficient to include only one of
them in any catalogue of designs. To catalogue all possible designs, a straightforward
approach does not work. For example, in a 32(=2°) run design with 15 two-level
factors, there are 5 independent factors, and 10 additional factors can be defined in

3%%) = 5,311,735 ways. It is impractica.l to identify isomorphic designs among all
5,311, 735 designs because of the difficulties in discriminating between non-isomorphic
designs. This number becomes much larger as the run size and number of factors
increase. By applying some algebraic and combinatorial methods, we are able to
reduce the computations significantly. The basic idea of the proposed sequential
construction method is to break the huge amount of combinatorial computations into
a sequence of much smaller computations. At each step, the total number of designs
are significantly reduced by keeping only non-isomorphic designs.

The 2" * designs given in Section 2 can be viewed as submatrices of regular
Hadamard matrices. A regular Hadamard matrix of order 29 is a 27 x 2? orthogonal
matrix of £1 with the additional property that the entrywise product of any two
columns is among the 27 columns. By replacing —1 by 1 and 1 by 0 and using addition

over GF(2), these 27 columns form an elementary Abelian group over GF(2), where
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GF(2) is the Galois field with two elements. Except for the column corresponding to

the identity element in the group, we may write the remaining columns as
C={C, ,C2_1}. 3)

Within C, we can find ¢ independent columns that generate all the columns in C.
A 2% design can now be viewed as a subset of C with n columns. Out of the
n columns, n — k(= ¢) are independent columns and the remaining k¥ columns can
be generated from the n — k columns through the defining relations in its defining
contrast subgroup. A similar matrix representation for three-level designs can be
defined. The only difference is that its columns are grouped into pairs. For each pair
of columns, one is a multiple of the other modulus three. This simple representation
for 2"~* and 3"* designs will be employed in the tabulation of designs.

Let Df,k be the set of non-isomorphic s"* designs with resolution > R, and
D,y = D,I‘I,;' for convenience. For given R,k, and Df’k we construct Df+1,k 41 by
assigning the additional factor to one of the unused columns of each design in Df, PR
There are at most (s"* — 1)/(s — 1) — n ways to assign this factor. Therefore, we

obtain a class of designs, denoted by Df_,_l’k +1 With cardinality
{ # of designs in D}, } x [(s"™* = 1)/(s — 1) — n].

Clearly, Dfﬂ'k +1 O D, 441 However, some designs in Dfﬂ'k 41 are isomorphic and
some may have resolutions less than R. To construct DY, ., we need to eliminate
these redundant designs. It is easy to eliminate designs with resolution smaller than R.
To identify isomorphic designs, we divide all designs into different categories according
to their word length patterns and letter patterns. The letter pattern counts the
frequency of letters contained in the words of different lengths (Draper and Mitchell,
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1970). Note that same letter pattern implies same wordlength pattern. Designs with
different letter patterns are obviously non-isomorphic. Therefore we only need to
examine the isomorphism of designs with the same letter pattern. This is done by
using the following result in Chen (1992). Two designs of d; and of d, are isomorphic

if there exists a one to one map M from the columns d; to the columns d, such that
M(Ci +Cia+ -+ Cy (mod 2) ) = M(Ciyy) + M(Ciz) + -+ + M(Cy) (mod 2)

for any ! and C;;,Ciz,--+,Cy € d;. After the elimination of isomorphic designs, we
reduce Df+1,k+1 to DB, .-

Note that designs with the same letter pattern are not necessary isomorphic. See
Chen and Lin (1991), which disproves a conjecture of Draper and Mitchell (1970).

This procedure will not only give us the complete set of s("t1)=(*+1) designs,
but also reduce the amount of computations for the subsequent step of construct-
ing s(*+2)-(k+2) designs.

The rationale of this method is supported by the following facts.

FacT 1. (Completeness) Dn+1,k+l D Dpt1et1-

FAcT 2. (Monotonicity of resolution) Dfﬂ,k“ D DE -

The proofs are straightforward and omitted.

