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ABSTRACT

Censored data arise naturally in industrial experiments whose observations are failure times or
measurements with mixed continuous-categorical outcomes. When censored data are observed
from a fractionated experiment, likelihood-based estimates quite often do not exist, especially
when the opportunity for improvement is great. To circumvent this problem, we propose a
Bayesian analysis strategy which has a straightforward implementation using the data
augmentation and Monte Carlo EM algorithms. For non-regular designs with complex aliasing
patterns, a modified analysis strategy is proposed which substantially reduces the computation
needed for model selection. Non-Bayesian practitioners should have no qualms with the approach
since the analysis results are insensitive to the specification of the prior. The proposed strategy
is illustrated using data from three real industrial experiments.

Key Words: Complex aliasing; Conjugate and improper prior; Data augmentation, Fractional
factorial design; Monte Carlo EM; Plackett-Burman design.



1. INTRODUCTION

Censored data are commonly observed in life testing in the industrial setting. While in-
terest has traditionally been focused on reliability estimation rather than reliability improve-
ment, Taguchi (1987) advocated the use of designed experiments to identify factor settings
that can lead to increased lifetime or improved reliability. Although his proposed analysis
method is faulty (Hamada, 1992), he deserves credit for promoting a pro-active approach
to reliability engineering. Censored data also occur in other contexts such as measurements
with mixed continuous-categorical outcomes, e.g., window open/not open (categorical) and
window diameter (continuous) if window is open.

As argued in Hamada and Wu (1991), standard methods often do not work for censored
data from highly fractionated experiments. They proposed a new analysis method and
demonstrated its usefulness on some real data. The method has the limitation that it relies
on the existence of the maximum likelihood estimates (MLEs) for the model that starts
their algorithm. As we show in the next section, quite often the MLEs do not exist even
for a simple model consisting of only main effects. Thus, the likelihood-based method fails
in this simple setting. The main purpose of this paper is to propose a Bayesian approach
that circumvents this problem. The resulting estimates are shown to be quite insensitive to
the prior specification, which should assure industrial practitioners who may otherwise have
reservations with its usage.

One novel feature of our proposal is that the Bayesian analysis strategy depends on
the nature of the design. Before elaborating on this important point, we define two types
of fractional factorial designs. We call a design regular if it can be defined by a group of
defining relations; otherwise, it is called nonregular. An example of a regular design is given
in Table 1. The experiment studied five factors in eight runs based on a 1/4-fraction of a
full factorial design with defining relations D=AC and E=BC, i.e., column D is the product
of columns A and C, and column E is the product of columns B and C. Here D denotes the

main effect of factor D and AC the interaction between A and C. From these two relations,



a third relation DE=AB can be generated. These three relations and the identity element
form a group called the defining contrast subgroup (John, 1971). All the relations among
the factorial effects can be inferred from the group. For example, assuming that all 3-factor
and higher interactions are negligible, we can associate each of the seven degrees of freedom
in the experiment with the seven strings of aliases: A=CD, B=CE, C=AD=BE, D=AC,
E=BC, AB=DE, AE=BD. More details on regular designs can be found in John (1971) and
Box, Hunter and Hunter (1978). Apart from the aliasing of effects, we can use these seven
effects and the grand mean to form a saturated model for the data. Any other combination of
effects can be viewed as a submodel. Therefore, standard Bayesian analysis methods can be
applied to the saturated model. For censored data, the Bayesian computations can be easily
implemented using the data augmentation algorithm and the Monte Carlo EM algorithm
as described by Tanner and Wong (1987) and Wei and Tanner (1990a, b). In Section 3,
we review these methods and describe an extension using conjugate priors. In Section 4 we
illustrate the method on two reliability improvement experiments involving fluorescent lights
and router bits. Unlike the method of Hamada and Wu (1991), the Bayesian approach for
regular designs has the additional advantage of not requiring iterations in the model selection
phase.

