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ABSTRACT

Data from industrial experiments often involve an ordered categorical response, such as a
qualitative rating. ANOVA based analyses are often inappropriate for such data, suggesting the
use of Generalized Linear Models (GLMs). When the data are observed from a fractionated
experiment, likelihood-based GLM estimates quite often do not exist, especially when there is
an opportunity for making substantial improvement. These difficulties are overcome with a
Bayesian GLM, which is implemented via the Gibbs sampling algorithm. Techniques for
modelling data and for subsequently using the identified model to optimize the process are
outlined. An important advantage in the optimization stage is that uncertainty in the parameter
estimates is accounted for in the model. These techniques are used to analyze several data sets.
In robust design experiments, the variability in the parameters is easily incorporated with the
response modelling approach (Welch, Yu, Kang and Sacks (1989), Shoemaker, Tsui and Wu
(1991)).
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1 Introduction

Data sets with an ordered categorical response arise naturally in a number of industrial situations.
Such a response can be characterized as a random variable that takes on a number of discrete
outcomes or categories, which have an implicit ordering, such as “poor”, “average”, and “good”.
While there may be any number of categories, a small number (two to six) is common. Also, a
binary response is an important special case.

In industrial situations, such data may be quick surrogates for continuous measurements. This
occurs when the main priority is to run the experiment quickly, and if necessary consider a more
complete measurement later. For example, we might be interested in the force required to close a
door. While devices exist to make such measurements, they may be expensive or time-consuming,
so an expert might be used to make categorical judgments, such as “difficult”, “acceptable”, and
“easy”. In other situations, such as in assessing the physical appearance of steel, the appearance
can be graded but there is no obvious underlying continuous response. Moreover, it might require
much ingenuity and cost to develop a device which could measure the appearance appropriately on
some continuous scale.

The data considered in this paper have several features specific to industrial experiments. For
example, the predictor variables (or factors) are typically set at a relatively small number of levels,
and are arranged in an orthogonal array. Also, the number of main effects (and interactions) is
typically close to the number of observations made. This means that the models considered will be
relatively simple, and identification of important effects and interactions will be a priority.

Interest focuses on modeling the way in which predictor variables influence the distribution
of the ordered categorical response. Several such models are currently in use and are outlined in
Section 2. All of these approaches have difficulties, namely inappropriate or inaccurate inference, as
well as non-existent estimates of factor effects. A Bayesian model is proposed to circumvent these
difficulties. Previously, Hamada and Wu (1992) showed the benefits of using a Bayesian approach
for analyzing censored data because it avoided the problem of non-existent estimates from standard
methods.

The Bayesian model for ordered categorical data is described in Section 3 along with the Gibbs
sampler, a computational technique used to fit the model. In Section 4, an analysis strategy for
industrial data using the Bayesian model is outlined. The strategy includes a model selection stage
and an optimization stage in which factor levels are chosen. The Bayesian nature of the model
makes it easy to model uncertainty in the parameters and allows for easy integration of noise
factors in the case of a Taguchi-style robust design experiment. Data from industrial experiments
are used to illustrate the strategy in Section 5. In Section 6, a summary and conclusions are given.

2 Existing Analysis Techniques

Several techniques are available for the analysis of ordered categorical data. Among those used for
industrial situations are scored ANOVA, accumulation analysis, and generalized linear models. In
this section, we consider these techniques and some of the problems they have.

The most straightforward method of analysis assigns arbitrary (strictly increasing) scores to
the ordered response categories, and performs an ANOVA on these scores. While this approach is



familiar, there are some complications. Any conclusions made will depend on the scores used as
discussed in Hamada and Wu (1990). Furthermore, the scored data are not continuous and the
normal distribution may be an unreasonable distributional approximation.

Another technique, Accumulation Analysis (AA), is an adapted ANOVA which uses the curnu-
lative frequencies of the ordered categories as a response. It was introduced by Taguchi (1974) as an
improvement over Pearson’s chi-squared test, which does not use the order of the categories. There
are a number of serious criticisms raised against AA by Nair (1986), Hamada and Wu (1990) and
discussants therein, which include detection of spurious effects, testing for a combinationoflocation
and dispersion effects, and reversing the order of factor importance. The method’s shortcomings
make further discussion inappropriate, and the reader is referred to their papers for further details.

Many of the problems with ANOVA based techniques relate to the validity of the inference
they make. A search for statistically valid methods leads naturally to Generalized Linear Models
(GLMs) for ordinal data. These models are attractive since software is readily available for fitting
them.

We can summarize the method as follows: instead of creating a pseudo measurement to be
analyzed, the probabilities of the J ordered categories are modeled as a function of the predictors.
McCullagh (1980) suggests a family of models of the form:

link(Pr(Y < j)) =+v; —x'B for j=1,..,J-1

where “link” is a (known) monotone increasing function mapping the interval (0,1) onto the real
line (—o0, 00), 7; is a “cutpoint”, x is the vector of main effects and interactions, and fis a vector
of effects. The 7,s may be thought of as intercepts, and consequently there is no intercept term in
the vector x. A natural ordering of cells is obtained by modeling cumulative cell probabilities rather
than individual probabilities. Although each response category has a corresponding cutpoint, the
regression coefficients 3 are constant across outcomes.