3.2 Implementation
Isomorphism Check:
Our approach to isomorphism check uses an idea which is illustrated by a simple
example. To save space, the technical details are not given here.
Let us consider the 2772 designs, in which a, b, ¢, d denote four independent columns

of the regular 2* x 2* Hadamard matrix. The set of columns C is then
{a,b,ab,c,ac,bec,abe,d,ad,bd,abd, cd,acd, bed, abed}.
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To check isomorphism between the two 27~ designs:

d, = {a,b,c,d,ab,abd,bed},
dy = {a,b,c,d,ac,acd,abcd},

which have the same word-length pattern and letter pattern, we apply the following

scheme:

1. Select four independent columns from d,, say, {a,b,ac,acd}. There are (%)

choices.

2. Select a relabeling map from {a,b,ac,acd} to {A4,B,C,D}, ie, A =4a,B =
b,C = ac, D = acd. There are 4!(= 24) choices.

3. Write the remaining columns {c,d,abcd} in d, as interactions of {A, B,C, D},
i.e.,c= AC,d = CD,abcd = BD. Then d; can be writtenas {A, B,C,D,AC,CD,BD}.

4. Compare the new representation of d; with that of d;. If they match, d; and
d, are isomorphic, and the process stops. Otherwise, return to step 2 and try
another map of {4,B,C,D}. When all the relabeling maps are exhausted,

return to step 1 and find another four columns.

If two designs are isomorphic, an isomorphic map will be found eventually. If two
designs with the same letter pattern are nonisomorphic, it requires a complete search
of relabeling maps. Fortunately, this happens rarely in our experience.

The isomorphism check for 3-level designs is similar but slightly more complicated.

The details are omitted.

4 Tables of Designs
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Using the method described in the last section, we obtain complete collections of
designs with 16, 27, and 32 runs. We do not include 8- and 9-run designs because
their number is small and can be found in standard texts. Since the total number
of 64-run designs is too large, we only keep those with resolution IV or higher in the
computer search. To save space, for 32 and 64 runs, we present only five to ten designs
in most cases. The complete catalogue is available upon request. These designs are
not chosen exclusively according to the minimum aberration criterion. Designs with
worse aberration may be judged to be better by other properties, e.g. the number of
clear 2fi’s.

For each run size, we put the column set C (see (3)) in Yates order. The column
numbers of the independent columns are indicated by bold face. A 2"~* design is
given by a subset of n columns of C, consisting of n — k independent columns and &
additional columns. Only the latter are specified in the tables. For clarity, we call it
design n-k.i in the tables, where i denotes the i-th 2% design in the catalogue. The
word length pattern and the number of clear 2fi’s are also provided. To save space,
at most five non-zero components of the word length patterns are given. Also, we use
the notation 19 — 22 for columns 19 to 22. The three-level 27-run designs are given
in the same vein. Note that in the corresponding design matrix, the three levels are
denoted by 0, 1 and 2.

Usage of the tables is illustrated by the following example.

Ezample. 2572 fractional factorial design

The columns set C is presented in Table 1 with independent columns {1,2,4,8}.
The first 26~2 design in the table is {7, 11}, i.e., the design conmsists of columns
{1,2,4,8,7,11}. To find the defining words, we name the corresponding factors A, B,
C, D, E, F. Column 7 is the sum of columns 1, 2, and 4 (mod 2), i.e. the generator
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for factor E is E = ABC'. Similarly, the generator for factor F is ¥ = ABD.

Some comments on the tables:

1. If a design with resolution V or higher exists, we do not list any designs of

resolution III or IV.

2. Among resolution IV designs, those with large numbers of clear 2fi’s are not nec-
essarily good according to the minimum aberration criterion. This phenomenon

is especially pronounced for 64-run designs with n=14 to 17.

3. For the 32-run designs with n=10 to 16, none of the resolution IV designs has

any clear 2fi’s.

