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ABSTRACT

A general method for constructing supersaturated designs is proposed. It is proved that
supersaturated designs produced by this method are optimal with respect to the E(s%) criterion of
Booth & Cox (1962). Within this class of designs, further discrimination can be made by
minimizing the pairwise correlations and using the generalized D and A criteria proposed by Wu
(1993). Efficient designs of 8, 12, 16, 20, and 24 runs are constructed by following this approach.
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1. INTRODUCTION

Whenever the number of parameters of interest exceeds the number of runs of a design,
the design is called supersaturated. For example, when m factors are investigated in a two-
level experiment, a supersaturated design has less than m + 1 runs. A brief review of early
work on supersaturated designs by Satterthwaite (1959), Watson (1961), and Booth & Cox
(1962) can be found in Wu (1993).

After thirty dormant years, interest in supersaturated designs has recently been renewed
and gaining momentum. Lin (1993) uses half fractions of Hadamard matrices to construct
supersaturated designs, taking a column as the branching column and then constructing two
half fractions according to the sign of that column. Wu (1993) augments Hadamard matrices
by adding interaction columns. Generalized D and A criteria for assessing supersaturated
designs are proposed by Wu. Though the methods of Lin and Wu produce some useful
designs, they have the limitation that both depend on Hadamard matrices with certain
three dimensional properties. (For details, see § 6.)

In this paper, we propose a general method for constructing supersaturated designs also
through the use of Hadamard matrices. This method is more flexible in that any Hadamard
matrix can be used for construction. We will demonstra,te this flexibility by constructing
supersaturated designs of 8 and 16 runs for which Lin’s and Wu’s methods fail. More
significantly, the proposed method generates optimal supersaturated designs in the sense

of minimizing the E(s?) criterion. The E(s?) of a supersaturated design having m columns



is defined as

Es)= Y s5/(75 ), (1)

1<i<i<m
where s;; = (c;,c;) is the inner product of the ith column ¢; and the jth column c;.
In § 2 we present the construction method and establish its optimality. In §§ 3-5 we
construct supersaturated designs of 8, 12, 16, 20, and 24 runs. Comparison with Lin’s and

Wu’s methods is made in § 6.

2. CONSTRUCTION METHOD AND ITS E(s?) OPTIMALITY

We motivate the construction method by a simple result. Let ¢o = (1,...,1)* € R* and
R3 = {z € R* | (a:,co) = 0}, be the orthogonal complement of c,. Consider the subset of
R?, C = {c € Ry | the components of ¢ are £1 }. Suppose c1,...,ca_1 in C are mutually

orthogonal. Then for any c in C, we have

n—1 .
Y e, e)[* = n?, (2)
i=1
which follows from the fact that ¢;//n,...,cn—1/+/n form an orthonormal basis.
Suppose that we want to start with a set of orthogonal columns c;,...,¢qn—1 in C to

construct a supersaturated design by adding more columns ¢y, cny1,-..,cm from C. By (2),

we have

3 s§j=(m—n+l)n2+ > 8.?_,,--

1<i<j<m n<i<j<m

Therefore the E(s?) value is minimized by requiring c,,cnt1,-..,cm to be mutually orthog-
onal. We can fulfill this requirement only if m — (n — 1) < n — 1, that is, m < 2(n —1). If
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more columns are to be added, they should also be orthogonal. This motivates the following
construction method. Let H; = (co,Cj15--+5Cj(n-1))» J = 1,...,k, be k Hadamard matrices
of order n, i.e., the n columns in H; are orthogonal. Then we may obtain a supersaturated

design with m = k(n — 1) columns,
D = (Cu, «e+3C1(n—-1)C21y ¢+ -y C2(n—-1)y - - +> Cklys--) Ck(,,_.l)), (3)

k
which has E(s?) = ( 9 ) (n — 1)n?/ ( 7;' ) . As the Hadamard matrices considered in this

paper have c; as the first column, we will omit ¢o in presenting them.

