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SUMMARY

This paper investigates data on recurrent events that arise from sources such as warranty claims,
where the observation period for a unit is unknown until it experiences at least one event (e.g.,
warranty claim). This creates a type of truncation in the data. We consider nonparametric
estimation of means and rates of the event occurrences for both discrete and continuous time
cases with such “zero-truncated” data and examine the case where the population size and the
distribution of observation times across units are at least approximately known. The behaviors of
the proposed estimators are studied by simulation as well as through their asymptotic properties.
We present an analysis of some car warranty data by applying the methodology developed in the

paper.

Keywords: nonparametric estimation; truncation distribution; population size; recurrent events;
warranty claims; zero-truncated data '

1 Introduction

Field failure data provide important information about the reliability of manufactured prod-
ucts. Since followup of selected products is expensive, there is much interest in the utilization
of information from sources such as failure surveillance reports or warranty claim records.
However, there are inherent problems with such data; these include incorrect failure diag-
nosis or recording errors and delays in the reporting of events such as warranty claims to
the manufacturer ( Kalbfleisch, Lawless and Robinson 1991, Lawless and Kalbfleisch 1992).
Another major difficulty is that the time oﬁgin for a unit is often unknown until it experi-
ences at least one event (e.g., failure or warranty claim), thus creating a type of truncation in
the data (e g., Suzuki 1985 a,b, 1987; Kalbfleisch and Lawless 1988, Lawless and Kalbfleisch
1992).

tAddress for correspondence: Department of Statistics and Actuarial Science, University of Wa-
terloo, Waterloo, Ontario, N2L 3G1, Canada



This paper deals with data on recurrent events that arise from such sources although, as
noted later, applications of the methodology are not restricted to warranty or field failure
problems. The statistical aspects of the topic are as follows. An individual or unit expériences
recurrent events over time ¢ > 0; we let N;(t) denote the number of events over (0, ¢] for unit
i. Unit 1 is observed (i.e., its times of event occurrence are recorded ) over the time interval
(0, 7;]; we call 7; the observation or truncation time. We consider both discrete and continuous
time. When ¢ is discrete, we will assume it takes on values ¢t = 1,2,3,..., and the 7;’s likewise
take on integer values. A set of M units, 1 = 1,2,..., M, is assumed to have independent
and identically distributed event occurrence processes { Ni(t),t > 0} and observation times
Ti,1 = 1,..., M, that are determined independently of the event processes. The statistical
objective is to estimate the mean function A(t) = E{N;(t)}, and the corresponding rate,
defined as \(t) = ﬂdtt) when time is continuous and as A(t) = E{N;(t) — N;(t — 1)} when
time is discrete.

The novelty in the situations we consider is that unit i and 7; are observed only if
N;(7;) > 0, i.e., provided that at least one event has occurred. Otherwise the 7; value for the
unit ¢ is unknown, and we may even be unaware of its existence. The motivation for studying
these situations came from attempts to utilize warranty data, which we now discuss.

Manufacturers collect information about failures or repairs that result in warranty claims.
The repairs may be thought of as recurrent events, and it is of considerable interest to
estimate the mean number of repairs A(t) and the rate A(t) per unit from warranty records.
“Time” may be elapsed calendar time since the unit was sold (i.e., “age” of the unit) or some
measure of usage such as accumulated mileage with automobiles. The problem is to estimate
A(t),t > 0 from warranty data collected up to some point in time. For a unit sold before
then the observation time 7; is a function of when the unit was sold, the type of warranty

“plan, and possibly the usage history of the unit. In most situations the value of 7; becomes
known only when the unit has its first claim, thus falling into the scenario described in the

preceding paragraph. Moreover, in some situations, for example when “time” is a measure

of usage, the 7;’s may never be known exactly, but vonly approximately. We give a pair of
specific examples. ‘

Example 1. Many products, such as tools or small household appliances, have a fixed time

warranty, say one year from the date of sale. In this case, if unit ¢ is sold at calendar time z;,

X is the current calendar time, and ¢ represents the age of the unit, then 7; = min(X —z;,1),

with time measured in years. With products of this type, however, the manufacturer usually

receives date of sale information for at most a small fraction of units. Thus, the date of sale



and truncation time 7; become known for most units only when they have a claim.
Example 2. For automobiles the manufacturer is informed of the date of sale for each car.
However, since warranties usually have both calendar time and mileage limits the observation
times 7; are typically observed or estimated only when a claim is made. For example, if the
warranty coverage is for two years or 20,000 miles and ¢ represents age of the car in years,
then 7; = min(X — z;,2,;), where z; is the calendar time of sale, X is the current calendar
time, and y; is the age at which the car mileage reaches 20,000. Although z; is known, y;
is not. It can, however, be estimated from the mileage at the time of the first claim; this
is usually done under the generally reasonable assumption that in their first few years cars
accumulate mileage approximately linearly with time. If ¢ represented mileage instead of
age, then we would have 7; = min(w;(2), w;(X — z;),20000), where w;(a) is the mileage on
car i at age a. Once again, 7; may be estimated from the mileage at the time of the first
claim.

 Estimation of rates of occurrence with incomplete data on observation time has been
discussed by Suzuki (1987). Kalbfleisch and Lawless (1988), Lawless and Kalbfleisch (1992),
Suzuki (1985 a,b), Suzuki and Epstein (1992), and Suzuki and Kasashima (1993) have consid-
ered similar problems for the estimation of failure time distributions. Our paper is different
from previous work in two main respects: we consider nonparametric estimation of means
and rates of occurrence, and we deal both with truncated data and the case where the dis-
tribution of observation times across units is at least approximately known. The methods
developed are especially useful in the warranty data context described here, but also apply
to other types of observational studies. For example, a sociological study that tracked re-
peated utilizations of a social service by a population of individuals might not know of an
individual’s existence until the first utilization occurred.

