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ABSTRACT

Graph-aided methods for accommodating the estimation of interactions in factorial experiments
have become popular among industrial users. Notable among them is the method of linear graphs
due to G. Taguchi. Wu and Chen (1992) pointed out some shortcomings of Taguchi’s linear
graphs and proposed an alternative method. By extending their method we develop some new
graphs for 3-level fractional factorial designs. The proposed graphs have two new features: (i)
Each edge of the graph can have one or two lines representing the two components of interaction
in a 3-level design, (ii) There are two types of vertices and lines. A collection of graphsis given
for 27 and 81-run designs.
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1 Introduction

In some factorial experiments background knowledge may suggest that certain interactions
are potentially important and should be estimated clearly from each other and from the main
effects. Wu and Chen (1992) and Kacker and Tsui (1990) gave several examples to illustrate
the importance of the problem of “accommodating interactions”. Any graphs for solving
this problem are generically called interaction graphs or simply graphs. Recognizing the
importance of the problem G. Taguchi proposed a graph-aided method called linear graphs
to solve this problem. A convenient reference is Taguchi (1987). Some defects of Taguchi’s
approach were pointed out by Wu and Chen (1992), who proposed a more comprehensive
method while retaining the graphical appeal of Taguchi’s method. The main purpose of this
paper is to extend the results of Wu and Chen to 3-level fractional factorial designs.

The extension is not straightforward because the graphs for 3-level designs have some new
features which are not present in the graphs for 2-level designs. First, for each interaction,
say, between factors A and B, there are two components denoted by AB and AB?’. By
representing each component by a line in a graph, the resulting graph can have edges with
one or two lines. Only graphs with a relatively large number of double-line edges are kept
in our collection. Second, we classify the main effects into two types: those that are aliased
with some 2-factor interactions (2fi’s) and those that are not. In the graphs the main effects
of the first type are represented by circles with dashed lines and those of the second type are

represented by circles with solid lines. Similarly we classify the 2fi’s into two types: those



that are aliased with some main effects or 2fi’s and those that are not. The 2fi’s of the first
type are represented by dashed lines and those of the second type are represented by solid
lines. The fact that there are more than one type of vertices and edges also complicates the
graph isomorphism checking algorithm. Details on these new features can be found in the
next section. We then give graphs for some 27- and 81-run designs for which the proposed
graphs are more likely to be useful. Asin Wu and Chen (1992), we first rank the designs
by the minimum aberration criterion (definition given below) and then give graphs for each
design. The graphs in this paper are compared with Taguchi’s graphs and the advantages
of using the new graphs are demonstrated. In the last section, we give an example to show
how these graphs can be used to plan a 3-level factorial experiment.

The definition of minimum aberration design is illustrated through a simple example.

Consider the 3°~2 design defined by
I =ABD = AB*CE,
which has the defining contrast subgroup
I = ABD = AB>CE = BCD?E = AC*D*E*.
The word-length pattern of a design is given by
WLP = (A1, A, ..., Ak),

where A; denotes the number of words with length 7 in the defining contrast subgroup (e.g.,
the word AC?D?E? has length 4). The word-length pattern of the design given above is
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WLP=(0,0, 1,3, 0). For designs with resolution IIT or higher, the first two elements in the
word-length pattern are always zero, and we shall omit them in the rest of the paper. For
two designs d; and d3, let 7 be the smallest value such that A,(d;) # A,(d2). We say that d,
has less aberration than d, if A,(d;) < A,(dz). If there is no design with less aberration than
dy, then d; has minimum aberration. Two designs are isomorphic if one can be obtained

from the other through the renaming of factors and factor levels.

2 New features of graphs for 3-level designs

We use several simple examples to demonstrate the new features of interaction graphs for
3-level designs that are not present for 2-level designs. First, we consider the 37! design
with the defining contrast I = ABC. It is a 1/3-fraction design in nine runs and three factors
labeled A, B and C. Let z;,z, and z; denote the levels 0, 1, 2 of the factors A, B and C
respectively. Then the defining contrast is given by the equation z; 4+ z, + 23 = 0 (mod 3).
Since this equation is equivalent to 2z, + 2z, + 2z3 = 0 (mod 3), to avoid ambiguity we
adopt the convention that the first nonzero coefficient should be 1. Notationally the second
equation can be represented by I = A?B?C'%. The aliases of each effect can be obtained by
multiplying the effect to the equation I = ABC = A?B*C?. For example, by multiplying A
(i.e., the main effect of factor A) to each of the three entries of the equation and adopting