4. The numbering of designs is not strictly according to the minimum aberration
criterion. Designs with worse aberration but with a much larger number of clear
2fi’s may be placed ahead of others with less aberration. For example, designs

14-8.4 and 14-8.5 have worse aberration than designs 14-8.6 to 14-8.10.
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Table 1: Design matrices for 16, 32 and 64-run designs.
(For 16-run designs, it consists of the first 4 rows and 15 columns; for 32-run
designs, it consists the first 5 rows and 31 columns, and for 64-run designs,

it is the whole matrix. Independent columns are numbered 1, 2, 4, 8, 16 and

32.)

1 23456 7 8 910111213141516171819 2021

10101010101 0101010101
01100110011 0011001100

0001111000011110000T1T1

0000O0O0OO0OI1I11111110000°0°0

0000000O0O0OO0COO0OOOOCTII1ITI1IT1T1:1
0000O0OOOOOOOOOOOOOOOO0OO

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

010101010101010101010

1100110011001 10011001

110000111100001111000
0 0111111110000000O0T1T11

111111111100000O0O0O0CO0CO0CTO

00000O0CO0CO0OO0OO0OTII1II1I1TI1T1T1T1T1T11

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

10101010101 0101010101
100110011001 100110011
011110000111 100001111

111110000000011111111

0000011111111 11111111

111111111111111111111
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Table 2: Complete Catalogue of 16-run designs
(Each design consists of columns 1, 2, 4, 8 and those specified in the “Additional
Columns”. W = (As, As,...) is the wordlength pattern defined in (1). C is the
number of clear 2fi’s. Designs for n = 13,14, 15 are unique.)

Design Additional Columns W C
5-1.1 15 001 10
5-1.2 7 010 4
5-1.3 3 100 7
6-2.1 711 0300 0
6-2.2 313 1110 6
6-2.3 312 2001 9
6-24 3 5 2100 5
7-3.1 71113 07000 0
7-3.2 3514 23200 2
7-3.3 3510 32110 4
7-34 359 33001 0
7-35 356 43000 6
8-4.1 71113 14 0140001 0
842 35914 374010 1
843 351012 454200 0
8-44 35615 464001 0
845 3569 552210 2
846 3567 770010 7
9-51 3591415 41480410 0
9-52 35101215 6996001 0
9-53 356914 61084210 0
9-54 356910 7966300 0
9-55 35679 81044410 0
10-6.1 35691415 8181688500 0
10-6.2 35691013 91615127310 0
10-6.3 35691012 1015121510001 0
10-6.4 3567910 1016121210300 0
11-71 35691013 14 12 26 28 24 20 13 4 0
11-7.2 356791012 13252527231031 0
11-7.3 356791011 132624242613001 0
12-8.1 356910131415 16394848483916001 0
12-8.2 35679101112 17 38445254331241 0
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Table 3: Selected 32-run designs for n = 6 to 28.
(Each design consists of columns 1, 2, 4, 8, 16 and those specified in the “Additional
Columns”. C is the number of clear 2fi’s. W = (43,...,47) when n < 17 and
W = (As,...,As) when n > 17. Designs for n=29, 30 and 31 are unique.)

Design Additional Columns W C
6-1.1 31 00010 15
721 727 01200 15
7-22 725 02010 9
7-2.3 7111 03000 6
7-24 329 10110 18
7-25 328 11001 12
7-2.6 313 11100 12
7-2.7 312 20010 15
7-28 35 21000 11
831 71129 03400 13
83.2 71121 05020 4
83.3 71119 06000 O
834 71113 07000 7
8-3.5 31322 12310 13
83.6 3530 21220 18
8-3.7 31321 13201 10
8-3.8 31221 21220 16
839 3526 22111 12
83.10 3525 22200 12
9-41 7111929 06800 8
9-4.2 7111330 07700 15
9-43 7112125 09060 0
9-44 7111319 010040 2
9-45 7111314 014000 8
9-4.6 3132126 15621 9
9-47 3132125 17403 12
9-4.8 3122126 23640 12
9-49 35930 33441 15
9-4.10 351028 33441 13
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Table 3: continued