Once a link function is specified, estimation of the parameters (y1, 72, ..., Ys—1,0) is carried
out via maximum likelihood (ML). One problem with this approach is that estimates for certain
coefficients or cutpoints may not exist. For example, suppose we have a binary response and a
factor A with two levels. If all of the observations at the low level of A are in the first category,
and all the observations at the high level of A are in the second category, then the estimated cell
probabilities are zero and one. This corresponds to an estimate of +co for the coefficient of A. In
multifactor experiments, this problem is quite likely to occur, especially when the number of effects
in the model is near the number of runs. These problems will manifest themselves as estimates
which fail to converge. Tse (1986) gives conditions under which MLEs are infinite.

Despite the non-convergence of estimates, the likelihood does converge, and may be used as
a criterion for assessing the relative importance of the factors. Such an approach is discussed in
Lawless and Singhal (1978). However, in situations where the model is to be used for prediction,
or comparisons between effects are necessary, non-existent estimates are a problem.

One solution would be to assume some sort of prior knowledge of the coefficients, and use
Bayesian techniques to fit a model to the data. Even when knowledge about the coeflicients is
minimal or nonexistent, this approach has justification; we suspect that the parameters are only
large, and that there is not sufficient data to distinguish between large and infinite values.

Thus, the Bayesian approach retains the advantages of GLMs, which do not require a choice of
scores, and provides a more accurate description of the response distribution. At the same time,
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the issue of infinite estimates is resolved; moreover asymptotic approximations are not necessary
for inference. The details of this method are provided in the next section, including the use of
Gibbs sampling techniques for implementing the analysis.

3 A Bayesian Approach

In this section, the theory and tools for fitting a Bayesian GLM are outlined. The main focus is
the Gibbs sampler, a computational technique used in the calculation of marginal posteriors of the
parameters of interest. A brief summary of the Gibbs algorithm is given before specific results are
derived.

3.1 The Gibbs Sampler

The Gibbs sampler, which was introduced by Geman and Geman (1984), is a technique for the
calculation of marginal distributions of random variables, given a set of conditional distributions. In
the Bayesian context, it is used to obtain marginal posteriors of the parameters after conditioning
on the observed data Y. This technique is seen as a simpler alternative to numerical integration
techniques, which may require specialized knowledge and attention to the details of a specific
problem. The applications of this technique to statistical problems have been more recently outlined
in a number of papers, such as Gelfand and Smith (1990). We note that for the problem considered,
arelated technique data augmentation (Tanner and Wong (1987)) cannot be used since theresponse
category division as defined by the underlying continuous scale cutpoints are not known.

To illustrate the algorithm, consider three random variables U;, U,, and Us. The notation f(-)
will denote the density of the argument. Thus, f(z) is the density of X, f(y) is the density of Y,
but £(z) # F(u).

We wish to determine the marginal distributions f(u,), f(u2), and f(us3). It is assumed that the
distributions f(u;|u;,j # %) are available (i.e., they may be sampled from). We start with an arbi-
trary set of values (Ul(o), U, U?EO)). We sample U ~ f(ulle(o), Uéo)), UM ~ f(u2|U1(1),U§°)), and
Ug(,l) ~ f(u3|U1(1), Uz(l)). The algorithm then cycles through the conditional distributions repeatedly
in the same fashion, always conditioning on the most recent values of (Uy, Uz, Us).

More generally, for k£ random variables, we cycle through each of the k distributions of one
variable conditioned on the other k—1 variables. Geman and Geman (1984) show that theserandom
variables converge in distribution to a sample from the joint distribution. Consequently, any subset
of the k variables can be viewed as a sample from the appropriate marginal distribution. The general
application of the sampling algorithm described above is to iterate the sampling cycle m times,
and treat the final observation (U{™,...,U{™) as an approximate sample from the distribution
(U, ..., Uz). An arbitrary number of such samples may be generated by repeatedly restarting the
algorithm. ‘

3.2 The Gibbs Sampler for Ordinal Data

The model to be fit is a Bayesian version of the GLM described in the previous section, with a
probit link, a normal prior for the coefficients 3;, and an ordered normal prior for the cutpoints
7;. The derivation of conditional distributions for the Gibbs sampler is similar to Albert and Chib
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(1993), but with informative priors. The ability to vary the shape of the prior will allow us to
assess the robustness of the conclusions from the analysis.

The form of the fully conditional distributions is simplified by the assumption of an underlying
continuous variable associated with the observed categorical response. In industrial applications
there is quite often such a variable, and an ordered categorical version of it is observed due to cost
or time constraints.

We assume that for each response Y, there is an unobserved variable Z on the continuous scale.
The correspondence between this variable and the J categories of the response is via “cutpoints”
Y05 V15 s Vi1, 77, Where —00 =70 <71 < ... <Yjo1 <75 = 0. Ifv, <Z<%41,thenY =i+ 1 is
observed. The distribution of the variable Z is determined by the form of the link function, since
we require that link(Pr(Y < j)) = 7; — X', or equivalently that link(Pr(Z < v5)) = v7; -x¥f. The
link function F~! maps (0,1) onto (—o0, ) , so if Z + x'B has distribution function F, then we
obtain Pr(Y < j) =Pr(Z < ;) =P1(Z + x'B <y +x'B) = F~' (v + x'B).