the previous convention for uniqueness, we have

A= AB*C* = BC;



similarly we have B = AB?C = AC, C = ABC?* = AB, AB? = AC? = BC(C?. Effects
in the same equation are called aliases, e.g., BC and AB*C? are aliases of A. In factorial
experiments it is common to adopt the hierarchical assumption that higher order effects are
less important (or less likely to be important) than lower order effects. So the six aliases
of A, B, C are not estimable. Interestingly, one of AB? AC? and BC? is estimable if the
other two are assumed negligible. Take, for example, AB2. It is one component (with two
degrees of freedom) of the A x B interaction. In order for experimenters to designate it as
an estimable interaction, we must first understand its meaning. To do so, let us represent

the nine factor combinations of A and B by the nine cells in the following 3 x 3 square
T2

0 1 2

0| i (yoo) | Bk (yo1) | 77 (Yo2)

1 1|87 (y10) | 72 (y11) | @k (y12)

2 | vk (y20) | @ (y21) | Bi (y22)

where oo, o1, - -,Y22 are the nine observations obtained from a 3? design. The letters
a,B,7,1,j,k represent the groupings of the observations, e.g., a represents the group of
observations Yoo, Y12, ¥21- Let Yo = Yoo+ Y12+ Y21, Ys = Yo1 + Y10+ Y22, - Yk = Yo1 1+ Y12+ Y20-
The AB interaction component represents the contrasts among the three groups of cells
defined by z; + z; = 0,1,2 (mod 3) respectively, i.e., the contrasts among ya,ys,y,- This
AB interaction component contains two degrees of freedom and can be further decomposed

into two orthogonal contrasts, each with one degree of freedom, e.g., Yo —yg and yo — 2y, +y5.



Similarly the AB? interaction component represents the contrasts among the three groups
of cells defined by z; + 2z, = 0,1,2 (mod 3) respectively. The three groups are represented
by the letters i, j, and k. For more details see John (1971, pp130-132, ppl77-184) and
Kempthorne (1952).

The contrasts represented by AB and AB? are a result of mathematical artifacts and
usually do not have a natural interpretation. It would be difficult in most practical situations
to single out one component as the contrast of interest. Therefore investigators will find it
hard to make use of an interaction that has only one estimable component.

A more meaningful decomposition of the A x B interaction is obtained through the linear
contrast £ = (—1,0,1) and the quadratic contrast ¢ = (—1,2, —1), where the coefficients in
¢ and q are applied to the observations with levels 0, 1, and 2. For example, the linear-by-
linear contrast £ x £ represents (Yoo + y22) — (Yo2 + Y20). The £ x ¢, ¢ x £, and g x g contrasts
are similarly defined. For quantitative factors these contrasts are more meaningful than the
AB and AB? contrasts. The problem is that they cannot be expressed in group-theoretic
terms and therefore cannot be represented by graphs.

Next we consider the more interesting case of the 3*! design with I = ABCD. As-
suming that the 3fi’s and 4fi’s are negligible, A, B,C, D are estimable. Among the 2fi’s,
AB? AC?,AD? BC? BD?* CD? are not aliased with any 2fi’ and are therefore estimable.
For example, by multiplying AB? to I = ABCD = A?B*C?D?, we have AB? = AC*D? =
BC?D?. Following Wu and Chen (1992), we call a 2fi eligible if it is not aliased with any

main effects. An eligible 2fi is called clear if it is not aliased with any other 2fi’s. The six



Figure 1. Graphs for the 3*! design with I = ABCD

No. 1 No. 2

2fi’s given above are clear. The remaining 2fi’s are aliased in three pairs: AB = CD, AC =
BD,AD = BC(C. These six 2fi’s are eligible but not clear. Only one in each aliased pair
is estimable if the other is assumed negligible. The six clear 2fi’s form a complete graph
among the vertices (or factors) A, B,C, D, i.e., a graph consisting of lines between any pair
of vertices. The three non-clear 2fi’s can form two nonisomorphic graphs: one represented by
AB,BC,AC; another by AB, AC, AD. (Two graphs are isomorphic if one can be obtained
from the other by relabeling the vertices). Hence we have two graphs in Figure 1 to represent
all the possible estimable 2fi’s. The numbers in the circles refer to the column numbers of
L27(313) as given in Table 1 of the next section, where L;7(3'®) denotes the orthogonal array
(with strength two) of size 27 having 13 columns with three levels (see Rao 1947). From the
correspondence between column numbers and factorial effects in Table 1, if columns 1, 2,
and 5 represent A, B, and C, then column 8 represents D = ABC. Explanation of column
numbers for single-line edges is deferred to the next section.