Design Additional Columns W C
10-5.1 7111929 30 0101600 0
10-5.2 711212531 0150150 0
10-5.3 711131921 0160120 0
10-5.4 711131419 018080 0
10-5.5 313 21 25 28 114707 14
10-5.6 31321 25 30 1101143 8
10-5.7 312212631 271272 6
10-5.8 35142225 281242 4
10-5.9 3514 23 26 29964 5
10-5.10 3591431 381141 12
11-6.1 71113192125 0250270 0
11-6.2 71113141921 0260240 0
11-6.3 3514222531 2142286 0
11-6.4 3514222629 216161210 6
11-6.5 3514 22 26 28 21814814 6
11-6.6 3 510 23 27 28 31319119 3
11-6.7 359222629 315131513 4
11-6.8 359 22 26 28 316121216 4
11-6.9 359142226 316131213 4
11-6.10 359141829 41218128 5
12-7.1 7111314192125 0380520 0
12-72 7111314192122 0390480 0
12-7.3 35914222629 325232725 5
12-74 35914222628 . 326222428 5
12-7.5 351012222729 420322220 0
12-76 351012222531 422282028 0
12-7.7 3561523 2530 423281628 0
12-7.8 35914172226 425192731 3
12-79 35914152226 426202428 3
12-7.10 35914182031 519292523 2
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Table 3: continued

Design  Additional Columns w

13-8.1 711131419212225 0550960
13-8.2 3591417 2226 28 4 38 32 52 56
13-8.3 3591415222629 4 38 33 52 52
13-8.4 359141522 26 28 4 39 32 48 56
13-8.5 3591415172226 5 38 28 52 62
13-8.6 35101215 222729 6 28 51 42 42
13-8.7 3591418202431 6 29 46 46 50
13-8.8 3591518 2024 30 6 30 44 44 56
13-89 3591518202431 7 28 42 50 56
13-8.10 356914172629 7 29 42 46 56
14-9.1 71113 14 19 21 22 25 26 07701680
14-9.2 359141517 22 26 28 5 55 45 96 106
14-9.3 359141517 2223 26 6 55 40 96 116
14-9.4 3591518 20243031 8 42 64 85 112
14-9.5 359141518 2024 31 8 42 65 84 108
14-9.6 35691417 222629 8 43 64 80 112
14-9.7 3591415182024 30 8 43 64 80 112
14-9.8 3569 1415232629 8 45 64 72 112
14-9.9 35691417 2226 27 942 60 84 118
14-9.10 356914151726 29 943 61 80 114
15-10.1 7111314192122252628 010502800
15-10.2 359141517 22 23 26 28 677 62 168 188
15-10.3 359141517 22 23 26 27 7 77 56 168 203
15-10.4 35691417 2226 27 28 10 60 90 141 212
15-10.5 356914 1517 22 26 29 10 61 90 136 212
15-10.6 3569141517 22 26 27 11 60 85 141 222
15-10.7 35914 18 20 23 24 27 29 12 49 108 144 176
15-10.8 3569 14 18 23 24 29 31 12 51 102 144 192
15-10.9 3591415 18 20 23 24 30 12 51 102 144 192
15-10.10 356 9 14 15 17 22 23 26 12 61 80 136 232
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Table 3: continued