It should be noted that this paper deals with marginal rates of event occurrence. It does
not consider the estimation of event intensities, conditional on previous event history, except
in the case of Poisson processes, where the intensity and rate of occurrence are the same.

The remainder of the paper is as follows. Section 2 discusses nonparametric estimation of
mean and rate of occurrence functions when only “zero-truncated” data are available. Section
3 presents methods when the total number of units, and the distribution of observation times
in the population are known; the increased information this pi:ovides is addressed. Section
2 and 3 are both based on Poisson models. Section 4 gives robust estimators for the rate of
occurrence and mean functions. Simulation is used to study the behaviors of the estimators

in Sections 2, 3 and 4 in a few situations. Section 5 considers the situation where data are



aggregated across units. Section 6 illustrates the methodology on some car warranty data.

Some remarks concerning extensions to the present work are made in Section 7.

2 Estimation from Zero-Truncated Data

We assume that {N;(t) : ¢ > 0}, i = 1,..., M, are independent counting processes with
common rate of occurrence function A(¢) and mean function A(t). The process  has an ob-
servation window (0,7;], where the 7;’s are determined independently of the event processes.
In this section, we consider estimation of A(t) when we are aware of only those processes
with at least one event over (0, 7;]. The value of M is unknown in such a case. We assume for
now that the counting processes are Poisson; a relaxation of this assumption is considered
later. ‘

Suppose for notational convenience that processes i = 1,...,m have at least one event
and that for them the times of events ¢;;(j = 1,...,n;, where n; = N;(7;)) and observation

times 7; are observed. We then have the “zero-truncated” likelihood function

Lr = ﬁPr{ni,tijlslni > 1,7}
_om exp[-A(r)]
= D6 W

i=1 j=1

where we use “ Pr{.}” to represent either a probability or probability density, depending on
whether the problem is in discrete or continuous time. '

In later discussion we will assume that the n;’s ( = 1,..., M) are independent and
identically distributed (i.i.d.) with distribution function G(.). This yields the likelihood

function

LT; = HPr{ng,t,-j's,Tgln,- Z 1}

T m dG()[1 = expf-A(m)}]
= e omammier @)

If G(.) is treated nonparametnca]ly (i-e., we do not assume a specific parametric form for
it), Lr, gives the same estimate of A(t) as Lr; this is easily seen by defining dF(r) as
[1 — exp{—A(7)}]dG(r), and noting that the second term in (2) involves only F(7), whereas
the first involves only A(t).



Estimation from (1) for parametric models A(¢;6) poses no particular difficulties; we -
consider an example in Section 6. In the remainder of this section we develop nonparamet-
ric estimates. These are valuable for assessing the shape of A(t) and checking parametric
assumptions. ‘

It is simplest to obtain nonparametric estimates of A(t) by assuming that time is discrete;
the estimates also apply to the continuous time case, as we discuss below. Thus, we suppose
without loss of generality that ¢ takes on values 1,2,..., and let n;(t) be the number of events
observed at time ¢ for unit i. Letting 7 = max(i,... ,Tm), We can write log(Lr) as

Iy = gn.(tﬂog AE) - Y S8 - f;log{l _ expl-A(m)]},

t=11i=1

where n (t) = 37, 8:(t)ni(t) and 8;(t) = I(t < 7;) indicates whether ¢ < 7; is true or not.
This gives . 0 ‘ .00 ' ‘
n(t) <& (1) .
o0~ 30 & TG LT @
and -
B 0%l _ n(t)I(s=1) N ™ 8:(8)8:(s) exp[—A(T)) @)
OA(t)0A(s) A(E)? I {L—exp[-A(m)]}

Estimates :\T(t), t = 1,...,7, are obtained by solving the equations (3). This can in
principle be done using Newton’s method, but if 7 is large it is simpler to use the iteration

procedure

Ao = — n.(ts).- t , (5)
=1 1-exp[-AU) (7))
where A(t)¥) (j = 1,2,...) is the 5’ th iterate towards Ar(t), and we remember that A(t) =
L1 (s). We note that Azr(t) = 0if n (t) = 0, so (5) only has to be carried out for ¢ values
at which there is at least one event. Upon convergence (5) gives the maximum likelihood
estimates Ar(t) and corresponding mean function estimates Ar(t) = T, Ar(s).

The procedure above also applies to continuous-time processes. In that case we merely
let 7 be large enough so that all distinct event times and 7; values can be associated with
one of 1,2,...,7. The values :\T(t) are zero except when ¢ is an event time and so do not
give a particularly attractive estimate of the continuous rate function A(t), but the mean
function estimate Ar(t) is attractive and is in fact a nonparametric maximum likelihood
estimator (m.le.) with typical properties of m.Le.’s, as we discuss below. (More appealing
nonparametric estimates of A(t) may be obtained by smoothing, but this is beyond the scope

of the paper.)