A minimal requirement for the k Hadamard matrices is that none of the k(n —1) columns
is fully aliased with another. (Two columns c and d are said to be fully aliased if ¢ = £d.)
To ensure that D in (3) is a good supersaturated design, we also want each s7; in (1) to
be small. This poses the problem of selecting appropriate Hadamard matrices Hj,..., H,
which will be discussed at the end of the section. We first study som; theoretical aspects of
supersaturated designs and prove the optimality of our construction method.

To make designs comparable, we standardize D in (3) to be
D* = D/+/n. (4)
Each column of D* is a unit vector in R§. The design D* has
B =(n-1)(5) /(5 ) =k-1)/m-1).

Now consider any other competing design X = (1, ...,Zm), Where each z; is a unit vector
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in R?. The following theorem gives a lower bound on the E(s?) value and establishes the
E(s?) optimality of D*.
Theorem 1. (i). For anym 2> n and the design X = (Z1,...,%m), we have

m-n+1
(m—1)(n—1) (5)

E(sz) >

(ii). For m = k(n — 1), D* are optimal according to the E(s?) criterion.
Proof. Let A = X*X. From tr(A?) = tr(A*4) = ¥ s, where the summation is over all 7, j,
we have

E(s”) = (bx(4%) —m)/2( 3 ) - (6)
It can easily be checked that tr(A%) = M}y + -+ + M), where Aq) 2> -+ = A(m) are the
ordered eigenvalues of A. Since X has rank at most n — 1 and A has the same rank as X,

we have )\ = 0 for i > n. Thus tr(A?) = Ay + -+ + Afa_q)- We also have

n—1 m
z A(,‘) = Z A(,’) = tr(A) =m.
=1 =1

Under this constraint, z\fl) + -+ z\fn_l) is minimized by taking A3y = -+ = An-1) =
m/(n — 1). Therefore tr(A?) > (n —1)m?/(n — 1)? = m?/(n — 1). Finally, by (6), we have

B(s") > (m*/(n — 1) —m)/m{m — 1) = 7= s

which proves Theorem 1(i). The lower bound in (5) becomes (k—1)/(m—1) for m = k(n—1),
which is attained by D* in (4). This proves Theorem 1(ii).

To construct a supersaturated design with m = (k—1)(n— 1)+ columns, 1 < j <n-—2,
we may simply delete the last (n — 1 — j) columns from D*. Though the resulting design
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does not achieve the lower bound in (5), it has E(s?) value véry close to the lower bound. It
is not known whether this design is still E(s?)-optimal.

We now discuss the choice of appropriate Hadamard matrices for constructing supersat-
urated designs. For a given Hadamard matrix, we may switch the signs for any column,
or permute the columns or rows to obtain many other equivalent Hadamard matrices. It is
obvious that only permuting the rows needs to be considered for our purpose. If there are
several nonequivalent Hadamard matrices of a given order, we can generate all Hadamard
matrices of a given order by permuting the rows of each of the nonequivalent matrices.

To find k Hadamard matrices such that each s; in (1) is small, we utilize equation (2).
It is known that except for n = 1,2, the integer n must be a multiple of 4. Suppose n > 4,
and n = 4t. It can easily be shown that (d;,d;) is also a multiple of 4, for any d,,d; € C.

Let (c,c;) = 4t;. Then (2) reduces to

Ty =1. ()

Jj=1
The correlation of c and ¢;, t;/t, can only take the values 0,+1/¢,...,+(t — 1)/¢,£1.
Formula (7) is used as a guide in selecting appropriate Hadamard matrices in §§ 3—5.

We do not use the conservative criterion max s7, as it will exclude many useful designs.



3. SUPERSATURATED DESIGNS OF 8 RUNS

For n = 8, there are, in total, ( 2 ) = 70 columns in C. Once a column is included in a

design, its negative must be ruled out. With the provision that a column and its negative are
considered identical, there are 35 columns to be considered. These 35 columns together give

a supersaturated design of which any two columns are either orthogonal or have correlation
+1/2, as t = 2 in (7). Simple enumeration shows that among the ( 325 ) = 595 pairs of

columns, 315 pairs are orthogonal and the remaining 280 pairs have correlation +1/2. Thus
for this design E(s?) = 280 x 16/595 = 7.53.