Fully conditional distributions are now derived for arbitrary independent priors on fand v, as
well as an arbitrary link function. The fully conditional distributions are required only up to a
proportionality constant, since they are used only for random variable generation. Consequently,
we begin with the joint distribution of Y, 7,3, Z. This distribution is degenerate, since knowledge
of (Z,7) determines Y exactly. Thus, we may write:

f(B,s7, z,9) = £(B,7,2)I(y; 2,7),

where the indicator function I is 1 when the vector y agrees with (v, z), and 0, otherwise. Using
conditioning, and assuming independence of priors for y and 3 yields:

f(ﬂ’77z’y) = f(zlﬂa7)f(ﬂ’7)I(y;z’7)
= f(218,7)F(B)F(1)I(y; 2,7)-

Note that the distribution of Z given (8,7) does not depend on 7. This follows, since the only
dependence of Z on 7 is through Y, which is not being conditioned upon in the first term of the
expression above. Thus, we obtain

£(B,7,2,y) = £(2IB) F(B) F(1)(9; 2,7)-
This yields the fully conditional distributions:

f(Blv,z,y) o« f(2|8)f(B)
f(1B,2z,y) o« f(r)(y;27)
f(z18,71,y) o« f(2B)(y;2,7)-

The probit link F(z) = ®(z) is used in this implementation. This means that Z will be normally
distributed, and a multivariate normal prior on § will be convenient. The choice of the prior for -y is
flexible since f(7) only appears in one of the three conditional distributions, and there it is simply
truncated. For ease of interpretation, we choose a prior for 4 in which the variates are normal
except for the ordering; that is, one of the form @(v1,...,77-1) X I(m1 < 72 < ... < 7;.1), where ¢
is the multivariate normal density. As an alternative, a diffuse prior for y is also considered.

With these choices, we obtain the following fully conditional distributions: A is multivariate
normal, v is truncated normal (truncated by the Z’s), and Z is truncated normal (truncated by
the 7’s).



4 Analysis Techniques

This section summarizes techniques for the analysis of industrial data with the Bayesian method.
Several of these methods and concepts were explored in Hamada and Wu (1992). For example, their
approach to variable selection was to label as significant those factors whose marginal posteriors
were far from zero. They also emphasized the importance of robustness of conclusions to the shape
of the priors. In this section these techniques are refined, and combined with graphical displays
and a new method of optimization using posterior distributions.

The first group of techniques is related to model identification. Assuming that the experiment
has already been run, the first task is to identify the factors with the largest effects. A scored
ANOVA could be used to determine an approximate ranking of factors. For a more accurate
ranking, we examine the posteriors generated by a Bayesian analysis. Although marginal posteriors
of all effects should be examined, numerical summmaries of the posteriors are useful when the number
of main effects and interactions is large.

One convenient measure of factor importance is the proportion of a marginal posterior on one
side of zero. The “zero p-value” is defined in terms of this quantity, in a fashion similar to two
sided p-values used in standard hypothesis testing:

pr = 2min(F3(0),1 - £3(0))

where F} is the estimated distribution function of the parameter of interest. Small values of py
indicate high probability that the corresponding effect is significant. This statistic will be invariant
to rescaling of the factors, eliminating the need to choose a scaling metric.

If all factors can be expressed on a comparable scale, other summaries of the posterior may
be examined, such as the (marginal) posterior mean or median. These quantities represent the
magnitude of the effect, which is also an important consideration in model identification. Quantities
such as the posterior standard deviation may provide information about uncertainty in the location
measures.

Whatever summary of marginal posteriors is chosen, it will depend on the priors. This depen-
dence may be studied via a new graphical display, in which summaries of all marginal posteriors are
plotted as a function of prior variance. For example, if we have prior variance o?3, the posterior
median effects could be plotted for o € (0.10,1.0). An example of this is given in Figure 1. While
the magnitude of some summaries may change over prior variances, the rankings of factor effects
quite often do not. This robustness to prior information, which was first recognized by Hamada
and Wu (1992), increases our certainty in the factors and interactions in the model. This type of
plot offers many possibilities, since we can study the effect of changing prior variance for one set
of parameters with the prior variance held constant for the remaining parameters.

The rationale for the upper limit of o is related to maximum effect a factor can have on a
response probability. Consider a normal prior on the s, and a factor z with levels 1. If 3, has
a N(0,0) prior, then a priori it will fall in the range (—20,20) approximately 95% of the time.
Consequently, the effect (on the transformed scale) of changing « from -1 to 1 will be no more than
40, 95% of the time. Now it is the effect on the cumulative probabilities that is of interest. Since
the link function is nonlinear, the effect of the factor depends on the value of the linear predictor.
For links based on symmetric unimodal distributions, such as the logistic or probit, the maximum
change on the probability scale will occur when the rest of the linear predictor sums to zero. For
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the probit link, the largest magnitude of the effect will be a change from ®(—20) to &(20). For
o = 1, we see that this implies a change of no more than 0.025 to 0.975, 95% of the time.