Between any two vertices, say A and B, there can be two lines representing the two



components AB and AB? of the interaction A x B. Graphically using two different lines to
distinguish clear and non-clear 2fi’s was first proposed by Wu and Chen (1992) and Robinson
(1993). In this paper we adopt Robinson’s convention of using solid lines for clear 2fi’s and
dashed lines for eligible but non-clear 2fi’s.

The notion of “clearness” can also be applied to the main effects. For illustration, consider
the 3*~! design defined by I = ABD. From the aliasing relations A = BD = AB?D? A is
estimable only if BD is negligible. We call A non-clear because it is aliased with a 2fi. The
main effects B and D are also non-clear. On the other hand, C is clear because it is not
aliased with any 2fi’s. Following Robinson (1993), we use a circle drawn with solid line for a
clear main effect and a circle drawn with dashed line for a non-clear main effect. Among the
2fi’s, AC, AC? BC,BC?% CD,CD? are clear and are represented by solid lines in Figure 2;
AB,AD, BD are not eligible. The remaining 2fi’s are aliased: AB*> = AD? = BD?. So only
one of them, say, AB?, is eligible but not clear, which is represented by a dashed line. For
this design, there is only one graph as given in Figure 2. If, instead, AD? is chosen for the
dashed line, the resulting graph will be isomorphic to the one given in Figure 2. The choice
of column numbers in Figure 2 can be justified by the correspondence given in Table 1. If

columns 1, 2, and 5 represent A, B, and C, then column 3 will represent D = AB.



Figure 2. A graph for the 3*~! design with I = ABD
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3 Non-isomorphic graphs for 27- and 81-run designs

For easy access to interaction graphs in experimental planning, we construct all the non-
isomorphic graphs for 27- and 81-run designs with number of factors ranging from 4 to
8. Since isomorphic graphs are essentially the same if renaming of factors is allowed, it is
sufficient to provide non-isomorphic graphs. From this collection of graphs, users can select
the best graphs to suit their needs.

In the following presentation, we organize the designs in categories according to run
size and number of factors. In each category, the designs are listed in ascending order of
the aberration criterion. Therefore, the first design in each list is the minimum aberration
design.

Although the graphical symbols were introduced in the previous section, we give a sum-
mary here for easy reference. A vertex of a graph denotes a factor and its corresponding
column number. A double-line edge represents the two components of the interaction be-

tween the two corresponding factors (e.g., AB and AB? of the A x B interaction). A solid



Table 1. Arrangement of the 13 columns in L,7(3'%) in Yates order

123 4 5 6 7 8 9 10 11 12 13

column

a b ab ab® ¢ ac bc abc ab’c ac? bc® abc® ab?c?

circle indicates a clear main effect and a dashed circle indicates an eligible but non-clear
main effect. A solid line indicates a clear interaction component (e.g., AB or AB?) and a
dashed line indicates a non-clear interaction component.

The column numbers in the graphs represent the columns in the 3-level designs arranged
in the standard (Yates) order. For L,7(3'®), the 13 columns are represented by the 13 factorial
effects of a 3% design as in Table 1.

The column numbers for the interaction between columns C; and C; are obtained through C;C;
and C;(C;)?. For example, suppose we want to know the column numbers of the double lines
between vertices labeled 2 and 8 in a graph. From the symbols of columns 2 and 8 in Table
1: C; = b and Cg = abc, we have C2Cs = b - abc = ab’c and C3(Cs)* = b- (abe)? = a’c® = ac.
By looking up the two symbols ab®c and ac in Table 1, we immediately have the column
numbers 9 and 6. For easy reference, we provide the interaction table for Ly7(3'?) in Table 2,
where each entry has two numbers, the first indicating the column number for C;C; and the
second for C;(C;)?. Once the column numbers of the two vertices (i.e., factors) are known,
the column numbers of their double-line edge (i.e., interaction components) can be easily
read from Table 2. For clarity of graph representation we do not give column numbers to

double-line edges. Column numbers for single-line edges are given in all the graphs. Tables