Using the method proposed in §2, we can construct supersaturated designs with less than
35 columns. Because all Hadamard matrices of order 8 are equivalent, we can take any of
them as a starting Hadamard matrix. Permuting the rows of this matrix gives all Hadamard
matrices needed for constructing supersaturated designs. The one we choose, denoted by
H,, is given by the first seven columns of the design D in Table 1.

( Table 1)

By permuting the rows of Hy, we can easily find another matrix H; such that no column
of H, is fully aliased with any column of H;. Therefore we obtain a supersaturated design
D, = (Hy, H,) with 14 columns, which has E(s?) = 4.92. We again permute the rows of
H, to look for an Hj such that no column of Hj is fully aliased with any column of D;.
Computer search confirms that no such Hj exists for any choice of H,. Because of this fact,

we have to modify the previous construction method.



Recall that there are 35 columns in C. Putting the 14 columns in D, aside, we denote the
set of the remaining 21 columns by C’. Since there do not exist seven columns in C’ that are
mutually orthogonal, we proceed to find all the subsets of six mutually orthogonal columns.
It would be desirable to have three such subsets that are mutually exclusive. Again this is
impossible for any choice of H,. The best we can get is to divide the 21 columns into four
groups Hj, Hy, Hs, and He as in Table 1, where Hs and H, have six columns, Hj has five, and
Hg four, and the columﬁs within each H; are orthogonal. Write D = (Hy, H,, H3, Hy, Hy, He).
When a design with m columns, m < 20, is needed, we simply take the first m columns from
D. Permuting the columns of H; does not make any difference. However, for m > 21, the
order of columns in Hj, j = 4,5,6, matters. Thus we arrange the six columns of H; in
the order of increasing correlation with D, = (H;, H,, H3). That is, the column a, in H,
giving the smallest 3 |(a1,d)|?, comes first, the column a, in Hj giving the second smallest
Y |{az,d)|* comes second, and so on, where the summations are over d € D;. The orders
of columns in Hy and Hg are arranged accordingly. ;jFrom this arrangement, a design with
m columns can be obtained by taking the first m columns of D, and has the smallest E(s?)

value.

4. SUPERSATURATED DESIGNS OF 12 RUNS

All Hadamard matrices of order 12 are equivalent. We take H; = (¢1,...,¢11) to be

the one given by Paley (1933), which is essentially the same as the Plackett-Burman (1946)



design of 12 runs. For n = 12, (7) becomes

(/9 = 1. ®)

i=1
Note that ;/3 is the correlation of ¢ and c;. ;jFrom (8), we see that the relationship of a

column ¢ with the matrix H; = (¢i,...,c11) must be one of the four types:
(i) cis fully aliased with one column of H;, and orthogonal to the rest,

(ii) c has correlation +2/3 with two columns of H; and correlation +1/3 with one column

of Hy, and is orthogonal to the rest,

(iii) c has correlation +2/3 with one column of H; and correlation +1/3 with five columns

of Hy, and is orthogonal to the rest,
(iv) c has correlation +1/3 with nine columns of Hy, and is orthogonal to the rest.

We now show that type (ii) is impossible. Suppose, without loss of generality, that ¢ has
correlation 2/3 with ¢; and ¢, that is, (c,e1) = (c,c2) = 8. Let ¢ = (a1,as,...,a,)},

¢1 = (a11,@21,. - - yam1 )}, and ¢z = (@12,022,. . .,an2)", where n = 12. Then we have

12
(et = aan =2 ) aa,

i=1 ai=+1
which implies that the sum of a;; over ¢ with a; = +1 is 4. Therefore among the six a;;’s
with a; = +1, five are +1, and the remaining one is —1. A similar result holds among the six
a;2’s with a; = +1. Thus at least four of the six pairs in {(a:1,a:2)|a; = +1} are (+1,+1),
which contradicts the definition of orthogonality between ¢; and c,.
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Let H, = (dy,. - -»d11) be another Hadamard matrix of order 12. For each d;, we would
like its relationshipp Wwith H; to be of type (iv). The following result shows that no such
Hadamard matrix H exists.