Most fractional factorial designs used in practice are of the regular type. Nonregular
designs include the well-known Plackett-Burman (1946) designs and the 18-run design with
seven 3-level factors and one 2-level factor. A large collection can be found in Dey (1985) and
Wang and Wu (1991). The main reason for their practical use is run size economy. While
they have traditionally been used only for screening factors (i.e., main effect estimation),
Hamada and Wu (1992) recently showed that they can also be used to entertain and estimate
interactions.

For nonregular designs, not every degree of freedom can be uniquely associated with
a string of aliases. Therefore, unlike regular designs a saturated model that contains all

other models as submodels cannot be found. Consider the 12-run Plackett-Burman design



in Example 3. It is known that every 2-factor interaction is partially aliased with the main
effects not present in the interaction with correlation +1/3. As a result, there can be many
saturated models by choosing k main effects and 11-k 2-factor interactions. Searching for a
model by fitting all such possible models would be a formidable task. Instead in Section 5,
we propose a method that streamlines the model search by adapting a strategy from Hamada
and Wu (1991). For any initial model, apply Bayesian analysis methods to obtain estimates
for the model parameters. Next, impute the censored observations based on these estimates.
Then standard model selection techniques can be applied to the pseudo-complete data (i.e.,
the combined complete and imputed data) to obtain an updated model. The procedure is
repeated until the selected model stops changing. It works well on the cast fatigue data in
Example 3.

A common concern in the practical use of Bayesian methods is its reliance on the prior
specification. This is especially acute if the prior distribution is not based on past data or
prior experience. To alleviate this concern, we propose a sensitivity analysis of the model
chosen by the methods of Sections 4 and 5. For a given model, we compute the Bayesian
estimates for a range of prior specifications. If the prior specification has little effect on the
estimates or their relative rankings, we call the result robust. The results are fairly robust

for the three data sets considered here.

2. ESTIMABILITY PROBLEMS WITH THE MLE METHOD

Consider the simplest case of a one-factor experiment with two levels. If all the obser-
vations at the high level are censored while those at the low level are not, the likelihood
function for any reasonable regression model increases to the maximum value as the regres-
sion parameter, i.e., the factor main effect, tends toward infinity. Therefore, the MLE for
the main effect does not exist when, obviously, the factor exhibits a large effect and the

opportunity for improvement is great. For a general class of regression models with vector
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covariates z, Silvapulle and Burridge (1986) and Hamada and Tse (1988) showed that the
MLEs exist if and only if there does not exist a nonzero vector e such that (i) eTz; = 0 for
z; corresponding to the uncensored observations and (ii) efz; > 0 for z; corresponding to
the censored observations. Implications of these conditions for factorial designs were given

in Hamada and Tse (1992) and illustrated by the following example.

Example 1: Light Lifetime Experiment

Consider an experiment to improve the lifetime of fluorescent lights (Taguchi, 1987, page
930). An 8-run experiment with two replicates was performed to study five two-level factors
denoted by A-E. The experiment, which used a 2°~2 fractional factorial design with defining
relations D=AC and E=BC, was conducted over 20 days with inspections every two days.
The design and lifetime data appear in Table 1, where “~” and “+” refer to the low and high
factor levels, respectively. The lifetimes are given as intervals with (14,16) indicating that
the light failed between the 14th and 16th day inspections and (20,00) indicating that the
light had not failed by the 20 day inspection, i.e., a censored observation. Besides the main
effects, the experimenter also thought that the AB(=DE) interaction might be potentially
important.

In addition to considering these six effects, estimation of the effect BD(=AE) can also
be entertained. Because both replicates at run 5 are censored, according to the results in
Hamada and Tse (1992), the maximum likelihood estimates for all eight effects (including an
intercept) under the lognormal regression model (Lawless, 1982) do not exist. Consequently,
a standard likelihood-based analysis of the full model is not feasible. Next, we consider how

a Bayesian approach avoids this problem.