Table 2. Interaction table for Ly7(3'?)

column | 1 2 3 4 5 6 7 8 9 10 11 12
2 3,4

3 4,2 4,1

4 3,2 1,3 1,2

5 6,10 7,11 8,12 9,13

6 10,5 8,9 13,11 12,7 10,1

7 8,13 11,5 9,10 6,12 11,2 12,4

8 13,7 9,6 12,5 10,11 12,3 9,2 13,1

9 12,11' 6,8 10,7 13,5 13,4 8,2 10,3 6,2

10 6,5 12,13 9,7 g1 16 1,5 3,9 4,11 3,7

11 129 17,5 136 10,8 2,7 3,13 25 410 1,12 84

12 9,11 13,10 8,5 6,7 38 4,7 46 35 1,11 132 9,1

13 8,7 10,12 6,11 9,5 49 3,11 18 1,7 45 122 6,3 10,2

1 and 2 can be easily extended for Lg;(3*°) (see Taguchi 1987, vol II, pp. 1158-1161).

3.1 Designs with 27 runs

Since graphs for the two 391 designs have been given in the previous section, we present

the graphs for 5-8 factors in this section.

3.1.1 Graphs for 3°~? designs

According to Chen, Sun and Wu (1993), there are three non-isomorphic 3°~2 designs:
(i) I=ABD= AB*CE, WLP = (1,3,0),
(i) I=ABD=ACE, WLP=(21,1),
(ii) I=ABD=ABE, WLP=(4,0,0).
For design (i), there are 29 non-isomorphic graphs. Some graphs are better than the
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others in terms of the number of double-line edges. As argued before, it makes more practical
sense to use the graphs if both components of the interaction are eligible so that we can
decompose the four degrees of freedom of the interaction in other ways such as the £ x ¢,
£x g, qx{, and q x g contrasts. Out of the 29 graphs only six have three or four double-line
edges. Since the remaining graphs are inferior in terms of the number of double-line edges,
we only present these six graphs in Figure 3.

Each of the graphs in Figure 3 has two clear main effects represented by vertices with
column numbers 5 and 9 and one clear interaction component (column 13) indicated by the
solid line between vertices 5 and 9. This fact suggests that users may assign the two most
important factors to columns 5 and 9 so that their main effects and one component of their
interaction are clearly estimable.

Among these six graphs, graph 5 is superior to the others because it has one more double-
line edge than the others. The remaining five graphs can be grouped into two types: the
first with all three double-line edges connected to one common factor (graphs 1, 2, and 3)
and the second with the three double-line edges forming a triangle among the three factors
(graphs 4 and 6). The first type of graphs is useful if one factor is likely to have interactions
with other factors, while the second type is useful if three factors have pairwise interactions.

For design (ii), all the graphs have fewer than three double-line edges. They are considered
to be inferior to the graphs for design (i). The design is not recommended for estimating
interactions.

For design (iii), there is only one graph as given in Figure 4. It has four double-line edges

11



Figure 3. Graphs for the 3°~% design with ] = ABD = AB*CE

No. 4 No. 5 No. 6
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Figure 4. A graph for the 3°~2 design with ] = ABD = AB’E

with all 2fi’s clear. This graph is strongly recommended in the case that one factor is far
more significant than the rest. Such a factor should be assigned to column 5. This graph
provides a good alternative to the graphs for design (i).

In terms of the aberration criterion and the diversity of graphs for accommodating inter-

action, we recommend design (i) as the best choice.

3.1.2 Graphs for 3%3 designs

There are four non-isomorphic 3%~ designs:

(i) I=ABD = ABCE = AB*C*F, WLP = (2,9,0,2),
(i) I=ABD= ACE=BCF, WLP = (3, 6, 3, 1),
(iii) I = ABD = ACE = BC*F WLP = (4, 3, 6, 0),
(iv) I=ABD = AB’E = ACF WLP = (5, 3, 3, 2).

For design (i), there are 97 graphs, out of which only three graphs (given in Figure 5) have

three double-line edges. Other graphs have one or two double-line edges and are therefore
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Figure 5. Graphs for the 32 design with I = ABD = AB?CE = AB*C*F
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For design (ii), there are only four graphs (given in Figure 6) having three double-line

edges among the 146 graphs.