Lemma 1. Let s be the number of columns of H, having their relationships with H, to be
of type (iv). Then s < 10, and in addtion, for 6 < s < 10 at least one column of H, is fully
aliased with some column of Hy.

Tts proof is given in the Appendix.

We now have two ways to proceed. One way is to allow no pair of columns to have
correlation +2/3, in which case one column of H, must be fully aliased with some column of
H;. Removing that column of H;, we may obtain a design with 21 columns, which consists of
11 columns of H; and 10 columns of Hz. This is essentially equivalent to Wu’s construction
method (1993) which simply takes H, = (c1,¢1€2,C1C34 . - -, C1€11), Where (c1,...,c11) = Hy,
and c;c; is the component-wise product of ¢; and c;. If more columns are needed, we should
find an H; such that for each Hj, j = 1,2, one column of Hj is fully aliased with some
column of H; and each of the remaining 10 columns of H3 has its relationship with H; to
be of type (iv). Two columns of Hs have to be removed in constructing a supersaturated
design, and so we can arrive at a design having 30 columns of which 11 columns are from
Hi, 10 columns from H,, and 9 columns from Hj. This is again equivalent to Wu’s method
which takes Hs = (¢2,¢2€1,Ca2C3y - -+ ,c2¢11). If this procedure is continued, it is seen that we
can construct a supersaturated design with 114+10+---+2+1= 66 columns. Although

our method can lead to a design essentially the same as that of Wu (1993), Wu’s method
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has the virtue of giving explicit expressions for H,, H3, and so on. On the other hand, the
present argument serves to provide an alternative justification for Wu’s designs.

The other way is to permit pairs of columns to have correlation +2/3. In this case, the
best is to take s = 5 in finding an Hy, that is, five columns of H; are of type (iv) and the
remaining six columns of type (iii). Simply by permuting the rows of H;, we can easily
find such an H,. We thus obtain a supersaturated design (Hi, H) with 22 columns, and its
E(s?) = 6.86 is smaller than that of Wu’s design. As a trade-off, (Hy, H2) has six pairs of
columns with correlation +2/3. |

Lin’s (1993) design with 22 columns has the same E(s?) value, 6.86, but enjoys the
advantage of having no pair of columns with correlation +2 /3. However, among all pairs of
columns of (Hy, Hz), only 2.6% (i.e. six pairs) have correlation +2/3. The design (H;, H)
has the following advantage not shared by Lin’s design. Its 22 columns consists of two
sets of 11 mutually orthogonal columns. If the 22 factors to be studied in an experiment
may be naturally divided into two groups of 11 factors each, such that the small number of
significant factors, i.e. those with non-zero effects, must appear in the same group, (Hy, Hz)
can actually provide an orthogonal design in this situation. These remarks, in a slightly
generalized form, apply to any supersaturated design constructed by the method in § 2.

We have found 10 other Hadamard matrices by permuting the rows of H;. Altogether
we have 12 Hadamard matrices Hy, Ha, ..., Hy, satisfying the condition that for any column
¢ € H;, its relationship with any Hj, j # 1, is of type (iii) or (iv). Thus we obtain a

supersaturated design with 132 columns D = (Hy, H,,...,H;;), which has E(s?) = 12.09.
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The proportions of pairs of columns having correlation 0, +1/3, and +2/3 are 43.89%,
49.62%, and 6.49%, respectively.

The matrix H; and the corresponding permutations ps, . .. p12 for generating H,,...,H,»
are given in Table 2; the matrix H;, 2 < i < 12, can be obtained by p; = (Pi15 Pizy - - - Pir2),
where the jth row of H; is the p;;th row of H.

( Table 2)

We conclude this section by making some recommendations on the use of 12 run super-
saturated designs. For 12 < m < 21, Wu’s designs are recommended. For m = 22, the
user can employ either Lin’s design or ours depending on the situation. For 23 < m < 66,
both Wu’s design and ours are useful, and it appears that each complements the other. For

m > 67, only our designs are available.