The asymptotic distribution of Az(t) can be obtained for the discrete time case, where
t = 1,2,.... It follows from standard maximum likelihood large sample theory that, for
t < limpeo 7, conditional on {N;(r;) > 0,7 : i = 1,...,m}, and provided that /\(s) >0
(s =1,...,t) and that I, §;(t) — oo, a.5., as m — o0, »

' 5\1"(1)—/\(1) ‘
vm : 4 N@©0,Z), as m— oo, (6)
Ar(t) — At)

where % stands for convergence in distribution and E(T) o Vl(tT) has entries (see (4
8

8%l
Plimm—eo { aA(t)aTA(s)}
. o 8i(8)6i(u) I(u =3) e Am)
= phmm_.oo 2 (1 — e"A("")) A(s) - (1 _ e_A(.,.‘.))]- ‘ (7)

1—1

ng)(ua 3) =

It also follows that for Ar(t) = St Ar(s), we have
Va(he(t) - A®) % N(©,0f), as m— oo, (8)

where Uu =(1,.. I)E(T) 1(1,...,1)'.
The variance ag) in (8) may be estimated, and approximate confidence limits for A(2)
obtained, by replacing A(s)’s and A(7:)’s in (7) with the estimated values. If t is large, how-

() or obtaining

ever, inversion of Vu ) is problematic and alternative ways of estlmatmg o1t
confidence intervals are preferable. This area deserves further study, but we leave this to
another occasion and make only two remarks here. The first is that some form of resampling
inference is a possibility. The other is that for the purpose of testing or interval estimation,
it is simpler to employ parametric models; if strong assumptions are to be avoided then a
piecewise linear model for A(t)'(i.e., a piecewise constant model for A(t)) with a moderate
number of sections is attractive and easily handled. Section 6 provides an example.

In the continuous time case the consistency and the limiting asymptotic normality stated
in (8), and the stronger result that, conditional on s (1=1,...,m), \/ﬁ(f\r(t) — A(t))
converges to a mean-zero-Gaussian- process over the time interval (0,7*),if * — 7* a.s. as
m — oo, can be established under suitable conditions. A rigorous proof of these results will
be given elsewhere. A thorough study of variance estimation for A(t) in the continuous case
is technically difficult. The use of resampling methods or parametric models, suggested in

the preceding paragraph, is once again attractive.

6



3 Estimation with Known Population Size and Trun-

cation Distribution

In some situations the number of units and the observation time distribution G(.) may be
more or less known. For Example 1 in Section 1, the manufacturer might have a reasonably
. accurate estimate of sales over time. Similarly, for Example 2 car manufacturers usually
have estimates of the distribution of mileage accumulation rates for the population of cars.
This allows G(.) to be estimated, as we illustrate in Section 6. We now consider estimation

of A(t) and A(t) when G(.) and M are known.

3.1 Nonparametric maximum likelihood

Parametric models are readily fitted by maximizing the likelihood (9) below. We once
again focus on nonparametric estimation of A(t). The data consist of n; = N;(m:), the t,-,-"s
(j = 1,...,n;), and 7; if »; > 1, plus the knowledge of the number of units with n; = 0.

As in Section 2 we consider the discrete time case and assume for convenience that units
i=1,...,m are those with n; > 1. The likelihood function is then

Irx = THIL M) expl- A « ([ expl-A@IGEY - (@)

=1 j=1

Defining 6;(t) = I(t < 7;) as in Section 2, we can write log(Lrx) as

e = Y n®)logA®) - ¥ 3600

t=1 t=1i=1 -

4 (0 = m)log( [ expl-A(r]dG(r)) + - log(dG(r).

=1

For the discrete time case, dG(s) = Pr(r; = s), denoted by g(s). We then have

Olrk _ n(t) Ny (ar A(t)
-6/\% = —m)-—z&(t) (M m)A(l)’ ~and (10)

Plrx _ _ nlt) A(max(s, 1)) A(1) — A(s)A(t)
OO REI0 ARl A0)? Lo
when t,s = 1,...,7*, where A(t) = [ exp[—A(s)]dG(s) = T7_, exp[—A(s)g(s), and 7* =
sup{s : g(s) > 0} with G(s) = [°dG(u) = >, g(u). Note that A(1) = Pr(n; = 0) here.
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A convenient algorithni for obtaining the S\TK(t)’s is

- . t) ’ .
A()6D) = : n( ) (12)
7y 6i(t) + (M — m) 453 -

where A9)(t) = Y1 .exp[—-l.\(")(s)]g(s). Note that for t > 7 = max(r1,...,7m), At)® =

s=t

0,j =1,..., thus, Arx(t) = 0. And, for t < 7, AU)(t) in (12) is

T expl-AD(s)]g(s) + exp[-AO(T)G(7).

s=t
Provided that m and Y7, 6;(t) — oo, a.s.; and thus, 7 — 7* a.s., as M — oo, and
assuming A(u) > 0(s = 1,...,7*),fort =1,...,7%, '
Arx(1) — A1)
vM : N N(O,EETK)), as M — oo, (13)
| Ari(t) — At)

where V;T%) = EgTK)-l has (u, s) entry (see (11)

'U(TK)('U,,S) = pliqum%{—E\'?:Tlg‘gm}
I(u=s)G(u)  A(max(s,u))A(1) — A(u)A(s) (14)
Aw) A(1) ’

where u,s = 1,...,t.
In addition, for Arx(t) = %, Ark(s), we have

. 2
VM (Ark(t) — A(t)) 5 N(0,67 ), - (15)
2 '
where o{TK) = (1,...,1)2ETK)(1,...,1) . ,
The same remarks apply to estimation of at(TK) as in the preceding section, and the

same options are available.