For design (iii), all the 43 graphs have at most one double-line edge. The design is not

recommended for estimating interactions.

For design (iv), there are two graphs having three double-line edges (see Figure 7) out of

25 graphs.
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Figure 7. Graphs for the 35~2 design with ] = ABD = AB*E = ACF
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Overall we recommend design (i) and (ii).

3.1.3 Graphs for 3"~* designs

There are four non-isomorphic 3”~* designs:
(i) I=ABD = AC?E = BC?*F = AB*C*G,
(i) I=AB?D = ABCE = AB?CF = BC*G,
(i) I = AB?D = ABCE = AC*F = BC*G,
(iv) I=ABD = AB?E = AB*CF = AB*C*G,

For design (i), all the graphs have at most two double-line edges, and are inferior to the

graphs for designs (ii)-(iv).

Each of designs (ii), (iii) and (iv) has one graph with three double-line edges. The graphs

are given in Figure 8.

This is an interesting case. The minimum aberration design (i) is quite poor for accom-

modating interactions. It may be explained by the word-length patterns. Design (i), though
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WLP = (5, 15, 9, 8, 3),
WLP = (6, 11, 15, 4, 4),
WLP = (7, 10, 12, 9, 2),
WLP = (8,9, 9, 14, 0).



Figure 8. Graphs for 37~* designs
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having the smallest number of three-letter words, has far more four-letter words than the

other designs. The same explanation applies to the 3%7° designs given next.

3.1.4 Graphs for 3%~° designs

There are three non-isomorphic 3%~° designs:

(i) I=ABD=ABCE = AB*CF = AC*G = BC*H, WLP = (8, 30, 24, 32, 24, 3),
(i) I=AB?D = ABCE = AB®CF = AC?*G = BC®H, WLP = (10, 23,32, 30, 22, 4),
(iii) I=ABD = AB?E = AB*CF = BC*G = AB*C*H , WLP = (11, 21, 30, 38, 15, 6).

Design (i) has no graph with more than one double-line edge.
For design (ii), there are four graphs with two double-line edges (Figure 9), and for design

(ii1), there are three graphs with two double-line edges (Figure 10).
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Figure 9. Graphs for the 3*~° design with I = AB*D = ABCE = AB*CF = AC*G= BC?’H
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Figure 10. Graphs for the 3%~° design with I = ABD = AB*E = AB*CF = BC?G = AB*C*H
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3.2 Designs with 81 runs

For five factors, the 3°~! design with I = ABCDE has resolution V. Since its interactions
are estimable, there is no need to use a graph-aided method. Using the method in Chen et
al. (1993), we can show that resolution IV designs exist for 6 to 10 factors. Note that for
resolution IV designs all main effects are clear from 2fi’s, i.e., all the circles in the graphs are
solid.

Since the number of graphs for 8, 9, 10 factors is too large, it is impractical to give them
in this paper. In the following we only consider 6 and 7 factors. All the other graphs are

available from the authors.

3.2.1 Graphs for 3% designs

There are two non-isomorphic 3%~% designs:

(i) I=ABCE = AB*DF, WLP = (0, 2, 2,0),
(ii) I =ABCE=ABDF, WLP=(0,3,0,1).
Design (i) has four graphs (see Figure 11) with 10 double-line edges, while design (ii) has

none. Design (i) is recommended.

3.2.2 Graphs for 372 designs

There are two non-isomorphic 373 designs:

(i) I=ABCE = ABDF = AB*C*DG, WLP = (0, 5,6, 1, 1)
(i) I=ABCE = ABDF = ACDG , WLP = (0, 6, 3, 4, 0)

For both designs the maximum number of double-line edges is ten. However, even with

18



Figure 11. Graphs for the 3°~% design with I = ABCE = AB?DF
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Figure 12. Graphs for the 3"~ design with I = ABCE = ABDF = AB?C*DG

10 double-line edges, there are still too many non-isomorphic graphs to be enumerated. By
eliminating all the single-line edges from the graphs, we have six graphs with 10 double-line
edges for design (i) (see Figure 12) and another six graphs for design (ii) (see Figure 13).
The two designs are comparable according to the aberration criterion and the number of

estimable interactions.