5. SUPERSATURATED DESIGNS OF 16, 20 AND 24 RUNS

There are precisely five nonequivalent Hadamard matrices of order 16 as shown by Hall
(1961). We have used all of them to construct supersaturated designs, but no advantage
over the use of a single matrix shows up. We hence only use the Hadamard matrix H,
corresponding to a regular fractional factorial design. From (7), it is easy to see that any 16-
run supersaturated design with H; as its first 15 colu;llns must have some pairs of columns
with correlation +1/2 or higher. By permuting the rows of H;, we have found two other
Hadamard matrices, H, and Hs. The correlation matrix of H; and Hj, 1 < i < j < 3, has

an interesting pattern that each of its Tows or columns has two entries being +1/2, eight
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being +1/4, and five being 0. The three matrices Hy, H and H; together give a design
with 45 columns and E(s?) = 11.64. The proportions of pairs of columns with correlations
0,41/4, and +1/2 are 54.55%, 36.36%, and 9.09%, respectively. The matrix H; and the
corresponding permutations for H, and Hj; are given in Table 3.

(Table 3)

To construct supersaturated designs of 20 runs, we only use one of the three nonequivalent
Hadamard matrices of order 20, Hy, the one constructed by Paley (1933). We have obtained
two other Hadamard matrices H; and H; by permuting the rows of H;. Two columns of H,
have correlation 3 /5 with Hy, and nine columns of H; have correlation +3 /5 with (Hy, H,).
The columns of Hz are so arranged that the last two columns have correlation +3/5 with
Hy. A similar arrangement is made for the columns of Hs. The E(s?) value of the design
D = (H,, H,, Hs) is 14.29.

It is interesting to compare D with Wu’s 20-run design. For m = 36, Wu’s design has the
same E(s?) value as D, but has 17 pairs of columns with correlation +3/5. For m = 38, Wu’s
design has a higher E(s?) value than D, and has 19 pairs of columns with correlation +3/5.
On the other hand we can obtain a design with 46 columns, in which no pair of columns has
correlation +3/5, by discarding the last two columns of H;, and the last nine columns of Hs.
The matrix H; and the corresponding permutations for H, and Hj are given in Table 4.

(Table 4)
For the construction of 24-run designs, we permute the rows of the Hadamard matrix,

H,, given in Paley (1933), to obtain two other Hadamard matrices H, and Hjs. The design
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D = (Hy,H,,Hs) has E(s?) value 14.77, and the proportions of pairs of columns with
correlations 0,41/6,+1/3, and £1/2 are 53.15%, 31.07%, 13.43% and 2.34%, respectively.
The matrix H; and the corresponding permutations for H; and Hj are given in Table 5.

(Table 5)

6. COMPARISON WITH OTHER METHODS

In §§4 and 5 we have made specific comparisons between our designs and those of Lin
(1993) and Wu (1993). Here we make some general remarks on the three methods.

One common feature of the three methods is that they all make use of Hadamard matrices.
But they diverge in the flexibility and the quality of designs produced. Both Lin’s and Wu’s
methods rely on some three dimensional properties of an individual Hadamard matrix. To
see this, let H = (cij) = (c1,.++,cn-1) be a Hadamard matrix of order n. Suppose we choose
¢; as a branching column for Lin’s method. The inner product of any two columns of Lin’s

design can be shown to be

E CpjCpk = 2! E CpiCpjiCple = Z_II(i’j’ k))

cpi=+1 p=1

where I(i,j,k) is defined to be Y cpicpjcor, the summation being over p = 1,...,n. Thus
Lin’s method produces n — 2 distinct columns if and only if there exists an ¢ such that no
I(i,j,k), where j # k and are different from i, is equal to +n. A sufficient condition for
this requirement is that n is not a multiple of 8. When I(3, j, k) = +n, the three columns
¢, cjycx are fully aliased in the sense that cicjce = *co. Of course, for Lin’s method to
produce a good supersaturated design, it is also necessary that each I (%,7,k) is small in
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absolute value. The analysis also holds for Wu’s method. The only difference is that Wu’s
method in addition relies on some four dimensional properties of a Hadamard matrix for
constructing supersaturated designs with more than 2n — 3 columns. Details can be found
in the 1992 Waterloo Ph.D. Thesis of B. Tang.