The scaling of the factors clearly influences the choice of this range. Thus it is important that
the factors all be scaled prior to modeling. In all the examples presented in this paper, the design
matrix X with run size n has been scaled so that X7 X/n is equal to an identity matrix.

Once a model has been identified, it is necessary to draw inferences about the best factor level
settings. A general method for this is to consider all combinations of levels for factors identified as
important. For each setting, we have a posterior distribution on the response categories. This is
an improvement over the more standard procedure of using point estimates, which ignores model
uncertainty represented by the posteriors.

When there are many settings, we may first wish to consider category probabilities which are
averaged over the posteriors. These probabilities can be plotted in the case of a response with
two or three categories. For three categories we may plot Pr(category 1) against Pr(category 2).
Depending on our goal, different regions of this plot will be best. For example, if categories (1,2,3)
are (good, ok, poor), then we would want high values of Pr(good) with most of the remaining
probability taken up by Pr(ok). In Figure 6 we see a plot of the average posterior probability of
a good part against the average posterior probability of an “ok” part. Each number represents a
specific setting of factor levels, so we may use this plot to identify the factor settings that produce
the best (average) posterior probabilities for the response. Once several promising settings are
identified, the full posteriors for the response proportions may be examined.

Other performance measures may be used in addition to probabilities of the outcome categories.
We may assign a score to each category, and then consider the distribution of these scores due to
effect uncertainty. For example, the scores (1,2 3) could be used for a ordered response in three
categories. We would examine 1xPr(outcome 1) + 2xPr(outcome 2) + 3xPr(outcome 3) over the
posterior of the effects. These performance measures may be easier to interpret than outcome
probabilities since they are univariate. For example, rankings of factor levels by the proportion
of “ok” or “good” parts is easier if a univariate criterion is used instead of directly examining the
probabilities of three outcome groups “poor”, “ok”, and “good”. As with the response probabilities,
we may examine means first and distributions afterwards. '

All of the techniques mentioned above are also applicable to Robust Design experiments with
minor modifications. In this situation, factors are divided into two groups: control and noise factors.
The goal of the analysis is to find control factor settings that result in favorable outcomes, regardless
of the levels of the uncontrollable noise factors. The model selection stage is unchanged, with
control factors, noise factors, and interactions between them all be assessed for their importance.
Modeling the response directly as we have done was proposed by Welch, Yu, Kang and Sacks (1989)
and named the response model approach by Shoemaker, Tsui and Wu (1991). Once amodel has
been selected, we assume that the noise factors follow some distribution. Using the model, we seek
control factor settings that produce the best results subject to both the model uncertainty and the
extra variation arising from the uncontrolled noise factors.

The additional uncertainty due to the noise factors may be dealt with in a straightforward and
convenient way. This variation is treated in the same fashion as effect uncertainty, since both are
represented by distributions. This flexibility to accommodate both model uncertainty and external
variation is another advantage the Bayesian approach offers in analyzing such data.



Control Factors Noise Factors
Drilling (Sequential / Concentric) H Brake type (Master / Slave / Control Valve)
Clamping (top & bottom / side) I Position (Left / Right)
Reamer Set (a / b)
Housing Heat (yes/no)
Cutting Fluid (Synthetic / Mineral)
Feed Speed (min / max)
Piston Material (a / b)

OO QwW >

Table 1: Factors in the brake bore experiment

5 Applications

In this section, examples from industrial experiments will be used to illustrate the application of
the Bayesian approach. Three examples are used, including two robust design experiments and
one fractional factorial.

5.1 A Brake Bore Experiment

The data considered arise from an experiment for optimizing the quality of piston bores in grey iron
brake housings. The data and original analysis are given in Bostelman, Buck and Henry (1987).
The response is a binary classification (good/bad) of brake bore surface texture.

The experimental design is a product array design, with seven control factors at two levels each
and two noise factors, one with two levels, and the other with three. Factor names and levels are
given in Table 1. The noise factors are arranged in a full factorial design, the control factors in an
eight run fractional factorial. Three observations are taken at each level of the control and noise
combinations, making a total of 8x6x3=144 observations.

The two degrees of freedom for noise factor H are represented by orthogonal contrasts H; and
H,. Despite the qualitative nature of factor H, the linear contrast is interpretable (comparison of
types 1 and 3), and the quadratic contrast has some meaning (comparison of type 2 with mean
of the other two types). This facilitates a scored ANOVA analysis which is done for comparison
with the Bayesian approach. The design matrix X was scaled so that X7 X/n = I, putting the
posteriors of the regression coefficients roughly on a comparable scale.

The full model has 33 coefficients, as well as a cutpoint. These 33 coefficients include seven
control main effects, three noise main effects, the noise by noise interactions IH; and IH, and 21
interactions between the seven control main effects and the three noise main effects.