Design  Additional columns w C
16-11.1 71113 14 19 21 22 25 26 28 31 014004480 0
16-11.2 359 14 1517 22 23 26 27 28 710584280315 1
16-11.3 3569141517 22 26 27 28 1283124230376 0
16-11.4 3569141517 22 23 26 29 12 84 124 224376 0
16-11.5 3569141517 22 23 26 27 13 83 118 230 391 2
16-11.6 359 14 18 20 23 24 27 29 31 15 65 156 232 315 0
16-11.7 35691014 17 22 27 28 29 15 70 141 231 358 0
16-11.8 35691014 17 22 23 26 29 15 71 140 226 363 0
16-11.9 356910141517 22 26 29 15 73 140 216 363 0
16-11.10 3569 10 14 17 22 26 29 31 16 65 148 236 336 0
17-12.1 359141517 22 23 26 27 28 29 8 140 112 448 0
17-12.2 356914 1517 22 23 26 27 28 14 112 168 364 0
17-12.3 356910 14 17 22 23 26 27 28 18 95 192 354 0
17-124 356910141517 22 272829 18 95 193 354 0
17-12.5 35691014 1517 22 23 26 29 18 96 192 348 0
18-13.1 3569141517 22 23 26 27 28 29 16 148 224 560 0
18-13.2 356910141517 22 23 26 27 28 21 126 259 532 0
18-13.3 35679101117 1819 282930 22 126 252 532 0
18-13.4 356914151821 2324272831 24 108 288 552 0
18-13.5 3569101417 2223 24 272829 24 113 272 547 0
19-14.1 35691014 1517 22 23 26 27 28 29 24 164 344 784 0
19-14.2 35679101117 1819 28 29 30 31 25 164 336 784 0
19-14.3 35691014 1517 18 22 23 26 27 28 28 147 364 791 0
19-144 3569101314 1517 22 23 26 27 28 28 148 364 784 0
19-145 356910131417 22 23 24 26 29 31 30 136 378 816 0
20-15.1 356910141517 182223 26 - 29 32 188 480 1128 0
20-15.2 3569101314 151722232629 32 189 480 1120 0
20-15.3 35679-1217181928-31 33 188 472 1128 0
20-15.4 356910141517 18222326272831 35175491 1155 0
20-15.5 3569101314 151718 2223 26 2728 35 176 490 1148 0
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Table 3: continued

Design Additional columns w C
21-16.1 356910141517 18 22 23 26 — 29 31 40 220 641 1608 0
21-16.2 35691013 14151718 22 23 26 — 29 40 221 640 1600 0
21-16.3 35679-1217-2028-31 41 220 632 1608 0
21-16.4 356910131417 19 2223 2426282931 42210 651 1638 0
21-16.5 35691013141517 18 21 - 2526 29 42 213 644 1624 0
22-17.1 35691013 -151718 21 - 23 2526 29 30 48 263 832 2224 0
22-172 35691013 -1517 18 21 — 23 25 - 28 49 259 833 2240 0
22-17.3 35679-1217-202528-31 49 261 825 2240 0
22-174 35679-1217-20 24 28 29 30 31 50 260 816 2249 0
22-175 35679-1317-2028-31 50 261 816 2240 0
23-18.1 356910131415171821 2223 25-29 56 315 1064 3024 0
23-18.2 35679-1317-202628-31 58 311 1050 3056 0
23-18.3 35679-13171819 20 21 26 27 28 30 59 308 1047 3073 0
23-184 35679-1317-202228-31 59 310 1041 3065 0
23-185 35679-1317-2126-29 59 311 1040 3056 0
24-19.1 35691013-15171821-2325-30 64 378 1344 4032 0
24-19.2 35679-1317-2126-30 67 371 1324 4088 0
24-19.3 35679-1317182021222426273031 68369 1316 4106 0
24-19.4 35679-1417-2027-31 68 370 1316 4096 0
24-19.5 35679-1317-20222427-30 69 366 1311 4129 0
25-20.1 35679-1317-2126-31 76 442 1656 5376 0
25-20.2 35679-1317-20222427-31 78 437 1641 5422 0
25-20.3 35679-1417-2126-30 78 438 1640 5412 0
25-20.4 35679-1417-2225-28 79 436 1632 5430 0
25-20.5 35679-1417-22 25 26 28 31 79 437 1630 5422 0
26-21.1 35679-1417-2126-31 88 518 2032 7032 0
26-21.2 35679-1417-2225-29 89 516 2023 7052 0
26-21.3 35679-1417-2224-2628 31 90 515 2012 7063 0
26-214 35679-1517-2224 2628 90 515 2013 7062 0
26-21.5 35679-1517-26 90 516 2012 7052 0
27-22.1 35679-1417-2225-30 100 606 2484 9064 0
27-22.2 35679-1517-2628 101 605 2473 9075 0
27-223 35679-1517-27 101 606 2472 9064 0
28-23.1 35679-1417-2225-31 112 707 3024 11536 0
28-23.2 35679-1517-28 113 706 3012 11548 0
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Table 4: Selected 64-run designs for n = 7 to 32.
(Each design consists of columns 1, 2, 4, 8, 16, 32 and those specified in the
“Additional Columns”. C is the number of clear 2fi’s. W = (A4,..., A7) when
n < 18 and W = (A4, A5, Ag) when n > 18.)