Table 1: Design and Lifetime Data for Light Experiment

design data
run| A B C D E| (no. of days)
1+ + + + +](14,16) (20,0)
2|+ + - - -|(18,20) (20,00)
314+ - + + - |(08,10) (10,12)
4|+ - - - +](1820) (20,00)
5/- + + - +[(20,00) (20,00)
6|- + - + -[(12,14) (20,00)
|- - 4+ - -1(16,18) (20,00)
8| - - - +](12,14) (14,16)

3. BAYESIAN COMPUTATIONS VIA DATA AUGMENTATION AND THE
MONTE CARLO EM

Using the standard multiple linear regression model for the response y (or transformed

response h(y)),

=28+ oe,i=1, ..., n, (1)
where the z; are k£ x 1 vectors and the ¢; are independent standard normal. For censored
data, Bayesian computations are easily implemented using the methods proposed by Wei
and Tanner (1990a, b). They showed how the posterior and posterior maximizer for 8 can
be obtained using data augmentation (Tanner and Wong, 1987) and the Monte Carlo EM
(MCEM), respectively, under an improper prior for 8 and 0. We consider the more general
class of natural conjugate priors (Raiffa and Schlaifer, 1961) in order to study the sensitivity
of the conclusions to the prior specification.

Data augmentation turns the calculation of the posterior for censored data into that
for complete data by randomly imputing the censored data as follows (Wei and Tanner,
1990b). Randomly sample the current approximation of the (8,0) posterior m times. For
each sampled (3,0), obtain a pseudo-complete data set by randomly imputing the censored

data, i.e., by randomly sampling from a conditional normal distribution resulting from the
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actual lifetime exceeding the censoring time. The updated approximation of the posterior is
then a mixture of the posteriors computed from the pseudo-complete data sets.

The natural conjugate prior (Raiffa and Schlaifer, 1961) is

p(B,0) = o *exp{—(B — Bo)” Ao(B — Po)/207} x o~ ezp(—vps]/20%) . (2)

From the factorization (2), it can be shown that the marginal prior for 2 is the reciprocal of
a Gamma distribution with parameters (v9/2, 1s2/2) and the marginal prior of § given o2
is multivariate normal with mean B, and covariance matrix 624,~'. Thus, the factorization
provides a straightforward way to sample from the prior for (3,0?) (and consequently, the
posterior since it has the same form).

The data augmentation algorithm starts by treating the censored observations as actual
observations (i.e., pseudo-complete data) to get an initial posterior. This posterior has the
same form as (2) except that o2 has the reciprocal of a Gamma distribution with parameters
(11/2, 1152/2) and the marginal posterior of 3 given ¢? is multivariate normal with mean 3
and covariance matrix 02M 1, where v; = n+wvo, M = XTX + Ao, B = M‘I(XTXﬁ+AoBo),
v18? = st + s + (B — Bo) Ao(B — o) + (B — B) XTX(B — B), XT = (<F,...,2T) with
z; given in (1), and B and vs? are the least squares estimate and residual sum of squares,
respectively, based on the pseudo-complete data. See Abowd, Moulton and Zellner (1987)
for details.

Next, the current approximation to the posterior of (3,¢) is randomly sampled m times
using the results from the factorization above. For each sampled (8,0), obtain a pseudo-
complete data set by randomly imputing each censored datum, i.e., randomly sampling from
a conditional normal distribution with density o~ 1¢({y—=:T8}o")[1 — ®({y: — zT}o~1)] ™"
for y > y;, where ¢ and ® are the standard normal pdf and cdf. The updated approximation
of the posterior is then a mixture of the posteriors computed from the pseudo-complete data
sets. That is, a 8 and v;s? are computed from each pseudo-complete data set as was done
above in obtaining the initial posterior. The updated approximation of the posterior can then

be randomly sampled by first randomly sampling from the integers 1 to m, say j, and then
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randomly sampling from the jth posterior (of the updated posterior approximation). The
approximation of the posterior continues to be updated until convergence. We monitored
the maximum relative and absolute componentwise difference of the first four moments and
the 0.005, 0.025, 0.975 and 0.995 quantiles between successive approximations of the poste-
rior and stopped when these criteria were sufficiently small. Note that at convergence, the
final m (B, v152) can be viewed as a sample from the posterior so that for sufficiently large
m, a histogram (or smoothed histogram) and summary statistics such as the moments and
quantiles can be computed to obtain estimates of these quantities.