The MLEs for a GLM with these 34 parameters do not exist, suggesting that a Bayesian -
approach be taken. The prior for the cutpoint is chosen to be diffuse, since interest is focused
on the regression coefficients. The prior for the 33 coefficients is taken to be multivariate normal,
with zero mean vector and covariance matrix Is303, where I35 is the 33x33 identity matrix. Several
values in the range (0,1) are used for the variance 0. The effect of varying the prior variance
can be seen in Figure 1. These plots represent two characteristics of the posteriors - the posterior
median, and the “zero p-values” described in Section 4. We see that for the most part, the same
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Figure 1: Posterior medians and zero p-values with o5 € (0.005, 1) for the brake bore experiment

factors remiain important across varying priors.

A final model is selected using the zero p-values as a criterion, with prior 63 = 1. Al models
considered had the hierarchical (or “hereditary”) property that for every interaction between two
main effects, the model also included those main effects. Coefficients whose posterior medians were
close to zero were removed from the model in three stages. The first reduction was to a model with
terms A, B, C, E, F, G, H;, H,, I, AH;, CH;, CH,, FH,, GH;, GH,, and IH,. TermsF,I, CH,,
FH,, and IH, were dropped to obtain the second reduced model. At this stage, all termsinvolving
factor G appeared insignificant, and were also removed from the model.

The final model contained the terms A, B, C, E, H,;, H,;, AH,, CH;. Of these, C and H, were not
significantly different from zero, but were included to maintain the hierarchical model structure.
Histograms of their posteriors for 05 = 1 (a reasonably diffuse prior) are given in Figure 2,including
superimposed prior densities. The “0” represent central regions of 95% probability. From these
plots, we see the magnitude of the effects, as well as our certainty about their values.

The fitted model may now be used to draw inference about the process. We are interested
in identifying factor settings that produce a high proportion of good parts over differing levels of
noise factor H and uncertainty of effects. We look at the percentage of good parts at all possible
(+/-) levels of important factors. These percentages are first averaged over the noise factor H, and
over the posteriors of the parameters f3i, ..., 3,71 so that promising factor levels may be identified.
Since H is a qualitative variable representing types of parts, we assume that the types are produced
in equal proportions; its distribution consists of point masses at {1,2,3} with probabilities %

In Table 2, we present mean posterior probabilities of obtaining a good part at each of the 16
factor settings. We see that the settings (4,B,C,E) = (1,1,1,—1) and (1,1,1, 1) appear to have
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Setting A B C E Pr(good) Score

9 -1 -1 -1 1 0.015  2.06
13 -1 -1 1 1 0.016 1.92
1 -1 -1 -1 -1 0.063 1.92
5 -1 -1 1 -1 0.074 1.79
1 -1 1 -1 1 0.197 1.84
15 -1 1 1 1 0.290 1.69
3 -1 1 -1 -1 0.329 1.70
10 1 -1 -1 1 0.415 1.41
7 -1 1 1 -1 0.486 1.56
2 1 -1 -1 -1 0.551 1.25
14 1 -1 1 1 - 0.716 1.26
12 1 1 -1 1 0.854 1.17
6 1 -1 1 -1 0.898 1.12
4 1 1 -1 -1 0.945 1.03
66 1 1 1 1 0.989 1.04
8§ 1 1 1 -1 0.998  0.90

Table 2: Bayesian analysis and scored ANOVA evaluation of factor settings for the brake bore
experiment

the best chance of producing a good part. The former settmg is only slightly better which reflects
the marginal importance of E.

Based on this table, we may recommend the setting (A,B,C):(l,l,l) as the optimum value. It
is interesting that if the factor C is omitted from the model, the conclusions vary slightly, with
settings 8, 4, 12, 16 becoming the four most important settings. The binary nature of the data
suggests that criteria other than averaged probabilities will yield similar recommendations. Plots
of posteriors for the proportion of good parts in Figure 3 confirm the claim that a mean measure
is adequate, since settings 8 and 16 have the best distributions.

The Bayesian analysis technique used here may be compared with an ANOVA of a response
scored as 1 for good, 2 for bad. The ANOVA identifies all of the same factors found above as
significant, and in addition identifies G and GH; as important (possibly because the variation
in the binomial observations is less than normally distributed ones as assumed by ANOVA). For
comparison, we consider the same model used in the Bayesian analysis above. We then average over
the noise to obtain a score representing the average quality of the produced parts. These scores for
the 16 possible settings of A, B, C, and E are displayed in Table 2.

The same four settings 8, 4, 16, 6, offer the best quality product, although the order has changed
slightly; 4 appears better than 16. Some of the scores fall outside the original range, and the two
best combinations appear different. Our analysis suggests that settings 8 and 16 are nearly the
same, however. Moreover, the interpretation of the scores is difficult. Since the scores are 1 and 2,
it is not clear what is meant by an estimated score of 0.90 or 1.26. The interpretation offered by
the Bayesian analysis seems far more intuitive, since it gives estimates for the proportion of good
parts at a given factor setting.
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Control Factors : Noise Factors
Shot Weight (185 / 250) H Shift (second / third)
Mold Temperature (70° F / 120° F) I  Shell quality (good / bad)
Foam Block (use / do not use)
RTYV Insert (use / do not use)
Vent Shell (vented / unvented)
Spray Wax Viscosity (2:1 / 4:1)
Tool Elevation (level / elevated)

QHEET QW=

Table 3: Factors in the foam molding experiment

5.2 A Foam Molding Experiment

The data, which was originally analyzed by Jinks (1987), arise from an experiment designed to
reduce voids in a urethane-foam product. The response consists of three levels (very good, accept-
able, needs repair), while all the design variables are at two levels. The design is an fractionated
eight Tun control array crossed with a four run noise array. The factors are shown in Table 3. At
each level of the control and noise factors, ten parts are classified into one of the three categories,
yielding a total of 8x4x10=320 observations.