Design Additional Columns W C
7-1.1 63 0001 21
8-2.1 15 51 0210 28
9-3.1 72745 1420 30
9-3.2 725 43 2311 24
9-3.3 72743 2400 24
9-3.4 71161 3040 21
9-3.5 7 25 42 3040 18
9-3.6 71153 3202 21
9-3.7 71151 3300 21
9-3.8 71129 3400 21
9-3.9 711 49 4020 15
9-3.10 71121 5020 12
10-4.1 7 27 43 53 2840 33
10-4.2 7254253 3642 27
10-4.3 7112951 3740 30
10-4.4 711 29 46 3830 30
10-4.5 7112949 4622 24
10-4.6 7112945 4800 24
10-4.7 7 25 42 52 50100 15
10-4.8 711 2157 5424 21
10-4.9 7112145 5522 21
10-4.10 711 13 62 7070 24
11-5.1 711 29 45 51 41480 34
11-5.2 7 25 42 52 63 510105 25
11-5.3 711 29 46 49 51274 28
11-5.4 711 21 46 56 61084 25
11-5.5 711 29 45 49 61244 25
11-5.6 71119 29 62 61280 27
11-5.7 711 21 38 57 7878 22
11-5.8 711 21 41 51 7966 22
11-5.9 71113 3049 81044 28
11-5.10 711 13 30 46 81400 28
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Table 4: Continued

Design  Additional Columns w C
12-6.1 7 11 29 45 51 62 624160 36
12-6.2 7 11 21 46 54 56 820148 27
12-6.3 7 11 21 41 51 63 9181312 24
12-6.4 711 21 41 54 56 101516 11 21
12-6.5 711 13 30 46 49 10208 8 30
12-6.6 71119 37 57 63 1016 1216 20
12-6.7 71119 29 37 59 1016168 20
12-6.8 7111929 37 57 10 181012 20
12-6.9 711 21 25 38 58 11141512 21
12-6.10 7 11 13 19 46 49 12141212 23
13-7.1 711 21 25 38 58 60 14 28 24 24 20
13-7.2 711 13 30 46 49 63 143316 16 36
13-7.3 71119 29 37 59 62 1524 3216 12
13-7.4 71119 29 37 41 60 1527 21 27 16
13-7.5 71113 19 46 49 63 15 28 20 24 22
13-7.6 71119 30 37 41 52 16 22 30 22 17
13-7.7 7111319 375763 16 24 22 32 18
13-7.8 71119 37 41 60 63 16 26 18 30 12
13-7.9 71119 29 37 41 47 18 2028 24 20
13-7.10 7111319 35 49 63 18212424 21
14-8.1 711193037414960 22403656 8
14-8.2 7111929 30374147 22404148 16
14-8.3 711131921253560 29264650 19
14-8.4 711131419212554 38175244 25
14-8.5 711131419212257 39164848 25
14-8.6 711192930374149 22413652 8
14-8.7 711193037415256 23325640 13
14-8.8 711131921415463 23383854 16
14-8.9 711131921465456 23403648 16
14-8.10 711192937414749 24315442 16
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Table 4: Continued