Briefly, we discuss results for the non-informative prior whose density is p(8,0) = o~ 1.
The data augmentation algorithm is much the same as described above and is given in Wei
and Tanner (1990b), although their non-informative prior was for ¢ rather than o. In fact,
the non-informative prior can be obtained from the informative prior by setting Ay, fo and
s2 to zero and v to -k. Thus, a relatively diffuse prior can be obtained by a suitable choice
of prior parameter values close to these particular values. In fact, when the MLEs do not
exist as discussed in the previous section, the latter approach is necessary since the posterior
mode does not exist under the non-informative prior. Therefore, the conjugate prior, albeit
relatively diffuse, is used in the following.

For nonregular designs, initially we will only need the posterior maximizer rather than
the entire posterior. Wei and Tanner (1990a) presented the MCEM algorithm for obtaining
the posterior maximizer under the non-informative prior. Here we present the results for
the informative prior given in (2). They showed that the maximizer could be obtained in
a similar fashion as the entire posterior by randomly sampling the posterior based on the
current maximizer.

The initial approximation to the maximizer is obtained by treating the censored data as
actual observations so that 02 = (vy82)/(n+vo+k+1) and 8 = M~! (XT X3+ Aofo), where v,
1152 and M are defined as above and 3 and vs? (used in calculating v, s2) are the least squares

estimates and residual sum of squares, respectively, based on the initial pseudo-complete



data. Subsequent approximations to the maximizer are obtained by using the m pseudo-
complete data sets denoted by {z;} (arising from the random imputations): 8 = ¥;8;/m,
where f; = M~} (XT XB; + AoPo), 0* = ¥{vost +vs? +(B — ;) M(B— B;)}/m(m+k+ 1)
and ﬂ;- and Vs:z,. are the least squares estimate of 8 and the residual sum of squares from =,
respectively. The approximation of the posterior maximizer continues to be updated until
convergence.

Thus far, the posterior and posterior maximizer were discussed when the data were
either complete or right-censored. Left-censored and interval-censored are also easily han-
dled by randomly sampling the appropriate conditional normal distribution to obtain the
pseudo-complete data sets. In fact, left-, right- and interval-censored data can be repre-
sented as intervals (a,b), whose corresponding conditional normal distribution has the den-
sity o~ 1¢({y — 2;TB}o 1) /[2({b—z:TB}o!) — ®({a — =;TB}o1)] for @ < y; < b. Note that
b and (a+b)/2 can be used as the initial pseudo-complete data for left- and interval-censored

data, respectively.

4. ILLUSTRATION OF BAYESIAN ANALYSIS AND ITS ROBUSTNESS
TO PRIOR SPECIFICATION

Consider the 8-run design in Example 1. Of the seven available degrees of freedom, five
are used for estimating the main effects (A-E). The two remaining degrees of freedom can
be used to estimate the two pairs of aliased interactions, AB=DE and AE=BD, since none
of the four interactions is aliased with any of the main effects. Therefore, we can entertain
a linear model consisting of the seven effects A, B, C, D, E, AB and AE and an intercept
term. Because of the two aliasing relations, AB and AE can be substituted by DE and BD
in the model. Apart from the aliasing of the interactions, we can use this regression model

in the Bayesian analysis.