4 Comparison with Taguchi’s linear graphs

There are three major aspects that distinguish our approach from Taguchi’s. First, as

argued in Wu and Chen (1992), Taguchi’s collection of graphs is not exhaustive and hence

20



Figure 13. Graphs for the 3"~3 design (ii) with ] = ABCE = ABDF = ACDG

21



incomplete, while ours is complete in that it searches through all nonisomorphic graphs for
each 3-level design. Secondly, we provide some insights on the problem through the use of
single-line and double-line edges which indicate how the degrees of freedom are allocated
for interaction estimation. Different characteristics of the interactions are represented in
the graphs by double-solid lines, double-dashed lines, double-mixed lines, single solid lines,
and single dashed lines. Finally, we provide the graphs for all the nonisomorphic designs
(including the minimum aberration designs) with given run size and number of factors. ‘This
approach gives the users more flexibility in the selection of graphs. In the following, we
compare the graphs in this paper with those of Taguchi.

Graph for Lg:

For Ly, there is only one graph available (see Taguchi 1987, p. 1153). To avoid redun-
dancy, we do not present the graph in this paper.

Graphs for Lj7:

Taguchi (1987, p. 1155) gave two graphs. Our paper provides a complete collection of
graphs (Figures 1-10) for 4 to 8 factors. The graphs for design (ii) in Figure 8 and in Figure
4 match Figures 38 and 39 in Robinson (1993). The graphs in Figure 3 provide a greater
variety of choices than Taguchi’s two graphs. For example, graphs 4 and 6 not only allow the
estimation of the “triangle pattern of interactions” as in Taguchi’s graph, but also provide
two extra interactions with different geometrical structures.

Graphs for Lg;:

Taguchi (1987, pp. 1162-1168) gave a collection of 14 graphs. Neither his 14 graphs nor

22



ours are complete. However, there is a significant difference between the two approaches.
Taguchi’s graphs are some special examples. It is not clear on what basis these graphs were
chosen. We actually searched through all nonisomorphic graphs and stored a complete col-
lection of graphs in computer files. Because the number of graphs is too large for publication
or practical application, we selected a small subset of graphs from the complete collection
based on the new criterion in terms of the number of double-line edges of a graph. For
users who do need graphs for Lg; with more than 6 factor, the graphs are available upon
request. It should, however, be pointed out that Lg; is seldom used in practical experiments,
while Ly and L7 are used much more frequently. For example, no Lg; was found in the first
five volumes of the Supplier Symposium on Taguchi Methods published by the American

Supplier Institute during 1983-1987.

5 An example of graph-aided planning of 3-level ex-

periment

A process of mounting components onto the surface of a printed wiring board consists of
two steps: epoxy application and component placement. Three factors are considered for
epoxy application: dispensing pressure (A), dispensing time (B) and dispenser speed (C).
Two factors are considered for component placement: component pressure (D) and tool
height (E). Each factor has three levels. It was thought that the three factors for epoxy

application had pairwise interactions, i.e., the interactions A x B, A x C' and B x ( should
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be estimated clearly from each other and from the main effects. How to find a 3-level design
to accommodate the estimation of the main effects A to E and A x BjAx Cand Bx C ?

First we draw a graph (see Figure 14) to represent the three designated interactions as
a triangle among A, B and C. Each edge connecting two vertices has two lines. Next we
compare this graph with the graphs given in Figure 3 for the minimum aberration 3°~?2

design.

Figure 14. An example of interaction assignment graph

(A A - dispensing pressure
@ B - dispensing time

(®)

C - dispenser speed

D - component pressure

(© @ E - tool height

It turns out that graphs 4 and 6 in Figure 3 include the graph in Figure 14 as their
subgraph regardless of the types (solid or dashed) of the edges or vertices of the triangle. By
comparing graph 4 (or 6) with the graph in Figure 14, we assign factors A, B, C to columns
1,5,9 and factors D, E to columns 2 and 3. The exact assignment depends on which graph is
being used. Note that both graphs 4 and 6 in Figure 3 have two extra estimable interactions
which are not provided in Taguchi’s graph. If the experimenter has prior knowledge that
factor D is more likely to have interaction with A, B, or C, we recommend using graph 4 with
factor D being assigned to column 2 so that columns 7 and 8 can be used to estimate, say,
AD and BD. Alternatively, if A is known to be the most important factor and the estimation
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of its interactions with the rest of the factors are desirable, we recommend using graph 6
with factor A being assigned to column 5 and factors D and E being assigned to columns 2

and 3.
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