Design  Additional Columns w C
15-9.1 7 1119 30 37 41 49 60 63 30 60 60 105 0
15-9.2 7 11 19 29 30 37 41 49 60 30 61 60 100 0
15-9.3 71119 293741474955 33 44 96 72 14
15-9.4 71113 1419 21 35 41 63 39 38 80 88 19
15-9.5 71113 14 19 21 22 25 58 55 22 96 72 27
15-9.6 71113 19 21 35 37 57 58 33 54 60 108 6
15-9.7 711131921 25 3560 63 34 52 65 100 12
15-9.8 711131921 3541 49 63 35 42 88 80 14
15-9.9 7111319 21 25 35 37 63 37 40 84 84 17
15-9.10 71113 14 19 21 25 35 60 43 34 80 88 18
16-10.1 71113 19 21 35 37 57 58 60 43 81 96 189 0
16-10.2 711 19 29 37 41 47 49 55 59 45 60 160 120 15
16-10.3 71113 19 21 25 35 37 41 63 49 56 144136 15
16-10.4 71113 14 19 21 25 35 37 63 53 52 136 144 18
16-10.5 71113 14 19 21 22 25 35 60 61 44 136 144 17
16-10.6 71113 14 19 21 22 25 26 60 7728 168112 29
16-10.7 71113 1419 21 35 37 57 58 47 72 98 192 4
16-10.8 71113 14 19 21 25 35 60 63 49 68 108 176 8
16-10.9 71113 14 19 21 22 35 57 60 51 64 102 192 4
16-10.10 711 13 14 19 21 22 35 37 57 57 48120160 15
16-10.11 711 13 19 21 35 41 50 61 62 59 0 262 0 0
16-10.12 711 13 19 21 35 41 49 61 62 60 0 256 0 0
16-10.13 711 13 19 21 35 41 52 56 62 60 0 256 0 0
16-10.14 7 11 19 37 41 47 49 55 59 62 60 0 256 0 0
16-10.15 7 11 13 19 21 25 35 44 55 61 60 0 257 0 0
17-11.1 71113141921 3537575860 59 108150324 0
17-11.2 71119 29 37 41 47 49 5559 62 60 80 256 192 16
17-11.3 711131921 253537414963 6575232216 16
17-11.4 71113141921 2535374163 6872224224 16
17-11.5 711131419 212225353763 7367216232 19
17-11.6 71113 1419 21 22 25 26 28 63 105 35 280 168 31
17-11.7 71113141921 2235373857 7664192256 16
17-11.8 711131921253537426162 7903940 0
17-11.9 711131419213541495061 8003880 0
17-11.10 71113 1419 21 2225 26 3560 84 56 224224 16
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Table 4: Continued

Design Additional Columns w C
18-12.1 71113141921 22 3537 57 58 60 78 144228 0
18-12.2 71113 14 19 21 22 35 37 38 57 58 84128240 0
18-12.3 71113 14 19 21 22 25 26 35 60 63 92112280 0
18-12.4 7111319 21 25 35 37 42 49 61 62 102 0 588 0
18-12.5 71113 14 19 21 25 35 44 49 52 62 103 0 582 0
19-13.1 71113141921 22 35 37 38 57 58 60 100 192 336 0
19-13.2 71113 14 19 21 22 35 41 44 49 55 56 131 0 847 0
19-13.3 711 13 14 19 21 25 35 37 42 49 50 61 131 0 847 0
19-13.4 71113 14 19 21 22 35 41 42 49 52 56 132 0 840 0
19-13.5 71113 14 19 21 25 35 37 41 49 50 61 132 0 840 0
20-14.1 711131419 21 22 35 37 38 57 58 60 63 125 256 480 0
20-14.2 71113 14 19 21 22 35 41 42 49 52 56 62 164 01208 O
20-14.3 "7 11 13 14 19 21 22 35 41 42 49 52 56 61 16501200 O
20-14.4 71113 14 19 21 22 35 41 42 49 50 61 62 16501200 O
20-14.5 7111314 19 21 25 35 37 42 49 52 59 61 16501200 ©
21-15.1 711 13 14 19 21 22 25 35 41 42 49 52 56 62 20401680 0
21-15.2 711131419 21 22 25 35 37 41 42 49 50 61 20501672 0
21-15.3 711 13 14 19 21 22 25 35 37 41 42 49 52 56 20501672 O
21-15.4 7111314 19 21 22 25 35 41 42 49 50 61 62 205601672 O
21-15.5 711 13 14 19 21 22 25 26 37 41 44 49 52 59 206 0 1666 0
22-16.1 7111314 19 21 22 25 35 37 41 42 49 52 56 62 25002304 O
22-16.2 711131419 21 22 25 26 35 37 41 44 49 52 59 251 02296 0
22-16.3 71113 14 19 21 22 25 26 37 41 44 49 52 59 62 25102296 0
22-16.4 711131419 21 22 25 26 35 37 38 41 44 49 56 25202288 0
22-16.5 7111314 19 21 22 25 26 35 37 38 41 44 49 55 25202289 0
23-17.1 711131419 21 22 2526 35 37 41 44 4952 56 62 304 03105 0
23-17.2 711131419 21 22 2526 35 37 38 41 44 495556 304 03105 0
23-17.3 71113141921 22 2526 35 37 38 41 42495256 30503096 O
23-17.4 711131419 21 22 25 26 28 35 37 38 41 424952 306 03089 0
23-17.5 71113141921 22252628 3537 3841424950 30703080 O
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Table 4: Continued