Example 1 (Continued): Analysis of Light Lifetime Experiment

Next, we obtain the posterior for this full model in the log lifetime, i.e., the lognormal
regression model. Initially, a relatively diffuse prior for (8,0) was used whose parameters
were: B = 0 except that the intercept is set equal to 3, the average of the logged experimental
data; Ao = 0.000171g, where Ig is the 8 x 8 identity matrix (i.e., a prior variance for the
intercept and factorial effects of 100000?); o = 1 and s2 = 0.01 ((0.035, 18.039) is the
central 99% of the prior distribution for 02.). The data augmentation algorithm required 13
iterations whose sample sizes (m) were 4(100), 3(1000), 3(10000), 3(50000); i.e., m=100 for
iterations 1 to 4, m=1000, for iterations 5 to 7, etc. Histograms of the marginal posteriors
based on the last iteration for the seven effects of interest are displayed in Figure 1. The
quantiles corresponding to the central 95% and 99% of the marginal posteriors are presented
in Table 2. (The intercept is denoted by Int.) These results suggest that only main effects A,
B, D and E are important, with D having the largest effect, and B being perhaps somewhat
larger than A and E.

We also obtained the marginal posteriors under more peaked priors on the factorial effects.
Instead of a prior variance of 1000002, prior variances of 10002 and o? were used (with lower
right 7 x 7 matrix of Ao being 0.0117 and I, respectively). Table 2 reports the results for
the more peaked prior with variance o2, the magnitude of the error variance. In spite of the
ten thousand fold decrease in prior variance, there are hardly any differences in the extreme
quantiles and therefore no differences in the conclusions; namely, the A, B, D and E main
effects are important and in the same order of importance.

The next example is more complicated. The experimental design is obtained from a
regular design with 32 runs and 13 two-level factors by grouping one set of three two-level
factors into a four-level factor for column D and another set for column E as shown in Table
3. Because the effects are either orthogonal or fully aliased, a comprehensive model can be

specified as demonstrated in Hamada and Wu (1991).



Table 2: Posterior Quantiles for Light Lifetime Experiment

diffuse prior peaked prior
quantile quantile
effect | .005 .025 .975 .995 | .005 .025 .975 .995
Int 283 284 3.02 3.07| 2.83 2.84 3.03 3.10
A -0.24 -0.19 -0.02 -0.00|-0.21 -0.16 -0.01 0.01
B 0.07 0.09 0.26 0.31| 0.06 0.08 0.24 0.29
C -0.06 -0.05 0.12 0.17|-0.07 -0.05 0.10 0.15
AB -0.15 -0.10 0.07 0.08|-0.13 -0.08 0.07 0.09
E 002 0.04 021 0.26( 001 0.03 0.18 0.23
D -0.40 -0.35 -0.18 -0.17 | -0.38 -0.32 -0.16 -0.15
BD -0.10 -0.05 0.11 0.13|-0.08 -0.03 0.12 0.14
o 0.10 0.10 0.20 0.24| 0.12 0.13 0.25 0.31

Example 2: Router Bit Lifetime Experiment

Phadke (1986) reported on an experiment to improve router bit life for a routing process
that cuts 8x4 inch printed wiring boards from an 18x24 inch panel. When the router bit
becomes dull, it produces boards with rough edges, thereby requiring an extra cleaning
process. Also, frequently changing the router bits is expensive. Failure is determined by
evidence of an excessive amount of dust, where router bit life is measured in (x100) inches
of cut in the x-y plane. A 32-run design was used to study the nine factors denoted by A-I
(number of levels in parentheses) which are suction (2), x-y feed (2), in-feed (2), bit type
(4), spindle position (4), suction foot (2), stacking height (2), slot depth (2) and speed (2),
respectively. The design and data appear in Table 3. The router bits were inspected every
1(x100) inches up to 17(x100) inches which resulted in left-censored (14 failed before the first
inspection), interval-censored and right-censored (eight had not failed when the experiment
was stopped) data. The experimenters were interested in the relative importance of the
nine main effects and four two-factor interactions, BI, CI, GI, and BG. The experimental

objective was to identify factors which improve router bit life.
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Table 3: Design and Lifetime Data for Router Bit Experiment
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By studying the design structure of this experiment, Hamada and Wu (1991) observed
that the interactions AF, CH, Al, FI, and HI could also be entertained. In addition, because
factor E was not thought to be important, interactions AH, BF and CG could be studied
as well. The model with these 23 effects (intercept, seven two-level factor main effects,
three two-level pseudofactors for the D main effect (denoted by D1, D2 and D3) and 12
interactions) could not be fit using a lognormal regression model because the maximum
likelihood estimates do not exist. Note that Hamada and Wu (1991) initially entertained
the smaller model with main effects and interactions (BI, CI, GI and BG) model whose
maximum likelihood estimates did exist.