The full model consists of main effects for factors A-I, an HI interaction, and control by noise
interactions between factors A-G and H, I. In total, there are 24 effects plus two cutpoints which
define the three ordered categories. As in the brake bore example, the Bayesian analysis uses a
diffuse prior for the two cutpoints, and an independent normal prior with zero mean vector for the
coeflicients. :

The relative importance of regression coefficients seems insensitive to the choice of prior variance,
as illustrated in Figure 4. The effects A, B, C, E, F, G, H, I, HI, AH, and EI are identified as the
most important by the zero p-value criterion. A full ranking of the factors by their “zero p-value”
is given in Table 4.

This reduced hierarchical model is fit and all of the factors remain important. Posteriors are
given in Figure 5. A scored ANOVA (with the scores 1,2,3) lends support to the the significance
of these results, since the same factors are identified as influential, in roughly the same order.

Next, we assess the behavior of the process under uncontrolled noise factors H and I. Since no
information is available about the behavior of the noise factors under production, they are assumed
to be uncorrelated normal random variates, with mean zero and variance one. The model is then
used to calculate the mean proportion of observations in each of the response categories, averaging
over both the noise factors, and the posteriors of the coefficients.

We first consider the expected proportions at all 64 settings of factors A, B, C, E, F, G, averaged
over posteriors and noise. In Figure 6 we see that the optimal setting is number 10, since it has the
highest proportion of very good parts, and the majority of the remaining parts are acceptable. This
plot allows us to identify settings 14, 26, and 2 as other possible choices. The averaged probabilities
of the three outcomes are displayed for these four settings along with the next six best settings in
Table 5. From the table, it seems clear that the best setting is number 10, since it produces 87%
good parts as compared to 74% for the next best setting.
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Figure 4: Posterior zero p-values and medians for the foam experiment

Factor Zero P-value

A 0.00
B 0.00
G 0.00
H 0.00
AH 0.00
C 0.00
F 0.00
I 0.00
EI 0.00
HI 0.01
E 0.01
DH 0.30
FI 0.92

Table 4: Zero p-values for the full model in the foam experiment
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Probabilities Scores

Setting A B C E F G Good OK Poor (3,21) (3,2,0) (3,31
6 1 -1 1 -1 -1 -1 0.49 044 0.08 2.41 2.33 2.85
8 1 -1 -1 -1 1 -1 0.49 0.44 0.07 2.42 2.35 2.86
30 1 -1 1 1 1 -1 0.49 045 0.06 2.43 2.37 2.88
12 1 1 -1 1 -1 -1 0.51 045 0.04 2.47 2.42 2.91
9 -1 -1 -1 1 -1 -1 0.59 0.37 0.04 2.55 2.51 2.92
42 1 -1 -1 1 -1 1 0.59 0.38 0.03 2.56 2.53 2.94
2 1 -1 -1 -1 -1 -1 0.69 0.29 0.02 2.67 2.64 2.95
4 1 -1 1 1 -1 -1 0.71 0.27 0.02 2.69 2.68 2.97
26 1 -1 -1 1 1 -1 0.71 0.27 0.02 2.70 2.68 2.97
0 1 -1 -1 1 -1 -1 0.86 0.14 0.01 2.85 2.84 2.99

Table 5: The best settings according to various averaged criteria for the foam experiment

If we consider applying scores to these probabilities, many of the results will agree, since most
of the optimal settings found in the previous paragraph consist of very few poor parts. The
performance criterion for three scorings (again averaged over posteriors and noise) are given in
Table 5. The first scoring (3,2,1) reflects a linear ordering of the three categories, while the second
assumes that poor parts are worse. The third scoring (3,3,1) puts good and ok parts on an equal
footing, rating them higher than poor parts. By all three criteria, settings 10 is the best, and by
the first two criteria, it is a clear winner. Using the (3,3,1) criterion, there are a number of other
settings almost as good.

The analysis above uses only the mean levels of the cell probabilities. Although the main goal
is to obtain all parts in the “very good” category, additional information about the behavior of the
process may be obtained by looking at the distribution of proportions over noise factors H and 1,
and uncertainty in 8 and v. Instead of examining the joint posterior of two outcome proportions,
we might instead consider the distribution of the univariate performance measures described in
Table 5.

To illustrate this technique, consider the scoring (3,2,1). From Table 5 we identify setting 10, 26,
2, and 14 as candidates for the best setting. The distribution of the performance measure 3*Pr(very
good) + 2*Pr(acceptable) + 1*Pr(poor) is displayed in Figure 7 for each of these settings. Not
only does setting 10 have the best average performance measure, but the performance distribution
is favorable. Run 2 has a more skewed performance distribution, and is likely to be less optimal
than either settings 14 or 26, which appear to have comparable score distributions.