For the continuous time case, the consistency and asymptotic normality of the estimator
Ark(t) will be proved elsewhere, along with the stronger result that VM(Arx(t) — A(t))
converges to a mean-zero Gaussian process over (0,7*) under suitable conditions.

In Example 2 of Section 1, if ¢ represents mileage, it would be better to allow the 7;’s to
come from different distributions. In particular, we could use 7; ~ G,(.) with a; = X — =;,

since 7; depends on the time since the car was sold. Suzuki and Kasashima (1992), in this
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context, give a nonparametric estimate for the distribution of mileage to the first failure or
claim. If we assume 7; ~ Gq,(.) with a; € {1,...,K} and Gq(.)'s known, the likelihood
corresponding to (9) is

Lm-H{HA(t.,)exp[—A(n)]dGa.(n)}xH{ [ exl-A@NGUY T, (18)

=1 j=1 k=1

where m;, is the size of {i : a; = k, and N;(r;) = 0}. We can obtain the m.lLe. of A(t)i for
both discrete and continuous time cases by a straightforward extension of the methods in

this section.

3.2 Information added by knowing M and G(.)

To compare the truncated data likelihood (1) and the more informative likelihood (9), we
could compute the expected information matrix for each case, noting that in both cases we
would need to take expectation with respect to the distribution of the 7;’s as well as the
Poisson distribution of events. We have instead opted for simulation in order to compare the
nonparametric estimates from the two likelihoods. This allows us to examine and compare
the estimators in a finite sample, not asymptotic, context and avoids the inversion of large
information matrices for obtaining asymptotic variances.

We do two simulations, all with events occurring according to a homogeneous Poisson
process. Our objective is to check and compare the behaviors of the estimators AT(t) and
ATK(t). We also compare them with the estimator [\c(t), which would be obtained if we
knew every 7, (1 = 1,..., M), and not just those for which n; > 1. In this case, A.(t) is the

most efficient nonparametric estimator possible. The simulations are as follows.

1. We used M = 150, and generated =, ¢ = 1,...,150, from the uniform distribution
on (0,300], and 150 corresponding time homogeneous Poisson processes Ni(t), i =
1,...,150, with rate A = 0.01. Here the expected value of m is around 102. Based
on the generated data, we obtained estimates Ar(t), Ark(t), and A (t), which are
respectively the nonparametric m.le.’s of A(t) based on L7, Ltk and L., where L. is
the censored data likelihood »

HJ _ H A(t;;) exp[— A('r,)]}dG(‘r,) X H o €Xp[—A(7:)]dG(m)

,7—1

« TT, AT Ats) expl-A(r)]} x T, _, exp[-A(r). o

j=1



Note that A (t) = =%, A(s) = ¢, % is the Nelson-Aalen estimator in this
situation (see Andersen and Borgan 1985j.=lWe repeated the simulation n = 100 times,
and give the sample means of the estimates in Fig.1 (al), and the corresponding sample

mean square errors in Fig.1 (a2).

2. We took A = 0.001 and kept the other aspects of the above simulation unchanged.
Now, the expected value of m is around 21. Figs 1 (bl) and (b2) present the sample
means and the sample mean square errors of the three estimators of A(t).

From 'Fig.l, ‘we see that all of the estimators for A(t) are essentially unbiased, except
for some slight positive bias in Az(t) when m is small (Fig.1 (bl)). The estimators based
on Ly and Lrg have similar mean square errors in simulation 1, where truncation is fairly
light (A = 0.01, M = 150, E(m) = 102), and are about as efficient as A.(t) based on (17).
In simulation 2, where truncation is much heavier (A = 0.001,M = 150, E(m) = 21), the
information added by knowing M and G(.) plays an important role: Lz is relatively much less
informative, but Arx(t) is still about as efficient as A.(t). Obviously the heavier truncation
is, the more important knowledge of M and G(.) is.

Notice that Ar(t) is defined over (0,7] with 7 = max(ry,...,7m), and A.(t) over (0,7.]
with 7. = max(m,...,7s) while Arg(t) is over (0,7*] with 7* = sup{s : G(s) > 0}.
We know 7 < 7, < 7* generally. For our simulations, the sample means, as well as the
sample mean square errors, of f\T(t), ]\c(t), and [\_TK(t) are, respectively, over (0, ming(7(*)]
, (0, mink(‘r.(k))] and (0,7*] with 7* = 300, where 7(*) and 7*) are the observed values of 7
and 7, at the k** simulation, respectively. This explains why the curves in the figures for
Az(t) are the shortest, and for A(t) are the second shortest.

We remark that means and mean square errors for a fourth estimator (denoted SM in

the figures) which is introduced in Section 4, are also shown in Fig.1.

4 Robust Estimation

4.1 A robust estimator

We consider another estimator which can be used if M and G(.) are known. Since

M .
n(t) = R &) =0 (18)

=1 -
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Fig.1. Simulation with M = 150, G(.) = U(0,300), and (N(t),t > 0) being a time homogeneous
Poisson process, where E{N(t)} = At: (al) plot of sample means of the estimates for the simulation
with A = 0.01 (E{m} = 102) n = 100 times repeated; (a2) plot of the sample mean square errors of
the estimates corresponding to (al); (bl) plot of sample means of the estimates for the simulation

with A = 0.001 (E{m} = 21) n = 100 times repeated; (b2) plot of the sample mean square errors
of the estimates corresponding to (bl). (
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is a unbiased éstimating equation (i.e., the left side has expectation 0) for each t = 1,2,....

provided observation times are independent of the counting processes, we see
n(t) — MG(t)\(t) =0 (19)
is also unbiased by noting E{6;(t)} = G(t) = Pr(r; > t), t = 1,.... Solving (19), we get

n(t)

Asa(t) = MG(t).