Next, we obtain the posterior for the 23-effect model assuming a lognormal regression
model, i.e., the lifetimes are logged. The prior parameters are: By = 0 except that the
intercept is set equal to 1.5, the average of the logged experimental data; Ao = 0.0001753;
vo = 1 and s = 0.01. The data augmentation algorithm required 12 iterations whose
sample sizes were 3(500), 4(1000), 2(5000), 3(10000). Histograms of the marginal posteriors
are displayed in Figure 2. The quantiles corresponding to the central 95% and 99% of
the marginal posteriors for the significant effects are presented in Table 4. The results for
this relatively diffuse prior suggest that I, B, (D1,D3), BF, CG, F, G, GI, AF, which were
also identified by Hamada and Wu (1991), are important. In addition to these eflects, the
Bayesian analysis identifies BI, CI, FI and HI as important.

The sensitivity of these results were investigated using more peaked priors on the factorial
effects. The results for a prior variance of o2, a ten thousand fold decrease, (i.e., the lower
right 22 x 22 matrix of A equal to I5;) appear in Table 4. There are some minor differences
with BI and CI, two of the smallest effects under the peaked prior, no longer being significant,
although they remain significant for a less peaked prior with a variance of 100%. Note that

the relative rankings of the factorial effects are affected much less than the quantile values.
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Table 4: Posterior Quantiles for Router Bit Lifetime Experiment

diffuse prior peaked prior
quantile quantile

effect | .005 .025 .975 .995 [ .005 .025 .975 .995
int 0.81 0.87 1.15 1.20| 0.47 0.60 1.17 1.25
I 045 048 0.70 0.73| 0.32 0.38 0.84 0.94
B -0.66 -0.61 -0.32 -0.28 | -0.94 -0.83 -0.30 -0.23
D1 0.23 028 0.56 0.62| 0.11 0.19 0.72 0.84
D3 -1.12 -1.05 -0.78 -0.74 | -1.46 -1.32 -0.76 -0.70
BF 0.14 0.18 0.44 0.50| 0.04 0.13 0.64 0.75
CG |[-0.52 -0.46 -0.18 -0.14|-0.78 -0.67 -0.14 -0.06

F -0.69 -0.64 -0.39 -0.34|-0.98 -0.86 -0.33 -0.27
BI -0.40 -0.36 -0.10 -0.06 | -0.52 -0.42 0.04 0.13
G -0.95 -0.91 -0.64 -0.60 [ -1.31 -1.18 -0.62 -0.54

CI -0.40 -0.37 -0.09 -0.03 | -0.56 -0.47 0.02 0.12
GI 032 035 0.57 0.61| 022 0.28 0.73 0.82
AF 031 034 061 0.68| 022 0.29 0.81 0.94
FI 0.12 0.16 0.38 043 | 0.01 0.08 0.55 0.64
HI 0.06 0.09 0.29 0.33]|-0.04 0.03 045 0.54
o 0.03 0.04 0.16 0.19| 0.35 037 0.58 0.64
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5. ANALYSIS STRATEGY FOR DESIGNS WITH COMPLEX ALIASING