5.3 An Injection Molding Experiment

This experiment, which is analyzed by Steinberg and Bursztyn (1993), was conducted to improve
the quality of injection molded plastic handles. The goal of the experiment was to produce “on
target” parts, in contrast to the “higher the better” and “lower the better” experiments previously
discussed. The response variable is the “amount of material”, ranging from 1 (too little)to 7 (too
much), with a target value of 4. No values of 7 were actually recorded from the data, so the analysis

16



b
e x\%xw\ %&%&\\\
e s
S “m

0Gl 00F 09 0

R
P \\\\\\\ I
s “.ww\mw.m\m\\\ z\\ S \N&w\.\«.mw.w\

Q%%%@@. i
per
ez ﬂ\&x\

e e

| — T T T 1

08 09 OF 02 O

4

2.5

1.6 2.0 25 3.0

1.0

3.0

1.5 20

1.0

Setting 2 (ABCEFG = +-----)

SR

e,

B

R

b
R

B \n\&mmww\

a:s

Setting 10 (ABCEFG = +--+--)

(0[0]8 09

0¢c O

e

e

....“..s.. R

ez \&\\Q%@%&

s \\\%«.\ ]
I

ez \%.W\\\

\\mm

25

2.5

3.0

15 20

1.0

3.0

1.5 20

1.0

Setting 26 (ABCEFG = +--++ -)

Setting 14 (ABCEFG = +- ++- - )
Figure 7: Distributions of scores over noise and posteriors of 3 and y for the foam experiment

17



is for the six observed response categories. The original data set consisted of 17 control factors and
two noise factors. For illustrative purposes, we analyze a quarter fraction of the experiment with no
noise effects (the noise factors were set as follows: mold = 2, water temperature = 1). The quarter
fraction is a 2(17-12) fractional factorial design, with 32 observations. The factors are labeled A -Q,
and are grouped as follows: A-D are process temperatures, E-G stroke counts, H-L pressures, and
N-Q are process times.

The model fitting strategy was the same as that used in the previous examples; a brief summary
is given since we wish to focus on optimization. A saturated model with 31 effects was first
considered, and all insignificant terms dropped in groups. The final model chosen is the one with
main effects C, E, F, I, L, O, and a FL interaction; the main effect of factor F was not significant,
but was included to simplify interpretation.

It is the optimization stage of this example that is interesting, since the on-target problem
presents challenges not present in the other data sets. In “higher the better” experiments it is
often enough to determine the direction of each effect, and then set that factor to a corresponding
high or low level, so as to push the probability mass to the high end of the scale. In an on-target
problem, things are not that simple. Since the target is a middle category, the setting of each
factor will depend on the settings of the others. For example, if one effect is positive, and the other
negative, we might wish to cancel them out to get on target. There are two ways to do this (if we
consider settings of only +1 levels of factors), and as the number of terms in the model increases,
there are many different ways to accomplish similar goals. Thus, for a single on-target goal, we are
likely to have several “optimal” factor settings. This is in fact an advantage, since we may either
choose the cheapest settings, or use secondary criteria to distinguish between the settings.

These concepts are more clearly illustrated in the optimization stage for this experiment. Since
we have little knowledge of the process involved, we consider optimizing over high and low levels
(£1) of the factors. This means that we have 2° = 64 settings to consider. All optimization is
relative to the posterior distributions for the proportions of parts in each response category. We seek
factor settings that produce on-target posteriors, namely ones with most parts in response group
four. While there may be other favorable properties, we assume that it is crucial that settings
produce a high proportion of on-target parts. Thus to identify promising settings, we consider the
average posterior proportion of parts in response category four. The ten most promising settings are
displayed in Table 6. There are seven settings which produce virtually the same average proportion;
we shall concentrate on these seven in the following.

If our only goal is to have as many parts on target as possible then we may choose between
these settings on a cost basis. In most situations, some settings will be less expensive. If we have
other priorities, we may use them to choose between the seven settings. Possible secondary criteria
might include:

¢ Low variability in the proportion of on-target parts. We may examine histograms of
the posterior proportions of on-target parts, as shown in Figure 8. In this case, there are only
minor differences between the distributions.

¢ Other outcome groups. Slight underfills or overfills (categories 3 and 5) may haveasmaller
loss associated with them than more extreme outcomes. Hence we may wish to examine
the proportions of parts in all six categories. We can look either at the mean proportions
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(represented by barplots in Figure 9), or representations of the posteriors for each outcome
group, as represented in the boxplots in Figure 10. In these plots, we see that settings 1, 34,
18, and 6 produce more outcomes outside the range (3,5). If only parts outside this range
must be scrapped, these four settings would be less preferable.

e A specific criterion based on scoring. We may wish to summarize several requirements
with a single scoring. For example, if we want as many parts on target as possible, and parts
just off target remain acceptable, we could use the scores (0,1,3,4,3,1). The distribution of
this score calculated from the posteriors is displayed in Figure 11. We see that there are
only minor differences between these scores. On the other hand, slight underfills might be
acceptable, but overfills less useful. We might then choose the scoring (2,5,6,7,2,0) to reflect
this. The posteriors for this score are given in Figure 12. These scores produce distributions
that are more distinct. Figure 9 suggested this, since it shows that some settings produce
more underfills and some more overfills. On the basis of Figure 12, we might select settings
34 and 18 as most favorable.

