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ABSTRACT

Parameter design is a method for improving quality in a product or manufacturing process by
minimizing expected loss due to noise variation. Understanding and development of the
methodology has focused primarily on the quadratic loss function, which leads to a two step
procedure involving the minimization of a dispersion measure and then adjusting the mean to
target. In some practical situations, however, the loss can be far from quadratic as would be the
case if it were highly skewed. By building on a theory developed by Leén and Wu (1992), we
develop a modelling and data analysis strategy for parameter design experiments with general
loss functions. It turns out that the only additional effort is to model a location measure which
is different from the mean for non-quadratic loss. The technique is illustrated on an experiment
involving epitaxial layer growth in IC fabrication.

Keywords: General loss function, Nominal-the-best parameter design, Additive model, Dispersion
measure, Location measure, Adjustment factor.



1 Introduction

The goal of parameter design, as introduced by the Japanese quality expert G. Taguchi, is to
improve quality by making the product/process insensitive to variations in the noise factors.
Because these factors are difficult or expensive to control, Taguchi advocates minimizing their
effect by exploiting their interactions with control factors, which are easy to manipulate. It
is often convenient to measure the quality of a product/process in terms of the closeness of
some quantitative characteristic to an intended target. When the target is fixed at a finite
(usually nonzero) value, the problem is referred to as nominal-the-best. A standard approach
in this case is to measure sensitivity to the noise factors with the quadratic loss function, i.e.
squared deviation from the target, and then to identify those settings of the control factors
which minimize expected loss. Nair (1992), Section 2, contains a comprehensive discussion
of these issues.

For parameter design problems of this nature, many improvements to Taguchi’s method-
ology appear in the statistical literature; however, until Leén and Wu (1992), the loss function
was invariably assumed to be quadratic. It is important to recognize that this loss function
will not be adequate in all cases. For example, when a windshield deviates from its nominal
size the loss is not symmetric. Smaller ones will be scrapped, whereas slightly larger ones
can be accommodated by the molding around the frame. Similarly, when a brake rotor is
too soft, it must be scrapped. However, if it is too hard, the squealing sound produced
may be an annoyance yet the rotor still functions adequately. Asymmetric loss can also be
observed in the food packaging industry where under- and over-fill have unequal effects on
the producer’s reputation. In many situations, quadratic loss over penalizes large deviations
from the target. In particular, when the specification limits are violated and the product is
scrapped, the loss is usually bounded by the cost of productic;n. The vll)urphose of this paper
is to develop a modeling and data analysis strategy for general loss functions.

As previously mentioned, a product/process is usually monitored by some quality charac-



teristic or output y. Following Leén, Shoemaker and Kacker (1987) (henceforth denoted by
LSK) and Leén and Wu (1992) (henceforth denoted by LW), for given settings of the control
factors ©® and the noise factors N, the output y is determined by some transfer function
f(N;©). The noise is assumed random and, when the output deviates from an ideal target
t, a loss proportional to (y — t)? is incurred. Utilizing this notation, parameter design can
be described formally as a method for ascertaining those settings of the control factors ©
which minimize average loss Ex[(f(N;©) —t)?] due to variation from the noise factors N.
An approach popularized by Taguchi involves a two-step procedure where attention initially
focuses on reducing process variability and then turns to the problem of process targeting.
To this end, Taguchi divides the control factors into two groups, © = (a,d), where a and d
are called respectively the adjustment and nonadjustment factors. The adjustment factors
derive their name from the fact that they can be used to adjust the mean output without
affecting the variability. Much progress in the understanding and refinement of two-step
procedures can be found in LSK, LW and Box (1988). The procedure can be generically

described as follows.

1. Find d* which minimizes some dispersion measure.

2. With d fixed at d*, find a* by identifying the setting of a that adjusts the expected
output to the target.

Obviously the existence of an adjustment factor is essential (see LSK and LW). In LW,
a theoretical basis for generalizing both the loss function and the two-step procedure was
introduced. This paper proposes a corresponding data analysis strategy and in particular
develops an efficient two-step procedure for the case when y follows an additive model.