As was demonstrated in Examples 1 and 2, each degree of freedom in a regular desigm
can be associated with a string of aliases, which in group-theoretic terms is a coset of the
defining contrast subgroup. This fact allows us to find a comprehensive model for the design .
For nonregular designs, this simplicity is lost because the partial aliasing of effects makes it
impossible to associate each degree of freedom with a unique string of effects. Consider the
12-run Plackett-Burman design (see Table 5) for which each two-factor interaction is partiall y
aliased with all main effects not present in the interaction. If six factors are significant, to

use up the remaining five degrees of freedom, only five of the 15 two-factor interactions can
15

be entertained. There are, however, ( ) = 3003 models! Adopting the Bayesian analysis
5

strategy in Section 3 would require the computation of posteriors for these 3003 models
which is impractical. For more complex situations, the total number of models can be much
larger. Recognizing this computational problem, Hamada and Wu (1991) proposed a method
that drastically reduced the effort needed in model fitting and selection. The main idea is
to impute the censored observations based on the parameter estimates obtained from the
previous model fit, and then do model selection with the pseudo-complete data consisting of
the uncensored data and the imputed data.

Formally, the method adapted to the Bayesian approach is as follows.

A.0 Initial Model Specification
A.1 Bayesian Model Fitting
A.2 Imputation

A.3 Model Selection

Repeat Steps A.l1 through A.3 until model selection termination.

14



A .4 Inference about effects and recommendation on optimum factor levels for the final mod el

from Steps A.0-A.3

B Robustness study of the final model from Steps A.0-A.3 -

Details for the procedure are as follows.

A.0 The experimenter chooses g = Xof, (Model 0) which includes main effects and inter-
actions thought to be potentially important. For highly fractionated designs, one may

be restricted to a main-effects model.
A.1 Use the MCEM algorithm in Section 2 to obtain the posterior maximizer, B and .

A.2 Impute the censored data by their conditional means (or medians):

E(h(®)ly € (a,b)) = 2:fi + 5($(2a) — #(=))/(2(2) — ¥(2a)), (3)

where z,, = (h(y) — z;T3;)/. Since we are interested in identifying location effects, we

use the conditional mean or median as a typical value.

A.3 Informally apply standard forward or stepwise selection procedures to the pseudo-
complete data from Step A.2 to select a model. In addition to the initial model effects,
entertain interactions between factors having large main effects in the initial model.
Also, if there is one dominating factor in the initial model, consider its interactions
with the other factors. See the example below and Hamada and Wu (1992) for more
details. Stop when the current model selected is the same as the previous model,i.e.,
X:B; = X1 B;_1. There is no need to apply Bayesian techniques here to the pseudo-
complete data. If a selected model has a small number of effects, it may be helpful
to compute its posterior to provide an additional assessment of the importance of its

effects.
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A.4 For the final model chosen in Step A.3, compute its posterior and make inference about

each effect.

B Repeat Steps A.0-A.3 for a range of prior specifications. If the final model chosen in
A.3 is nearly the same for several priors, the analysis result is declared to be robust.

Otherwise, care should be taken in interpreting the choice of prior.

Note that the imputation in Step A.2 is different in nature from the imputation in the
data augmentation algorithm. While both use imputation to convert an incomplete data
problem into a complete data problem, the former allows model selection and fitting to be
performed efficiently over a large number of candidate models; the latter allows Bayesian
computations to be performed in a straightforward manner.

Some discussion of imputation is warranted for replicated experiments. If there are runs
with two or more of the replicates censored, instead of imputing all censored values (for the
same run) with the same value, other alternatives might be considered. Imputation can be
done by randomly or systematically sampling the conditional distribution. As an example
of the latter, the 25th, 50th and 75th percentiles can be used if there are three replicates.

Next, we illustrate this modified strategy by reanalyzing the data from an experiment

which used a 12-run Plackett-Burman design.

Example 3: Weld Repaired Cast Fatigue Experiment

Hunter, Hodi and Eager (1982) used a 12 run Plackett-Burman design to study the effects
of seven factors on fatigue life of weld repaired castings. The factors denoted by A-G are
initial structure, bead size, pressure treat, heat treat, cooling rate, polish and final treat,
respectively, and were assigned to the first seven columns of the design matrix given in
Table 3, where “+” and “-” denoting the high and low factor levels. The experiment was
stopped at 7.000; the logged lifetimes also appear in Table 3 which shows that one censored

observation occurred at run 5. In the original analysis, heat treat (factor D) and polish
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Table 5: Design and Lifetime Data for Cast Fatigue Experiment

design logged
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(factor F) were identified as significant, although heat treat had a much smaller effect (with

a p-value around .2).

