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ABSTRACT

Clear and concise presentation of a directional response can be helpful to gain better
understanding and insight into the characteristics of the data. Several new graphical techniques
for circular data are described, including an estimated density, the circular boxplot and an
interaction plot. For cylindrical data, a combined summary of directional and linear components
is illustrated.
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1 Introduction

In industrial settings, the outcomes of experiments sometimes yield a response which is not
the usual continuous linear response (such as a length or weight), but rather a measurement
that can best be described by a direction or angle. For example in the automotive industry,
a number of rotating parts (such as wheels, brake rotors and flywheels) are produced and
need to be precisely balanced. Quantifying the imbalance results in two measurements:
the angle at which an adjustment needs to be made and the size of the corrective weight
required. Another of other applications for angular data also exist, including the assessment
of proximity to a target. If a hole or marking needs to be placed on a production item,
the accuracy of the placement is sometimes best measured by the usual x- and y-coordinate
system, while in other cases the results of the study are better described by the angle in
which the target was missed, and by how much it was missed. Finally, the location of surface
defects on circular parts can be summarized by an angular measure.

To gain better understanding of processes which yield a directional response, graphical
techniques can be invaluable for concisely highlighting key features of the data. In this
paper, some of the existing methods for displaying circular data are shown, such as the
dot diagram, rose diagram and circular histogram. In addition, new data summaries are
described. The first graphical method is a smoothed estimate of the distribution function
based on the frequency of observations in different sectors of the circle. The second method
is a circular analog for the boxplot, or box-and-whiskers plot, is described. Finally, if the
interaction between two or more factors in a factorial experiment is of interest, a plot can
highlight the additive or non-additive nature of factors on a response.

In addition, a new data summary is described for situations where the response from
an experiment yields a bivariate response: a directional component and a linear component
indicating the magnitude of response. The first two examples listed above (balancing rotating
parts and proximity to a target) are both of this type. In addition, this type of response is
not restricted to the industrial setting. For example in biology, wind direction and velocity
are commonly studied jointly. Batschelet (1981, p.191) gives a number of other examples.

Hence a number of directional applications exist where graphical tools can help display

the data to better visualize the process.



2 Circular Graphical Methods

Both Mardia (1972) and Batschelet (1981) describe a number of techniques for graphically
displaying directional data. The dot diagram, in Figure 1, illustrates how data measured with
limited precision can be displayed. Frequently, circular data are only measured to the nearest
5°,10° or 15°, and hence can usefully be displayed by presenting the number of observations
at each observable location. The dots can be placed inside (see Batschelet 1981, p.23) or
outside the circle, with the latter having the advantage of being able to accommodate larger
data sets.

Figures 2, 3 and 4 illustrate the same industrial data set involving the location of flywheel
imbalances. The study to determine which factors influence the location of part imbalances
was a 2¢ full factorial experiment with 10 replicates per cell. The figures summarize the 160
observations that resulted. For a more complete quantitative analysis of this data set see
Anderson (1993). The rose diagram (Mardia 1972, p.5), shown in Figure 2, is constructed
by dividing the circle into equal sections and making the length of each “petal” proportional
to the number of data points in that section. It is generally a poor data summary, since
although the length of each petal is proportional to the observed frequency, the area is not.
This leads to a distorted emphasis on higher frequency cells. An alternative is to make
the total area of each petal proportional to the observed frequency, but as Cleveland (1985,
pp.243-245) notes that the human eye introduces bias to area comparisons according to
Steven’s Law.

The circular histogram in Figure 3, is a superior alternative to the rose diagram in that
the length and area of each bar is proportional to the number of observed values in that
section of the circle. It may be helpful to add several concentric circles around the histogram
to give an indication of the number of observations in each sector (see Mardia 1972, p-4).
Both the rose diagram and the circular histogram differ from the dot diagram in that they
group the data into user selected sectors for presentation, while the dot diagram is presenting
the actual observed values from limited precision data.

If there is interest in examining an estimate of the density function, one can be constructed
by smoothing the results from the circular histogram using a running median on the cell
frequencies. Twicing, a process which smoothes the residuals of the first running median
and adds them to the original estimate, is used to further smooth the estimated density
(Tukey, 1977, p.526). Alternately, kernel smoothers, such as the box, triangular or normal
(Hastie and Tibshirani, 1990, Ch. 3) could be used to obtain other density estimates. The



selection of the range of the data is arbitrary. Common choices are 0° to 360°, or -180° to
180°. However, the selection of the range does not alter the inherent connection between
the two end points. Hence for our density estimate, we extend the range of the data to
include additional cells on each end to take this association into account. For example
using the range 0° to 360°, if the cell sizes used are 10° increments, we would extend the
range to (—30°,390°) in order to have a continuous estimate of the density at 0°. Since this
method does not guarantee a density estimate of the correct size an adjustment is performed
to preserve the consistency of the estimate. We calculate the area under the curve and
multiply our estimate by a constant factor to ensure the density has the right size. The line
in Figure 3 illustrates this method. This density estimate can be useful both in isolation
or in combination with the circular histogram to gain a better understanding of the overall
shape of the distribution. '

However, the previous graphical methods are not ideal for making comparisons among
different observed samples as it is hard to discern the overall attributes of each data set. A
new graphical data summary suitable for unimodal data, developed as an analogous summary
to the box-and-whisker plot commonly used for linear data, is the circular boxplot shown
in Figure 4. The data used in this diagram is again the automotive flywheel data described
previously. The circular boxplot provides a five-quantile summary of the data, which makes
- quick comparisons of location, dispersion and symmetry possible. In the centre of the shaded
wedge, is a radius marking the median direction. For small sample situations where the
median, as previously defined is not unique, the average direction of the candidates for
median is taken, giving a reasonable approximation to the middle of the data. The shaded
region encompasses the central 50% of the data, 25% on either side of the median. Finally,
the curved “whiskers” map out the central 90% of the data. In this way, the eye is able
to determine quickly the overall direction of the data, a measure of its spread, as well as
a feeling for the skewness of the distribution. In addition to the graphical summary of the
data, the angles, measured in degrees, for each of the five quantiles are reported. In Figure
4, the range selected was -180° to 180°.