In Section 2,-the general.measures.of dispersion and .location proposed in LW are re-
viewed. These measures are then considered for a general class of loss functions. In Section
3, the traditional two-step procedure for quadratic loss is generalized and then adapted to

an additive model. Under this model, it is proved that minimizing the dispersion measure
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is equivalent to minimizing variance. Methods for estimating the location measure are con-
sidered. In Section 4, a strategy for data analysis under an additive model is presented and
then applied to an industrial experiment in Section 5. Since the loss functions considered
in this paper have the flexibility to better portray true costs, the methodology developed in

this paper will be called cost-driven parameter design.

2 Cost-Driven Loss Functions

Before the work of LW, two-step procedures for nominal-the-best problems were largely

limited to quadratic loss under the familiar relation
R, = E[(Y - £)"] = Vax[Y] + (E[Y] - t)%. (1)

As argued in Section 1, quadratic loss ignores the possible asymmetric nature of loss about
the target and often over penalizes large deviations. To extend (1) for a general loss function
L(y,t), where the output is y and the target is ¢, let Y be the random variable associated
with y, F be the corresponding distribution induced by the noise N and R; = Er[L(Y,?)] be
the risk function. LW defined the dispersion measure as the minimum risk incurred when ¢

is free to assume any value in a set T,
D = min Rt = Rt*,
teT

and the location measure as the value of £ that minimizes R,, denoted by ¢*. Noting that D

and t* do not depend on ¢, LW completed the analogue of (1) by calling the excess risk,
Ot:Rt—Rt* =Rt'—D,
the off-target measure. Rearranging this relation gives

Rt:D+Ot,



a fundamental formula for developing two-step procedures. Note that O, vanishes when
t* = t. For quadratic loss, D becomes the variance of Y, t* the mean of Y, and O, the bias
squared.

LW derive their generalized measures for two asymmetric loss functions L1 (y,t) = w,|y—t|
and Ly(y,t) = we(y — t)?, where

_ b1 ifyst,
We=1 by, ify>t, by,by>0.

Since the expressions for D and O, are straight forward once t* is determined, we will only

give the expression for t* in the following. LW showed that, for L,

b
* -1 2
t - F (bl b2) ) (2)

which is the 100b62/(b1 + b2) percentile of Y, and for L,,

po - Bl ydF(y) + b [ ydF(y) 3
= TR FE) 4 (= FE) (3)

which is implicitly defined. Since a—;g—* > 0 in either case, t* uniquely minimizes R;.

Here we consider another interesting loss function,

_[hly—t| ify<t,
Lya(y,t) = { bo(y —t)? ify>t, b,by>0,

which combines L; and Ly. This intrinsically asymmetric function could be used to represent
a process where a product exhibiting significant deviation below the target can be reworked
at a cost which is linearly proportional to the amount of deviation. For example, when a
brake rotor is too hard (characterized by small readings on the brinell scale), it is possible to
anneal the rotor back to the intended target at a cost which is approximately proportional
to |y — t|. However, excessively soft rotors must be scrapped. For the sake of simplicity, no
upper specification limit has been imposed on y; however, the loss function in (5) is capable

of incorporating this additional feature. It is proved in the appendix that

e _JTydFy) b F(t)
PETTFw) o 1SR ®)
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is the location measure. When L, ; is changed to b;(y —t)? for y <t and by|y — t| for y > ¢,
a similar result follows.

It turns out that the loss function can be chosen very generally as

_ [ Lit—y) ify<t,
L(y’t) - { LH(y — t) ify>t, (5)

where L; and Ly are nondecreasing functions of |t — y| and L;(0) = Ly;(0) = 0, while still
admitting a tractable two-step procedure under an additive model. Note that a one-sided
derivative of L(y,t) with respect to ¢ exists (for every fixed y) since L; and Ly are monotonic.
In general, the smoothing effect of integration is sufficient to guarantee the differentiability
of R;. These remarks are relevant to the proof of Theorem 1 in the following section where
we investigate D under the present loss function and assuming an additive model for y.
While it is inappropriate to assume symmetric loss in general, it should also be recognized
that manufacturing processes usually demand that upper and lower specification limits about
the target not be exceeded. When such violations occur, the product is often scrapped in
which case the loss is a constant (i.e. the cost of production) for y outside these limits. The

general loss function in (5) is capable of handling this situation.