The initial model (Model 0) considered was the main effects model. Note that the log
lifetimes were analyzed by Hodi et al. (1982) so that the lognormal regression model was
assumed. The prior parameters are: B, = 0 except that the intercept is set equal to 5, the
average of the logged experimental data; Ao = 0.0001l5; o = 1 and s = 0.01. The data
augmentation algorithm required ten iterations whose sample sizes were 3(500), 3(1000),
4(10000). Histograms of the marginal posteriors are displayed in Figure 3 which suggest
that F has the largest effect, then D followed by A, B and C, with the latter three being
approximately the same.

Because of this design’s complex aliasing patterns, interactions between (A, B, C, D, F)
and also EF and FG were entertained following the strategy proposed in Hamada and Wu
(1992). The censored observation (at run 5) was imputed using (8, a~2), the maximizer of the

Model 0 posterior. For the right-censored observation in this experiment, the imputation
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formula given in Step A.2 reduces to 218 + s¢({y: — =78} 1)/l — ®({y: — 2T} 1)]
which was 7.156.

Using the resulting pseudo-complete data set, a forward selection procedure was per-
formed entertaining the (A, B, C, D, F) main effects, the interactions between them and
the EF and FG interactions, which indicated that FG appears to be important. In fact, FG
was the first effect selected and together with F have an R? of .87. Note that the model
(F,D) identified in the original analysis has an R? of .58, whereas the model containing
(F,D,A,B,C) has an R? of .73. Hence, the next model (Model 1) we considered contained
all main effects plus the FG interaction. Figure 4 displays the marginal posteriors obtained
from the data augmentation algorithm which required six iterations with sample sizes of
2(500), 2(1000), 2(10000). These results suggest that F and FG are the largest effects fol-
lowed by much smaller ones for D, E and G. Note that now A, B and C appear negligible. A
subsequent imputation using the Model 1 maximizer (7.042 at run 5) and forward selection
procedure again identified FG as significant. A final application of data augmentation to
obtain the posterior for model (D,E,F,G,FG), which required the same number of iterations
and sample sizes as the previous model, produced the marginal posteriors whose histograms
are displayed in Figure 5. The quantiles corresponding to the central 95% and 99% of the
marginal posteriors are displayed in Table 6 for both the diffuse and peaked priors. For the
peaked prior, a ten thousand decrease in the prior variance for the factorial effects was used
(i.e., the lower right 5 X 5 matrix of Ao equal to I5). Note the insensitivity (or robustness)
of the results to the prior specification. These results suggest that F and FG dominate with
D, E, G being approximately equal but much smaller.
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Table 6: Posterior Quantiles for Cast Fatigue Experiment

diffuse prior peaked prior
quantile quantile
effect | .005 .025 .975 .995 | .005 .025 .975 .995
Int 5.73 5.73 5.76 5.77| 5.73 5.73 5.78 5.80

D -0.13 -0.13 -0.11 -0.11|-0.15 -0.14 -0.11 -0.11
E -0.14 -0.12 -0.07 -0.07 { -0.14 -0.11 -0.06 -0.06
F 046 0.46 049 050| 042 042 0.46 0.48
G 0.05 0.06 0.09 0.09| 0.02 0.04 0.08 0.08
FG -0.50 -0.48 -0.45 -0.45|-0.48 -0.46 -0.41 -0.41
o 0.15 0.15 0.21 0.23| 0.23 0.23 031 0.35
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Figure 1: Light Experiment Posteriors
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Figure 2: Router Experiment Posteriors
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Figure 3: Cast Experiment Posteriors for Model 0
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Figure 4: Cast Experiment Posteriors for Model 1
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Figure 5: Cast Experiment Posteriors for Model 2
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