We will not try to choose the overall best one or two settings from these criteria, since we have
no knowledge about the real goals of the experiment, other than to produce on-target parts. In
conclusion, note that for the on-target problem, we are likely to get several settings that produce
comparable results. This may be seen as an advantage, since we may either choose the cheapest
settings if we have no secondary goals, or if there are secondary goals, use them to identify the best
factor level settings.

6 Summary and Conclusions

For one reason or another, most of the current methods for analyzing ordered categorical data
are problematic. The Bayesian approach outlined in this paper is an attempt to overcome these
difficulties. By combining a Generalized Linear Model with Bayesian estimation techniques, we
arrive at a model that appears appropriate for the data at hand. While the model itself has been
considered previously, the area of application suggests new uses for the model, and advantages
therein. _

One of the most significant advantages is the ability of Bayesian models to account for uncer-
tainty in the estimation of the parameters. By acknowledging the uncertainty rather than using
point estimates, we will hopefully get a more honest choice of optimal factor settings. The vari-
ability in the parameter estimates fits in nicely in situations such as robust design experiments,
where we assume additional variation in the process is induced by uncontrollable noise factors. Qur
approach provides an unified way of looking at these two sources of variability.

Other advantages of this approach include numerous graphical techniques for both model se-
lection and process optimization, methods for checking the sensitivity of the results to the prior
assumptions, and more meaningful conclusions, namely, an estimate of the proportion of parts in
each category for a given factor level setting. ‘

Of special interest is the on-target problem, since many different settings often produce similar
results. In such situations, we have the option of either choosing the least expensive factor settings,
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or using other model-based criteria for distinguishing between competing settings. The number of
possibilities is thereby reduced, which then need to be confirmed by making a few additional runs.
While this approach deals with many difficulties previously encountered, the model considered
is only one of many possible models that might be fit to such data. In some situations, it might
be interesting to consider other Bayesian models for describing ordered categorical data, as well as
adapting this model for a number of different experimental situations involving this type of data.

Acknowledgments
This research was supported by General Motors of Canada Limited, the Manufacturing Research

Corporation of Ontario, and the Natural Sciences and Engineering Research Council of Canada.
The authors thank C. F. J. Wu, J. Lawless, and G. Bennett for their insightful comments.

References

Albert, J. and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,”
Journal of the American Statistical Association, 88, 669-679.

Bostelman, M. A., Buck, D. K. and Henry, J. E. (1987), “Optimization of Design and Process
Parameters for Piston Bores in Grey Iron Brake Housings,” In Fifth Symposium on Taguch:
Methods, American Suppliers Institute, pp 43-66. .

Gelfand, A. E. and Smith, A. F. M. (1990), “Sampling-based Approaches to Calculating Marginal
Densities,” Journal of the American Statistical Association, 85, 398-409.

Geman, S. and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images,” IFEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721-741. .

Hamada, M. and Wu, C. F. J. (1990), “A Critical Look at Accumulation Analysis and Related
Methods,” Technometrics, 32, 119-162.

Hamada, M. and Wu, C. F. J. (1992), “Analysis of Censored Data from Fractionated Experiments:
a Bayesian Approach,” The Institute for Improvement in Quality and Productivity Research
Report RR-92-11, University of Waterloo.

Jinks, J. (1987), “Reduction of Voids in a Urethane-Foam Product,” In Fifth Symposiurn on
Taguchi Methods, American Suppliers Institute, 135-148.

Lawless, J. F. and Singhal, K. (1978), “Efficient Screening of Nonnormal Regression Models,”
Biometrics, 34, 318-327.

McCullagh, P. (1980), “Regression Models for Ordinal Data,” Journal of the Royal Statistical
Society, Series B, 42, 109-142.

Nair, V. N. (1986), “Testing in Industrial Experiments with Ordered Categorical Data,” Techno-
metrics, 28, 283-291.

23



Shoemaker, A. C., Tsui, K. L. and Wu, C. F. J. (1991), “Economical Experimentation Methods
for Robust Design,” Technometrics, 33, 415-427.

Steinberg, D. M., and Bursztyn, D. (1993), “Confounded Dispersion Effects in Robust Design
Experiments with Noise Factors,” Center for Quality and Productivity Improvement Report
93, University of Wisconsin-Madison.

Taguchi, G. (1974), “A New Statistical Analysis for Clinical Data, the Accumulating Analysis, in
Contrast with the Chi-Square Test,” Saishin Igaku, 29, 806-813.

Tanner, M. and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Aug-
mentation,” Journal of the American Statistical Association, 82, 528-550.

Tse, S. K. (1986), “On the Existence and Uniqueness of Maximum Likelihood Estimates in Poly-
tomous Response Models,” Journal of Statistical Planning and Inference, 14, 269-273.

Welch, W. J., Yu, T. K., Kang, S. M. and Sacks, J. (1990), “Computer Experiments for Quality
Control by Parameter Design,” Journal of Quality Technology, 22, 15-22.

24



	