Using Lin’s or Wu’s methods, we have to evaluate each I(1, j, k), and even each I(3, 5, k, 1),
which is defined similarly, to determine whether a given Hadamard matrix is suitable for
constructing a supersaturated design. If not, a nonequivalent Hadamard matrix should be
used instead, and computations of I(3,j,k) and I(, J,k,1) need to be carried out again.
In contrast, our method requires no knowledge of the three or four dimensional properties
of a Hadamard matrix. Any of the nonequivalent Hadamard matrices can be used for
construction. The construction of supersaturated designs of 8 and 16 runs demonstrates the
flexibility of our method. For the same cases, Lin’s and Wu’s methods cannot be applied.

In Table 6, using the E(s?) criterion we compare the supersaturated designs of 12 and
924 runs constructed by the three methods. For m < 2n — 2, our designs reach the minimum
E(s?) values of Lin’s and Wu’s designs, and for m > 2n — 1, our designs have lower E(s?)
values than Wu’s designs. Lin’s design is not available for m > 2n — 1.

(Table 6)

At the screening stage of an experiment, very often there are a large number of factors
to be studied. However, in many situations the number of factors with significant effects
is small. The idea of supersaturated designs stems from this assumption of effect sparsity.

Denote the number of significant factors by f. Then the E(s?) value of a design provides a
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measure of efficiency for f = 2. Since it does not measure the dependence among three or
more columns, for further comparison of designs, we use the Dy and Ay criteria (Wu, 1993),

D= Lxx(77 ), (9)

i

A= Gxx)?/( 7 ), (10)

where the summations are over all possible n X f submatrices X; of the full design matrix.
These are natural extensions of the D and A criteria and provide measures of efficiency for
f > 3. In Figure 1 we plot the values of Dy and Ay, f = 3,4, for the 8-run supersaturated
design given in § 3.
(Figure 1)

In Figure 1, we do not give the values of D, and A4 for m > 15, because for m > 15, some of
the matrices X!X; in (9) and (10) become singular. Therefore using this design for m > 15
calls for caution if there are more than three significant factors.

In Figure 2 we plot the Dy and Ay values of the 12-run design given in § 4, with the
number of factors m ranging from 12 to 66 for f = 3, and from 12 to 30 for f = 4. (For
f = 4 and m > 31, some matrices X;X; in (9) and (10) become singular.) Compared with
Wau’s design, the Dy values of our design are slightly lower, and the Ay values slightly higher.
This shows that in terms of the Dy and Ay criteria, Wu’s design is superior.

(Figure 2)
Finally we compute the Dy and Ay values of the 20-run design that consists of the 19
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columns of Hj, columns 1—17 of H, and columns 1—6 of Hs, where H;,H;,H; are given
in Table 4. The Dy values of this design, f = 3,4,5, are higher than those of Wu'’s 20-run
design, and the Ay values are lower. Thus in terms of the Dy and Ay criteria, our design is

better. The Dy and Ay values are plotted in Figure 3.

(Figure 3)
APPENDIX: PROOF OF LEMMA 1

Consider the matrix B = (3p;;), where p;; is the correlation of ¢; and d;. It is easy to
show that B is an orthogonal matrix. Without loss of generality, suppose the first s columns
are of type (iv). Thus each of these s columns has two entries being 0 and nine being +1.
For any two of the s columns, a = (a15---,a11) and b = (by,. ..,b11), it is necessary that
there is exactly one pair out of the 11 pairs, (ai, ), i =1,...,11, being (0,0), since a and
b are orthogonal. Without loss of generality, assume the first column of B has two 0’s in its
first two entries. Then for any 2 < j < s, one of the two top entries of the jth column of B
must be 0, and the other +1. It is tedious but straightforward to show that for s >4 the 0’s
in the top two rows and columns 2 to s of B must appear in the same row, say the first row,
for otherwise columns 2 to s cannot be mutually orthogonal. So there are at least s zeros
in the first row of B. Note that the relationship of ¢; with H; must also be of one of three
types (i), (iii), and (iv). Thus s = 11 would imply that the first row of B consists entirely
of 0’s, which is impossible. It is also clear that s > 6 implies that the relationship of c, with