(20)

and Asm(t) = T%., ASM(s), fort =1,. . Note that (19) is valid even if the counting
process is not Poisson but E{n;(t)} = )\(t), and that Asp(t) is in fact unbiased.

Under mild conditions, we can prove (see Appendix A) that vM(Asm(t) — A(t)) 4,
N0, t=1,...,7", with

1

oGSM? _ (1,...,1)C7DCI(L, . - ., 1), (21)

where C, = diag{G(1),... G’(t)}, and D; is a t X t matrix with entries
limp—00 35 Cov{n.(s), n. (u)},s =1,...,t;u = 1,...,t. If different individuals have common
covariance structure, D; = (v(s,u)" )tx, with v(s,u)* = Cov{6;(s)n:(s), &(u)ni(u)}, which

. can be estimated consistently by

o(s,u)" = —2{5 (s)ni(s) — G(s)Asaa(s)H8:(w)mi(w) — G(u)Asm(w)}-

. 1._1
Note that this variance estimator is suitable regardless of whether the event processes are

Poisson.

From (20), we have

Var{Asu(t)} = 303 3 Sl

1=1 s=1u=1 .

and if different individuals have common covariance structure,Var{Asp ()} is consistently

estimated by using 9(s,u)* to give

Vene(t) = Z{Z 5; (s)n,(sg‘lG?:;)z\SM(s)}z. (22)

=1 s=1
Asp(t) and Vsu(t) can be written in integral form:

t dN (s) dN.(s)]}z,

R . M 1 . '
hou() = [ 3y Vom(®) = A / 3G BN -
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‘with dN(s) = n (8)ds. These expressions define valid nonparametric estimators in the case
of continuous time processes. . .

In Fig.1, we also show the sample means and mean square errors of f\gM(t) based on
the data generated in the simulation study of Section 3. We observe that ASM(t) is also
essentially unbiased and about as efficient as f\rx(t) for the situations considered, and is
defined over (0,7*], where 7* = 300. In fact, from the formula of :\SM(t), (20), we note that
f\SM(t) is very close to A (t) when M is large enough.

To check the robustness of the various estimators when the recurrent events do not come
from identical Poisson processes, we consider a mixed Poisson model (see Lawless 1987).
Under the model, each unit 7 has an associated random variable a; such that events for it
occur according to a Poisson process with rate function a;A(t). The a;’s have a gamma
distribution with mean 1, so that E{N;(t)} = A(t) still holds. We did two simulations as
follows.

1. 5,1 =1,...,150, are generated as earlier from U(0,300); o;, 7 = 1,...,150, are from
a gamma distribution with mean one and variance one. The 150 counting processes
N;(t), i =1,...,150, are then independent homogeneous Poisson processes with rate
function \;(t) = a;A(t) = 0.01a;. In Figs 2 (al)-(a2), we present the sample means and
sample mean square errors of Ar(t), Arx(t), Asu(t), and A.(t) obtained by repeating

the simulation n = 100 times.

2. We generated data in the same way as for simulation 1 except that a;, 2 =1,...,150
were from a gamma distribution with mean one and variance 0.2. Figs 2 (c1)-(c2),
respectively, give the sample means and sample mean square errors of the estimates
for n = 100 simulations.

The above two simulations were each repeated with A(¢t) = 0.001. The cdrrespond.ing results
are shown in Figs 2 (b1)-(b2), and Figs 2 (d1)-(d2).

We remark that the mean and variance of N;(t) under the mixed Poisson model are
A(t) and A(t)[1 + Var(a;)A(t)], respectively. The larger either Var(a;) or A(t) is, the more
overdispersed the N;(t)’s are relative to the Poisson distribution.

In the figures for sample means of the estimates, we see corroboration of the fact that
ASM(t) and ;\c(t) are unbiased, but that AT(t) is biased. The bias depends on how overdis-
persed N;(t) is, and can be substantial when overdispersion is large. Figs 2 (a2), (b2), (c2),
and (d2) show a similar efficiency for Asp(t) and A(t). ‘The behavior of Arx(t), which is
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based on the P01sson assumption, is apparent. When truncation is heavy (glvmg small m)
it is more or less unbiased and is comparable to Asp(t) and A.(t) (see Figs 2 (b1)-(b2) and
(d1)-(d2)), but when truncation is light (giving large m) it is biased and has considerably
larger mean square error than Agpr(t) and A (t) (see Figs 2 (al)-(a2) and (c1)-(c2)). This is
discussed in Appendix B.

4.2 Effect of imprecise information about G(.) and M

If we know G(.) and M, much more efficient estimation of A(t) is possible than if we have
only zero-truncated data, especially when truncation is heavy. In addition, the estimators
given in Section 3.1 and 4.1, which are based on known M and G(.), are robust to departures
from a Poisson process of events, although in the case of Arx(t) the robustness fails when
truncation is light. We now examine the effect of misspecifying either G(.) or M, since they
will often be known only approximately.

First, suppose that upon our knowledge the total number of units is M*, but the true
value is M,. This does not affect the estimator :\T(t), but affects the others. Now,

A v %

t _—_2..___._.