A final and more specialized graphical method for circular data is the directional interac-
tion plot. It is useful for summarizing the influence of two factors from a factorial experiment
on an angular response. It is analogous to the interaction plot commonly used for continuous
linear data, where the notion of no interaction is well understood to involve additivity of two
or more main effects. Graphically, this is interpreted as parallel lines for a fixed level of one

factor as we move from low to high of another factor, as shown in Figure 5. To translate this



notion of additivity to directional data, we consider a two-way experiment with two levels
for each of the factors, A and B. We assume that changing the levels of either of the factors
will result in an angular rotation on the circle (clockwise being negative, counter-clockwise
as positive). Here we define no interaction effect to occur when the effect of the two factors
is additive in angular rotations for all combinations of the levels of the two factors. Figure 6
illustrates this situation for the 22 factorial case. In this plot, the four radial lines describe
the circular averages (frequently called the mean direction in the literature) of the groups
considered for the interaction plot, namely A low B low, A low B high, A high B low, and
A high B high. The arcs outside the circle summarize the rotation from changing the level
of one factor while the other factor is held constant first at its low level and then at the
high level. If no interaction is present, the plot will show that the magnitude and angular
direction of rotation will be the same. Figure 7 gives an example of a non-zero interaction
where the size and direction of the rotations are different for the two levels of factor A. The
interaction plot is helpful for gaining a better understanding of the simultaneous effect of

several factors on a circular response.

3 A Cylindrical Plot

Frequently, a circular response, 6;, has a corresponding linear attribute, z;, as in the case
of wind direction and velocity, or direction and size of the imbalance of a rotating part.
Such bivariate responses are sometimes called cylindrical data since we can think of the
data lying on a cylinder with radius one and the length of the cylinder corresponding to
the linear measurement. In these situations it is sometimes desirable to determine the
relationship connecting these two responses. However, if we attempt to plot the data in
cylindrical form, we encounter problems in that the data would need to be displayed in three
dimensions. The plot in Figure 8 shows how this problem can be circumvented and both of
the attributes can be combined in a single plot. The inner circle represents the zero value of
the linear component, and hence, the radial length from the inner circle to the data point
is proportional to the linear response. The relative size of the inner circle can be adjusted
to enhance the appearance of the graph. If the inner circle is reduced to radius zero, the
plot simply becomes a scatter of plot of z; cos6; versus z;sin §;. However, the key aspect of
the data is the connection between the observed data and the origin. If the inmer circle’s
radius is reduced to zero, there is nothing to emphasize the origin, and the human eye is

naturally drawn to the centre of the cloud of points. In this case, the connection between the



linear and angular components is difficult to identify. Hence the inner circle should be large
enough to allow the nature of the data to be illustrated, but small enough that the data is
not obscured by its prominence. This author has found that setting the radius of the inner
circle equal to one third to one sixth of the total range of the linear data gives a satisfactory
graph. The direction is incorporated into the plot by plotting the points along the ray
corresponding to the vector through the origin in the direction of the response. Concentric
circles are added to give scale to the linear measurement. In Figure 8, the units of the linear
measurement, flywheel imbalance, are pound-inches. An alternative, to using equally spaced
circles to indicate the scale, is to plot three circles with radii selected to reflect thelower and
higher quartiles as well as the median of the linear data. Labels for the quartiles and their
magnitude will further enhance the plot. This choices provides some additional information
about the spread of this component.

In some situations, actual meaning can be given to the coordinates obtained by the plot.
For example, if we consider the balancing of rotating parts, we can think of either placing
a variable sized weight on the circumference of the circle, or a unit sized weight at different
distances away from the centre of the part. In this situation, since the force exerted by
a weight is proportional to either the distance from the radius or the size of the weight,
the graph can be interpreted in two possible ways. In practice, the correction is made by
attaching different sized weights to the circumference of the part. If a relationship exists
between the radius and some function of the weight, it is best to plot the function of the
weight. For example, if the square of the linear measure is physically related to the radius,
then the plot should reflect this relation.

4 Conclusions

Graphical tools for studying an angular response can be valuable for gaining a better under-
standing of the underlying process and the nature of the data. The smoothed estimate of the
density gives a visual way of examining the overall shape of the observed spread of the data.
The circular boxplot provides a quick five-data point summary of the location, dispersion
and skewness of the data. The more specialized directional interaction plot can illustrate the
influence of more that one factor on a circular response from a factorial experiment. Finally,
the cylindrical data plot allows a two-dimensional summary of the relationship between the
angular measure and its associated linear component. These graphical plots can assist in

the clear presentation of directional data.
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Figure 1: Dot Diagram



Figure 2: Rose Diagram



Figure 3: Circular Histogram with Density Estimate

10



151.5

-173

104

Figure 4: Circular Boxplot
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Figure 5: Example of No Interaction for Linear Data
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Figure 6: Zero Interaction for Directional Data
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Figure 7: Non-Zero Interaction with Magnitude and Directional Differences
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Cylindrical Plot

Figure 8
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