3 Two-Step Procedure for the Additive Model

The traditional two-step procedure for quadratic loss would suggest that the general disper-
sion and location measures be modeled as functions of the control factors. Expected loss

could then be minimized by implementing the following two-step procedure.

Procedure 1
1. Find d* which minimizes D(d).

2. With d fixed at d*, find a* by identifying the setting of a that adjusts ¢*(a,d*) to the
target t.



When the quality characteristic y follows an additive model, it will be demonstrated that
Procedure 1 can be greatly simplified.

Under a location-scale distribution, the additive model for the output is

y(a,d) = p(a,d) + a(d)e, (6)

where € has a standardized distribution H independent of @ and d. It is thus assumed
that the distribution of y depends on the control factors only through p and o. For the
most general loss function given in (5), let t = p + oz, where z is the standardized target

corresponding to the standardized output e. Then,
R = / Li[o(z — €)]dH(e) + / Lutlo(e — 2)|dH(e) = R, (7)

and it follows that z*, the standardized location measure, is the solution of

aa% = [ Bilo( — eNd(e) - [ Liglo(e— )R () = 0. (8)

This leads us to the following theorem which reveals a fundamental relationship between the
dispersion measure associated with L and the standard deviation of Y. Its proof is given in

the Appendix.

Theorem 1 Let oy represent the standard deviation of Y under the additive model in (6)
and Dy the dispersion measure of Y under the general loss function in (5). Then Dy is a

nondecreasing function of oy.

From Theorem 1 minimizing Dy is equivalent to minimizing oy. Therefore, we can
replace D(d) in Step 1 of Procedure 1 by the much simpler function o(d). Next, replace
t*(a,d) in Step 2 by p(a, d) + o(d)2z*(d). Intuitively we see that the mean is adjusted toward
that side of ¢ with lesser cost (i.e. a cost-adjustment to the target). Procedure I can now be

restated as follows.



Procedure 2
1. Find d* that minimizes o(d).

2. With d fixed at d*, find a* by identifying the level of a so that u(a,d*) equals the
cost-adjusted target t — o(d*)z*(d*), where z* is a solution to (8).

For the rest of this section we discuss the estimation of z*(d*). Two methods are being

considered.

Sample Estimation of z*: Let €;; = (yi; — pi)/0: be the 7" standardized observation from
the i** setting of the control factors and replace it by the corresponding sample estimate
ei; = (i — Bi)/Tis where Ji; = 4; and 3; = s;. A sample estimate of z* can thus be obtained
from (8) upon replacing ¢ by & and H by H—the empirical distribution function of {e;;}.
Since ¢;; is independent of (a, d), we can pool the experimental data and estimate z* from a
single representative sample.

Expressions for estimating 2* under L,, L, and L;, are now presented. Let ex,) denote

the kP order statistic from the combined sample {e;;} of size n. Then for L,

by

z*¥ = 6(1;*) -+ (bl n bgn - n*) (e(n*+l) - e(n*))7 (9)

where n* is the inter part of byn/(b; + b;). This estimator is the 1006z /(b; + b2) percentile
of e. For L,

= _ Zrarwa(klew _ [ b ifeq <z

Finally, for L;  let e(n) be the largest order statistic less than or equal to z*. Then,

n
- ‘Ek::n;;«i-'l €(k) bl ns
z* =

)- (11)

n—ns  2b5(d*) n—ng
The reader will note that the expression in (11) requires an estimate of o(d*), while (9) and

(10) do not.



Although this method of estimation does not require specific assumptions concerning the
distribution of the data, caution must be exercised. When the sample size corresponding to
the control factor settings is small and particularly if the cost ratio by:b; is extreme, the range
of the data may mot include z*. Obviously sample estimation is inefficient in such instances

and an alternate method of estimation is available as follows.

Theoretical Computation of z*: When the form of F(y) and hence of H(e) is known or
assumed, z* can be computed directly as the solution of (8).