0= ey 0 = gy
n.(t)

ATK(t)—- M°

&‘iIKSt!),

M a-l 5; (t) + o M, Ark(1)

are then not consistent even under the Poisson model. However, if M‘ is close to 1, or, if
we think of M* an approximately unbiased estimate of M, with small variance, then A (1),
Aspm(t), and Arx(t) are approximately unbiased and efficient.

Over- or under-estimation of My will result in under- of over-estimation of the /\(t)’s in
any given situation. To assess the average behavior of the estimates, we did the following
simulations. Moj,j = 1,...,m = 100 were independently generated from N(150,5%). For
each j, N;i(t)’s,i = 1,..., My;, were independent time homogeneous Poisson processes with
A = 0.01,0.001, respectively; 7;;’s were from U(0,300]. We took M equal to M* = 150 to
obtain the estimates based on each simulated data set (7 = 1,...,100). Fig.3 presents the
- sample means and mean square errors of the estimates for the two cases. These figures show
that, in such a situation, all estimates are roughly unbiased, and A.(t), Asp(t), and Arg
still behave similarly and are more efficient than Ar(t) in the case with A = 0.001. In the
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case A = 0.01, where m = 102, Ar(t) works almost as well as A (t) does while the other two
are a little less efficient. ,

Misspecification of G(.) can also be investigated. If we know M, but assume the distri-
bution of observation time is G*(.) while the true one is Go(.), Ar(t) and Ac(t) are unaffected
since they do not depend on G(.). However, we note that

Olrx dlog Pro(N;(r;) =0) Olog Pr*(N;(:) =0) |
() a(t) o dA(t) ]

E{=—=} = MPro(N;(r:) = 0)]

does not in general equal zero if G*(.) # Go(.), nor does the expectation of (19),

M
E{Zl 8i(t)ni(t) — G*(1)A(2)} = MA(t)[Go(t) — G*(2)].
The estimates Ark(t) and Asp(t) would then be inconsistent. We can investigate the extent
of the bias in the estimators; this will not be great if G*(.) is a good approximation to Gy(.).

To examine the effect of misspecification of G(.), we performed the following simulations.
We generated 7; from N(150,702) = Go(.), and Ni(t) in the same way as the simulations
in Section.3, for ¢ = 1,...,150. Estimates of A(t) were obtained by taking G(.) as G*(.) =
U(0,300]. The simulations were repeated 100 times, respectively. Fig.4 gives the sample
means and sample mean square errors of the estimators. We observe that ATK(t) and
Asp(t) are not badly biased, and their efficiencies are similar to A.(t)’s, especially when
truncation is heavy (see Figs 4 (b1)-(b2)).

The methods in this paper assume that G(.) and M are known exa.ctly, but G(.), and
sometimes M, is usually estimated from supplementary data, as in the example in Section
6. If the estimates are fairly precise there is little harm in using the variance estimates
for Arx(t) and Asu(t) presented in Section 3 and 4. More generally, we may add a term
to the variance estimates of the form V‘arG-{[\(t)K?r'} to account for the imprecision of G(.).
An alternative procedure that is adequate for most practical purposes is to check on the
sensitivity of estimates A(t) and variance estimates V(t) in Sections 3 and 4 to variations in

G(.) or M, and to use this to modify confidence limits for A(t) in an informal way.

5 Data Aggregated Across Units

Sometimes there is no linkage of events for individual units, in which case all we observe

is the pair (,7) for each observed event. For example, warranty claims may be recorded
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according to the time of the claim and the time at which the product unit was sold, with no
historical record kept for each unit. In this case, if M and G(.) are unknown, we are able to
obtain only the likelihood function based on Pr(¢}|t; < 7, 7;*) which, assuming events occur

according to a Poisson process, is

AE)
b= 15 -

=1

15, (23)
i=1j=1 (T*

where n = 7, n; is the total number of events across all units, and (¢}, 7")’s are the observed
(t,7) values.

From (23) it is clear that we can estimate only -Ai(—l), where 7 = max(‘r, ), and not the
absolute values of the A(¢)’s or A(t)’s. In fact, the estimation problem is equivalent to one for
truncated failure time data (e.g., see Kalbfleisch and Lawless 1992), and the nonparametric
estimate from (23) can be given in closed form as follows.

Denote RJ(% by A*(t). Then, fort < 7,

A(t) * *
ERRCE G
We can rewrite (23) as
ﬁﬁ?)lpwﬂm  oOre, e

where n(t) = #{l: t; =t} = n(t), and n*(t) = #{l: i <t < n}. The m.le.of A*(t) based
on (24) is
5 n.(t)
At = —————.
0= H+mo
If M and G(.) are known, then, under the discrete Poisson process assumption, the data

consisting of the pairs (¢}, 7,*) give the likelihood function

L1, = {H A(#)9(r?)} exp{—M Z E A()g(s)}

s=1t=1
which is proportional to
H A(t)™® exp{—M Z A(t)G(t)}. (25)
t=1
Maximization of (25) gives the estimates

. n (t)
A = 3760y

the same as :\SM(t) in Section 4.



6 An Example

We will illustrate the methods introduced above by estimating the repair occurrence rate for
a system on a particular car model, based on real warranty data. We consider a group of
8,394 cars manufactured over a two month period; thjs is a subset of a larger group discussed
by Kalbfleisch, Lawless and Robinson (1991).