Design Additional Columns w C
24-18.1 71113 1419 21 22 25 26 35 37 38 41 42 49 52 56 62 365 0 4138 0
24-18.2 71113 1419 21 22 25 26 35 37 38 41 42 49 52 56 61 366 0 4128 0
24-18.3 71113 1419 21 22 25 26 28 35 37 38 41 42 49 52 56 366 0 4129 0
24-18.4 71113 1419 21 22 25 26 28 35 37 38 41 42 44 49 50 367 0 4120 0
24-18.5 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 49 52 369 0 4106 0
25-19.1 711 13-14 19 21 22 25 26 28 35 37 38 41 42 49 52 56 62 435 0 5440 0
25-19.2 71113 1419 21 22 25 26 28 35 37 38 41 42 44 49 50 52 436 0 5430 0
25-19.3 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 49 52 56 437 0 5422 0
25-19.4 711131419 21 22 25 26 28 31 35 37 38 41 42 44 49 50 438 0 5412 0
25-19.5 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 442 0 5376 0
26-20.1 71113 1419 21 22 25 26 28 35 37 38 41 42 44 49 50 52 56 515 0 7062 0
26-20.2 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 49 52 56 62 515 0 7063 0
26-20.3 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 44 49 50 52 516 0 7052 0
26-20.4 71113 1419 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 518 0 7032 0
27-21.1 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 44 49 50 52 56 605 0 9075 0
27-21.2 71113 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 606 0 9064 0
28-22.1 71113 1419 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 56 706 0 1158 0
28-22.2 711131419 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 707 0 11536 0
29-23.1 711131419 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 819 0 14560 0
30-24.1 711131419 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 945 0 18200 0
31-25.1 71113141921 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 61 1085 0 22568 0

32-26.1

71113 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 55 56 59 61 62 1240 0 27776 0
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Table 5: Design matrix for 27-run designs.

comRH-
o~o N
O = W
(=3 RN
- o o W
- o+ o
|
= = = 0o
N O
N o O
[N R
[N )
NN W

A Table 6: Complete catalogue of 27-run designs.
(Each design consists of columns 1, 2, 5 and those specified in the “Additional
Columns”. W = (A4s, A4, ...). Designs for n =11 and 12 are unique.)

Designs Additional Columns W C
4-1.1 3 10 3
4-1.2 8 01 0
5-2.1 34 400 4
5-2.2 36 211 0
5-2.3 39 130 0
6-3.1 346 5332 0
6-3.2 367 4360 0
6-3.3 3611 3631 0
6-3.4 3913 2902 0
7-4.1 3101113 515983 0
7-4.2 481011 6111544 0
7-4.3 48911 710129 2 ]
7-4.4 34913 899140 0
8-5.1 3891011 8302432243 0
8-5.2 4891011 10 23 32 30 22 4 0
8-5.3 3491113 11213038156 0
9-6.1 389101113 12 54 54 96 108 27 13 0
9-6.2 34891011 1542 69 96 93 39 10 0
9-6.3 4910111213 16 39 69 106 78 48 8 0
10-7.1 346781011 22 68 138 250 290 2139220 0
10-7.2 3678101112 21 72 135 240 31518910318 0
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