For example, consider the following loss function,

_ [ u(t—yp ify <t
Lyq(y,t) = { by(y — ) if y > t, (12)

for integers p,g = 1. With respect to L, g, it can be shown that, by using the binomial

expansion, z* is the solution of

p-1 o z g-1 o o
po? S (P17 / ¢dH + (-1)7qo? Y (7)) (=1)'2"" b / €dH = 0. (13)
e i=0 z

=0

The proof is cumbersome but not difficult. When p = q this relation reduces to

p-1 o = ® i
E(p—il)(_l)zzp—z—l (bI/ edH + (-—l)sz/ e’dH) = 0,
1=0 et ?

which does not depend on o. Therefore, z* can be computed analytically (i.e. without data)
when p = g are integers; otherwise, the computation of z* requires an estimate of o(d*).

To solve for z* one must evaluate, [*_ €dH(¢) and [ ¢'dH(e), the truncated moments
of H. When H is standard normal, these moments have nice expressions. For the sake of
brevity, we only give the solution to (13) for the three loss functions Ly, Ly and L. For
Ly, (13) reduces to (b1 + b,)®(z) — by = 0, which leads to

b
* _ F/—1 2
=@ (_———bl T bz) ) o (14)

the 1006, /(b1 + b,) percentile of the standard normal distribution. For L, (13) reduces to

8(2) + ¢(2*) + (bl ”_2b2) 2 =0, (15)
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and for L; 5, (13) reduces to
bl — 2 B( * *— 0
o * (2) — ¢(z%) + 27 = 0. (16)

The three expressions above clearly demonstrate the dependence of z* on the cost ratio
by:b;. In Table 4 of the appendix, we give selected values of 2%, under the standard normal
distribution and as a function of b;/b;, for L;, L, and L;, above. In practice, L; and L, are
preferred since then 2* is independent of o. Note, however, that this approach is valid only

if the skewness exhibited by a loss model can be captured by the coefficients b, and b, alone.

To summarize, the implication of Theorem 1 has been to greatly simplify the implemen-
tation of a two-step procedure under cost-driven loss functions. In fact, the only complexity
is that of estimating or computing the standardized location measure z*. Note, however,

that this procedure is completely dependent on the existence of an adjustment factor.

4 Strategy for Data Analysis: Additive Model

The following five-step procedure outlines an analysis strategy for the implementation of

Procedure 2 under an additive model.

Procedure 3

1. Identify the set of control factors d that influence o and the levels d* that minimize

o(d).
2. Estimate o(d) at d* and denote it by &(d*).
3. Identify an.adjustment factor a.
4. Estimate z°(d*) in (8) and denote it by z*(d*). Then adjust a to the level a* that

satisfies
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ula*,d*) = t — 5(d")2(d*).

5. After performing a follow-up experiment, update the adjustment of factor a in step 4.

Under the traditional quadratic loss function in (1), 2* = 0 and an estimate of o(d*) is no
longer required in step 4. Thus step 2 can be eliminated and we have the familiar procedure
for conducting a parameter design experiment when y is additive.

The usual approach in step 1 is to model log(s®) as an additive function of the control
factors. Significant factors are thus identified and the derived model can be used to im-
plement the estimation of o(d*) in step 2. In addition, if replicates of s?(d*) are available
when the experiment is restricted to the setting d*, then a second estimate of o(d*) becomes
available. An alternative approach is to model the response y as a function of the control
and noise factors and then compute 5%(d) as the variance of §(d) with respect to the noise
variation (see Welch, Yu, Kang, and Sacks (1990) and Shoemaker, Tsui and Wu (1991)).

In many cases the adjustment factor required in step 3 is known apriori from engineering
knowledge and design specifications (see LSK for further discussion). When this is not the
case, one can search for an adjustment factor empirically by modeling the mean as an additive
function of the control factors. Any significant factor for the mean but not for the variance
is a potential candidate (see Nair and Pregibon (1986) and Box (1988)).

In step 4, z* is estimated by one of the two methods discussed in Section 3. If z* depends
on d through o(d), then use the estimate &(d*) from step 2 in its place. It is emphasized at
this point that step 4 merely provides an intermediate estimate of t — o(d*)2*(d*) necessary
to target the follow-up experiment. By focusing more resources on a single setting, the
follow-up experiment provides a superior estimate of this quantity.