As of the final data base update all M = 8,394 cars had been sold. They generated a
total of 1134 claims from 831 different cars. (For the discussion here, claims before the cars
were sold are ignored.) Let é; equal 1 if car < had a warranfy claim and 0 otherwise, and
N;(t) indicate the total number of claims from car ¢ up to time ¢, where ¢ can be either age
( i.e., days since the car was sold) or mileage of the car. Denote (a;j,m;;) as the age and
mileage of car i at the j** claim. If the observation time period for car i is denoted by (0, 7],
we have {r,(a;j,mi; : j = 1,... ,N,-(‘r,-))}'as the data for car 2, provided §; = 1, i.e., there
is at least one claim. Otherwise all we know is the date of sale of the car and that there
was no claim from it. The age and mileage limits of the warranty plan are one year and
12,000 miles, i.e., Ao = 365 and Wy = 12,000. These and the rates at which cars accumulate
miles determine the 7;’s. In the following, we will obtain estimates of A(t) = E{N;(t)}, the
expected cumulative number of repairs per car as a function of age. Rates and means as a
function of mileage could also be given. Information about the accumulation of mileage in
the population of cars is available from customer surveys; this allows us to estimate G(.).

We assume that the mileage accumulation rate for car 7 is u;, so that m;(a) = w;a is
the mileage at age a. Although this ignores fluctuations in mileage accumulation it is a
reasonably practical assumption for many cars in their first two or three years. With a one
year/12,000 miles warranty the end of observation time for car ¢ is 7; = min(X —=z;, 365, B—f—‘_-o-g),

~where age is measured in days, z; is the day the car was sold, and X is the day of the final
data update. For these cars X — z; exceeded 365 days for 7356 out of 8394 cars.

Customer surveys had been carried out for cars of the same type as in the warranty data
base, in which the mileage at one year was obtained for each car sampled. We use this
supplementary information to estimate G,(t) = Pr{%@ > t} and then estimate G(t) =

2 a M —; . =
Pr{r: > t} as Ga(t) times Gy (t) = ZimISSAT==020 o etimate of Ga(t) = Pr{365 A(X —

z;) > t}, where a A b is used to denote min(a,b). (We could stratify cars according to their
dates of sale for the sake of precision, but it turns out that this gives almost exactly the
same estimates as below; hence we present the slightly simpler unstratified enalysis.)

The estimated G(t) is shown in Fig.5. Note that é(365) = 0.53, but that é(t) = 0 for
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t > 365; we show é(t) only for ¢t < 365.

We obtained the estimate Ar(t) as described in Section 2, and, using the estimate é(t),
the estimates Ark(t) and Aspm(t) described in Sections 3 and 4, respectively. The estimates
are shown in Fig.6 (a), where it is seen that Azx(t) and Agsp(t) are almost identical but
that AT(t) is very different. We know from the simulations of Section 4 that when the event
processes are non-Poisson (in particular, when overdlspersmn is present), the estimator AT(t)
tends to significantly overestimate A(t). Diagnostics based on fitting a negat1v¢ binomial
model to the (N;(¢),0 < t < 7)’s indicate that there is substantial overdispersion present
and consequently, we discard Ar(t) from further consideration. Fig.6 (b) shows pointwise
approximate 95% confidance intervals for A(t) given by Asar(t) +1.96Vspr(t)? and Arx(t)+
1.96Vrx (t)7, respectively. The variance estimate Vsm(t) is the robust estimate (22). For
Arx(t) we calculated the variance estimate Vrx(t) based on a piecewise constant intensity
function, A(t) = A; for t € (a;j-1,a;] where ap = 0,a; = 30,...,ax_1 = 330,ax = 365, as
suggested at the end of Section 2. Appendix C outlines the calculations. The robust limits
from ASM(t) are slightly wider than the Poisson limits from ]\Tx(t).

Finally, we remark that the estimates of A(t) given here depend on the assumption that
the 7;’s are independent of the warranty claim processes. For the vehicle system under
consideration, it is possible that claim rates A(t) are higher for the cars that accumulate
mileage more rapidly. If this is so, then the 7;’s will not be strictly independent of the
claim processes, because cars with high u;’s (mileage accumulation rates) give smaller 7;’s.
Diagnostic checks, to be presented elsewhere, suggest a slight dependence of the claim rates
on the u;’s. In this case it may be seen that ASM(t) estimates the expected number of
E{n;(s)|m > s} rather that 3!_, E{n;(s)}. For
this example it appears that the two functions do not differ greatly, so there is little harm

- warranty claims observed, defined by ¢ _, o=1

in treating Asp(t) and Ark(t) as estimating A(t).

7 Conclusion

Our results indicate that when recurrent event data are zero-truncated, care is needed. If
the events follow a Poisson process the truncated data likelihood L of Section 2 is available,
but simulations and large sample calculations show that the m.Le. Ar(t) can be badly biased
when events do not follow a Poisson process. In many applicafions there is information about
the distribution of observation times (7;’s) as well as the total number of the units, however,

and in this case the paper shows (i) that the m.lLe. based on the Poisson likelihood Lrx
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(9) is reasonably robust under heavy truncation, and (ii) that the simple moment estimator
Asp(t) in Section 4.1 is both robust against Poisson departures generally and quite efficient
under the Poisson model. '

Several further investigations would be worthwhile. One that is of theoretical and prac-
tical interest is the determination of asymptotic variances and variance estimates for AT(t) ,
~and Arx(t) under a continuous-time Poisson model. Methods of estimating A(t) under
non-Poisson models when there is no supplementary information about G(7) would also be
useful.