H, must be of type (i). This finishes the proof.
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(H17 HZ) H3, H47 H57 HG)-

Table 1. A supersaturated design of 8 runs, D



Hy| p2{1 2 3 4 10 6 5 7 11 8 12 9
Hs | ps|1 3 97 2 4 8 11 6 5 10 12
Hy| psf1 2 3 4 5 7 12 11 8 6 9 10
Hs | ps|1 3 9 7 5 6 2 8 10 11 12 4
Hg | ps|1 3 9 7 10 8 12 4 6 2 11 5
H; | ps|1 2 3 4 7 12 11 10 5 6 8 9
Hs | ps|1 3 5 8 2 9 7 6 4 11 12 10
Hy| po|1 3 58 2 4 12 7 11 10 6 9
Hypo|pofl 3 58 2 6 11 12 7 9 4 10
Hyp|pnfl 3 56 8 4 6 11 7 12 2 10 9
Hi; |p2|1 3 56 8 10 7 6 11 12 4 2 9

Table 2. The Hadamard matrix of H; used to generate supersaturated designs of 12

runs, and the row permutations corresponding to the matrices, Hy, Hs, ..., Hys.
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Table 3. The Hadamard matrix of H, used to generate supersaturated designs of 16

runs, and the row permutations corresponding to the matrices Hy and Hs.
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Hy|py|12 2 8 319 6 10 14 17 4 16 5 7 18 11 9 13 20 15 1
Hs |ps| 94517 7 8 10 3 1614 215 6 1 18 12 13 11 19 20

Table 4. The Hadamard matrix of Hy used to generate supersaturated designs of 20
runs, and the row permutations corresponding to the matrices Hy and Hs.



Y+ + + + o+ o+ o+ o+ o+ o+ + 4+ 4+ + o+
- - - - -+ -+ = -+t - =+t -+ = 4+ o+ o+
- - - — -+ -+ - -+ + - -+ + -+ -+ + +
+ 4+ - - = = — 4+ - 4+ - -+ + - - + + - 4+ - + +
Y+ + - = = = =+ -+ - - 4+ + - -+ + -+ - +
o+ 4+ - - = = =+ -+ - -+ 4+ - -+ 4+ -+ -
N e A I e
e S T
T T T A
+ -+ - 4+t - = - - =+ -+ - -+ + - - +
T T T S S T S S S
T T S S S
T e T S T
T T T N
R T T e A e e
T T e S i S S
T T T T S e
T S I e
N T e e S S
T S S S A N
T T T S S A
R T I S e S S S S
T T S S N
R T e T e T e s S T

Hy|p, | 312717 9131615 610 232422 11 20 4 5 814 18 21 1 19 2
Hy|ps |10 42 32111191518 7 23 9 8 20 22 5 14 6 1 13 24 17 12 16

Table 5. The Hadamard matrix of Hy used to generate supersaturated designs of 24

runs, and the row permutations corresponding to the matrices Hy, and Hs.



n=12
m Lin Wu the authors
16 6.80 6.00 6.00
18 6.80 6.59 6.59
21 6.86 6.86 6.86
22 6.86 T7.40 6.86
24 —  8.17 7.82
55 — 10.90 10.67
66 — 11.08 11.08
110 — - 11.89

n =24
m  Lin  Wu the authors
30 11.59 9.27 9.27
45 12.80 12.80 12.80
46 12.80 13.29 12.80

Table 6. E(s?) values of designs due to Lin (1993), Wu (1993), and the authors.

(When no design is available, it is indicated by — in the table.)
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Figure 1: Dj-values (indicated by —) and Aj-values (indicated by ---) of 8 run-designs

with m factors.
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Figure 2: Dj-values (indicated by —) and Aj-values (indicated by ---) of 12 run-designs

with m factors.
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Figure 3: D;-values (indicated by —) and As-values (indicated by ---) of 20 run-designs

with m factors.



	