In step 5, a follow-up experiment is performed not only to confirm the conclusions drawn

from the experiment, but to estimate ¢t — o(d*)z*(d*) with more precision as well.
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5 Cost-Driven Analysis of an Epitaxial-Layer Growth
Experiment in IC Fabrication

The following example, from integrated-circuit fabrication, was first analyzed by Kacker
and Shoemaker (1986) (henceforth denoted by KS). The manufacturing process begins with
the growth of an epitaxial layer of silicon on top of silicon wafers. Reliable performance
of future components demands that the layer be uniformly close to the target thickness of
14.5 micrometers. To this end, process specifications called for a layer between 14 and 15
micrometers (see KS for a detailed description of the process). This example will now be

analyzed following the strategy outlined in Section 4.

Table 1. Control and Noise Factors and Their Settings

Factor Experimental settings
Control Factors
A Rotation method Continuous Oscillating
B Wafer code 668G4 678D4
C Deposition temperature 1,210 1,220
D Deposition time High Low
E Arsenic flow rate 55% 59%
F HCI etch temperature 1,180 1,215
G HCI flow rate 10% 14%
H Nozzle position 2 6
Noise Factors
L Location Top Bottom
F; Facet 1 2 4 6

Step 1: KS considered eight control factors for their potential to reduce variability. The
factors, which are listed in Table 1, were varied according to a 2};* fractional factorial design.
To minimize the epitaxial-thickness variance,.they modeled log(s?) as.an.additive function
of these factors. From their analysis it was determined that A and H were significant. The
new settings given in Table 2 led to a 60% reduction in the epitaxial-thickness standard

deviation.
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Table 2. Setting Changes Suggested by
the Analysis in Step 1

Imitial New
Factor setting setting
A Rotation method Oscillating Continuous
H Nozzle position 4 6

Step 2: Following the model developed in KS, log(s®) was regressed on the control factors
A and H resulting in the estimated model,

log(0?) = —1.82 + 0.619X 4 — 0.982X . (17)

where X4 = +1 denotes the two settings of A and similarly for Xp. Inserting the new settings
for A and H from Table 2 produced the estimate 3(d*) = 0.181. Under the reduced model,
four replicates of s?(d*) were available and their average produced the estimate (d*) = 0.257,
based on a combined sample size of 32.

From these results, it would seem that the log(s?) model is significantly underestimating
o*(d*). This can be explained, at least partially, by the fact that exp{E[log(s?)]} is a biased
estimate of 2. By a Taylor series argument, it can be shown that exp{E[log(s?)]} ~ o2 —
30?Var[log(s?)] < o%. In any event, since the magnitude of the cost-adjustment to ¢ is
directly proportional to o, conservative estimation of ¢ would be prudent.

The results above emphasize how difficult it is to estimate dispersion effects from frac-
tional factorial experiments. Typically such experiments do not take enough data to generate
reliable estimates. However, since the follow-up experiment can provide a more accurate es-

timate of o(d*), this is not a problem of great concern.

Step 3: For this-process, deposition time (D).is-a scaling factor.that was traditionally used
by engineers to adjust epitaxial-thickness. We therefore choose D as the adjustment factor.
Note that the original data in KS and the response model analysis in Shoemaker, Tsui and
Wau (1991) provided empirical evidence supporting this choice.
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Step 4: For this example, a cost ratio of b;:b, = 1:6 was chosen because it produced a
significant cost-adjustment to the target without pushing it too close to the lower specifi-
cation limit. Although there was no inherent reason to apply asymmetric loss to epitaxial
thickness, some of the physical attributes of the model such as additivity, normality, and
nominal-the-best targeting made it ideal for illustrative purposes.

Sample estimates of z* are obtained from the experimental data and compared with their
counterparts under the standard normal distribution.

For L,, z* = 1.065 as compared with z* = 1.068.

For L,, z* = 0.688 as compared with z* = 0.707.

For L, 5, z* = 0.319 as compared with z* = 0.269, given 5(d*) = 0.181.
Under L; and L,, we see that z* is slightly less than z*. One possible explanation is that a
small sample provides very conservative information with respect to the tails of its distribu-
tion. As a result, 2* would tend to underestimate z*.