The methods in this paper assume that the observation times are determined indepen-
dently of the event processes. This will sometimes be violated, for example if individuals that
experience many events are “withdrawn” in some way; an example is in the case of equip-
ment which fails so often that it is taken out of service. In the case of automobile warranties,
as discussed in Section 6, the 7;’s might be related to claims if the rate of claims depends
both on age and the usage rate (mileage accumulation) for the car. In such situations it is
necessary to model the relationship between observation times and the event processes, if we
are to estimate A(t) or A(t) consistently. Such models, and diagnostic methods for assuming
whether observation times and event processeé are independent, will be presented elsewhere.

Finally, covariates may be introduced into the models used here. This would be worthy
of study, because individual-level covariates are frequently of interest. We note that one way

to assess the independence of observation times is to introduce a covariate based on them.
Appendix A: Asymptotics for Agspy(t)

Theorem 1 Suppose Ni(t),i =1,...,M are M independent counting processes with
E{N;(t)} = A(t). Observation times, 7;’s, are ii.d.random variables with distribution G(.),
and 7; is independent of N;(t). If Cov(dN;(t),dNi(s)) = c(t,s)dtds exists when s,t € (0,7*],
7* = sup{s : G(s) > 0}, then

(A1) impsoo Asarpa(t) = A(t),a.s. Vt € (0,7%);

(A2) VM (Asaa(t) — A(t)) 4, Gsm(t), as M — oo, where (Gsm(t),t € (0,7*]) a Gaus-
sian process with mean 0 and covariance process Cov(Gsm(t),Gsm(s)) which will be given

below.
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PRroOF: Note that, V¢ € (0,7*],

. | 1 M
Asmum(t) = i ZX.'(SM)(t)

=1

with X,-(SM)(t) = J%&%dN;(s), i=1,...,M, are ii.d. random varia.Bles, where G(s) =
Pr{r > s}. Moreover, ,
E{X0(0)} = AG),

and
Cov(XM)(¢), X1¥M)(s))
- [[3 (tf“ N L {e(w,0) + w)@)ldudo — [ [ Aw))(o)dud,
denoted by [¢ f csp(u,v)dudv. According to the SLLN and CLT, we know
Asua(t) 25 AQ),
Vt € (0,7%). Also Ya, 8 > 0,
| @V M (Rorae(t) = A1) + VM (Ronae(s) = As))

\,—2;[ o XEM(E) - A(t) + BXEM(E) — A(R))] S N(0, 0382, ),

where o3i7(t,s) = o fI [ CSM(u,v)dudb + 2a,3 15 Jo esm(u,v)dudo + B2 f§ fo' csm(u,v)dudv.
Therefore, (A2) holds. O

Appendix B: Bias of Ar(t) and Arg(t) under departures
from the Poisson process

From (5) we see that :\T(t) satisfies
n.(t)

| (B1)

AT(t) - 2 M (t) ’
| M 21 Toemp-An (]
and from (12) that Arx(t) satisfies
Ark(t) = M , (B2)

H{SE 6(t) + (M — m)4zely
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where Ark(t) = [ exp[—Ark(s)]dG(s). If we define

S (630 = 37 3 Ttk ™
Brx(3() = 3730800 + (O —my g,

then some insight into the behavior of :\T(t) and :\Tx(t) can be gained by examining how well
ér(t;/\(.)) and (:;'Tx(t; A(.)) estimate G(t). Calculations in Hu (1994) show that under the
mixed Poisson models we considered in Section 4.1 &'T(t° A(.)) underestimates G(t) substan-
tially, thus suggesting that (B1) will overestimate A(t); this is what was observed in Fig.3,
portraying the simulation results of Section 4.1. Calculations also show that GTK(t (1))
estimates G/(t) well under the mixed Poisson models when truncation is heavy (£ is small)
and that Arx(t) estimates A(t) well. With substantial extra-Poisson variation and J; over
0.20 or so, however, Arx(t) tends to overestimate A(t), as is also indicated by the simulation
results.

Appendix C: Poisson processes with piecewise constant
intensities

Consider the piecewise constant intensity function
At)=2A; foraj_ <t<aj

where ag = 0 < a; < ... < ax < oo are specified. By considering such models with K fairly
small (say in the 3-10 range) provides enough flexibility to model most practical situations,
and allows the easy calculation of estimates and standard errors, based on either of the

likelihood function Lt or Lrk. Using Lr given by (1), we obtain the maximum likelihood

equations _

BlT _ n.; hida Wiy :

VDY —gl—exp[ A(T))’ =LK
where w;; = 9—3%) = I(m > aj1)[(ri Naj) — _aj_;]. The observed information matrix has
entries 1 A)

_Olr o~ wijjwge "
=1(j= l) -2 _ . —_A()N2
S ANON S {1 —exp[-A(m)]}
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The equations g—;’; =0 = 1,...,K) are readily solved to yield the estimates i_,-’s, and
the inverse of the observed information matrix evaluated at A;,...,Ax provides asymptotic
variance and covariance estimates for the 5\,- ’s.

Using Ltk given by (9), we get

alTK _ n AJ
;X gw,, (M=m)7
where Ay = 'A(“)dG(u) and 4; = —3;},, j=1,...,K. The observed information matrix
has entries oy Agdo— A;A
= TK _ =2 _ —m) B0 T
aox 10 =Dy~ (M =m)=
where Aj; = — m' = fo I(u > a;- D Ae;) = aj1lI(u > aim1)[(u Aa) — a1-1]e"2®dG(u).
As with Lr, estimates M, ..., Ak and variance estimates are readily obtained.
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