Given the intended target, ¢ = 14.5, and estimates of z* and o, deposition time for the

follow-up experiment would then be adjusted until the mean thickness of the epitaxial layer

is approximately equal to 14.5 — 52",

Step 5: To confirm conclusions drawn from the experiment, KS performed a follow-up
experiment at the new settings for A and H. They conducted three independent test runs,
each consisting of 70 wafers, and averaged the three sample variances to get the estimate
a(d*) = 0.239. Since the original data are not available, estimation of ¢ — oz* under the
assumption of normality is the only recourse. Since L, and L, are independent of o, 2*
remains unchanged in either case; however, under L;, the new estimate of o yields z* =
0.404.

Given that no serious anomalies were observed in the follow-up experiment, an estimate

of the targeting factor for mean epitaxial-thickness would be computed. It would then be

used, in conjunction with the control factor settings of Table 2, to optimize the process. In
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Table 3, the cost-adjusted targets, t — G2*, under each loss function and for each method
of estimation are collected together. First, note that the method of estimating z* makes
little difference in this example. Second, estimating o(d*) from the log(s?) model generates
conservative estimates of the targeting factors. Finally, the targeting factors from Table 3
are well above the lower specification limit of 14.0. In fact, within the interval (14.0,14.5),
the cost-adjusted targets range from 50% to 20% below ¢ = 14.5.

Table 3. Target Adjustments for by :b; = 1:6

Loss Function L, L, L,
Factorial Experiment ( Pooled Std. Data )
a(d*) =0.181 14.31 14.37 14.44
g(d*) = 0.257 14.23 14.32 14.38
Factorial Experiment ( Std. Normal Dist. )
5(d") = 0.181 1431  14.37 1445
g(d*) = 0.257 14.23 14.32 14.39
Follow-up Experiment  ( Std. Normal Dist. )
o(d*) =0.239 14.24 14.33 14.40

Based on results from the follow-up experiment for the asymmetric linear loss function
L., we see that t — 02* + 0 = 14.24 £ .239 is contained in the lower half of the tolerance
interval (14.0,15.0). Assuming that any product for which y < 14.0 can be reworked whereas
y > 15.0 leads to scrap, the benefits of employing an asymmetricloss model can be quantified.
Approximately 68% of the product produced will have y is in the interval (14.0,14.5), leaving
16% of the production with y < 14.0 and 16% with y > t = 14.5. Operating the process
under the settings in Tables 2 and 3 virtually eliminates product waste due to y > 15.0
and significantly reduces the probability of y falling in the interval (14.5,15.0). However,
approximately 16% of the product must be reworked due to y < 14.0.

In contrast, a symmetric linear loss model leaves 2.5% of the product to be reworked
and 2.5% for scrap. To eliminate scrap under this model would require a 30% reduction in

o(d*) ~ 0.239; in other words, new technology would be required to meet the same conditions
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achieved by the asymmetric linear loss model. If the cost of reworking 16% of the product
is significantly less than the estimated cost of developing and implementing new technology,

then a cost-efficient route for quality improvement has been identified.

6 Concluding Remarks

The data analysis strategy proposed in this paper has two major advantages. First,it extends
the scope of the nominal-the-best parameter design to include loss functions of a much more
general nature. Second,- it achieves this generality while retaining the inituitive appeal and
much of the mathematical simplicity of the quadratic loss function. However, since this
methodology pertains to the additive model, it can not be applied directly to others such as

the multiplicative model,
y(a,d) = p(a,d)n(d),

where p,7 > 0 and 7 is a multiplicative error with E[p] = 1, Var[n] = 0. In this particular
instance a log-transformation of y would achieve approximate additivity and the analysis
strategy proposed in the paper would be suitable for log(y). In general, a variance stabilizing
transformation which eliminates dependence of the variance on the mean should be sufficient
(see Nair and Pregibon(1986)); however, this problem requires further research. Although it
can be difficult to identify the true loss function in a given industrial setting, approximation
to the true loss function by L;, L, or L, with an appropriate choice of b; and b; should
be quite effective unless the percent of items with large deviations from the nominal value

is substantial.
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Appendix

A Proof of (4).

Noting that

R =ErlLip(Ve) = b [ (¢~ 9)aF@) +b, [ (v~ 7dF (),

it follows that QGI—:‘ =t = 0 gives
bR () — 26 [ ydF(y) + 2at'(1- F(£) ) =0,

or equivalently,

g e ydF(y) b F()

T 1-F(t*) 2b, 1—F(t*)"

B Proof of Theorem 1.
From (5), .
D= /_; Li[o(z* — €)|dH(e) + /:; Lito(e — 2*)|dH (€)

where 2* is the solution of (8). To prove that D is a nondecreasing function of o, it is

sufficient to show that % > 0. To this end,

g—f = /:f'z[ﬂ(z* —¢)] (z* —€¢) dH(e) + /:E'H[a(e — 2*)] (e — 2*) dH(e)

From (8), the term in parentheses above is zero. Since Ly and Lj; are nondecreasing, i.e. L}

i : aD :
and Lj; are nonnegative, 5~ > 0 as required.
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C Table 4.

Tabulated values of z* under the Standard Normal Distribution!

Ca
»
N

Ca
-

21 23 23 21(b1/ba) | ba/by | 2 z3 2y 21,3(b1/ba)
0.006 0.038 0.275 0.182 11.0 | 1.383 0.937 1344  -0.905
0.114 0.073 0.317 0.139 12.0 | 1.426 0.970 1.382 -0.944
0.164 0.105 0.356 0.100 13.0 | 1.465 1.000 1.415 -0.979
0.210 0.134 0.392 0.064 14.0 | 1.501 1.028 1.447 -1.011
0.253 0.162 0.426 0.030 15.0 | 1.5634 1.053 1.475 -1.041
0.293 0.187 0.457  -0.001 16.0 | 1.565 1.077 1.502 -1.068
0.331 0.211 0.487 -0.031 17.0 | 1.593 1.099 1.527  -1.094
0.366 0.234 0.514  -0.059 18.0 | 1.620 1.120 1.550 -1.119
0.399 0.256 0.540  -0.085 19.0 | 1.645 1.140 1.573 -1.142
0.431 0.276 0.565 -0.110 20.0 | 1.668 1.159 1.593 -1.163
0.460 0.295 0.588  -0.134 25.0 | 1.769 1.240 1.683  -1.256
0.489 0.314 0.611  -0.156 30.0 | 1.849 1.305 1754 -1.331
0.516 0.331 0.632  -0.178 35.0 | 1.915 1.360 1.814  -1.393
0.541 0.348 0.652  -0.198 40.0 | 1.971 1.407 1.865 -1.447
0.566 0.364 0.672  -0.218 45.0 | 2.019 1.449 1.909 -1.493
0.674 0.436 0.758  -0.305 50.0 | 2.062 1.485 1.948 -1.634
0.765 0.497 0.831  -0.379 55.0 | 2.100 1.518 1.983  -1.571
0.842 0.549 0.893  -0.442 60.0 | 2.135 1.548 2.015 -1.605
0.908 0.595 0.947  -0.498 65.0 | 2.166 1.576 2.044 -1.635
0.967 0.636 0.996  -0.547 70.0 | 2.195 1.601 2.071 -1.664
1.068 0.707 1.078 -0.631 75.0 | 2.222 1.624 2.096 -1.690
1.150 0.766 1.147  -0.702 80.0 | 2.246 1.646 2.119 -1.714
1.221 0.817 1.206  -0.763 85.0 | 2.269 1.666 2.140 -1.736
1.282 0.862 1.258  -0.816 90.0 | 2.291 1.686 2.160 -1.758
1.335 0.901 1.304  -0.863 100.0 | 2.330 1.721 2.197  -1.796
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IThe notation used in this table identifies 23, z; and 2}, as the location measures for Ly, L,

and L, ; respectively. The following relations:

zi(bi/b) = —zi(bs/b1),
z31(b2/b1) = —z1,(b1/b2),
z;,l(bl/bZ) = ‘zI,z(b2/bl)v

extend the scope of Table 1. To obtain z}; when o is not equal to one, simply replace :—3 by

3'—:3; and take this new cost ratio to Table 4.
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