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ABSTRACT

Statistically designed experiments provide a proactive means to improve reliability as has been
advocated recently by Genichi Taguchi, the Japanese quality engineer. That is, by systematic
experimentation, the important parameters (factors) .affecting reliability can be identified along
with parameter values that yield reliability gains. In addition to improving reliability, Taguchi’s
robust desigh can be used to achieve robust reliability; that is, to make a process’ or product’s
reliability insensitive to factors which are hard or impossible to control. Robust design is also
implemented using statistically designed experiments. In this paper, different classes of
experimental plans for reliability improvement and robust reliability are presented. An important
feature of the reliability data collected from such experiments is censoring which occurs when
all experimental units have not failed by the end of the experiment. Consequently, the analysis
methodology must account for these censored data which are likely to occur in light of the ever
increasing reliability of today’s products. Several appropriate methods are discussed briefly.
These experimental plans and analysis methods are illustrated using three documented
experiments which improved fluorescent lamp and industrial thermostat reliability and which

achieved robust reliability for night vision goggles.
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1. INTRODUCTION

Statistically designed experiments have been used extensively for estimating or demon-
strating existing reliability (Nelson [14]). Until recently, they appear to have seldom been
used to to improve reliability by identifying the important parameters (factors) affecting
reliability out of many potentially important ones. For example, Genichi Taguchi (Taguchi
and Wu [26], Taguchi [24], [25]) advocated their use as a proactive means for improving relia-
bility and provides examples of experiments to improve clutch springs and fluorescent lamps.
Taguchi is perhaps best known for robust design, whose aim is to make processes/products
insensitive to noise factors which are hard or impossible to control. Such products/processes
are said to be robust to the noise factors. Examples of noise factors include manufacturing
variables that cannot easily be controlled and environmental conditions in which the prod-
uct is used. This important paradigm for improving products/processes, which attracted the
attention of industry in the 1980’s (Kackar [11]), can also be applied to reliability. In order
to ensure good stability and adequate reliability, Taguchi [24] (page 149) recommended that
noise factors be considered in any experiment to improve reliability when it is practical to
do so.

Since the early 1980’s, several experiments for improving reliability have been docu-
mented. In the Symposia on Taguchi Methods 1984-1993, Specht [22] reported the im-
provement of heat-exchanger reliability in a commercial heating system; Montmarquet [13]
discussed the improvement of drill bit reliability in a multilayer printed circuit board drilling
operation and Reed [18] presented the improvement of night vision goggle reliability. From
an early application of Taguchi’s methodology at AT&T, Phadke [15] discussed the improve-
ment of router-bit reliability in a printed circuit board cutting operation. In Reliability
Improvement with Design of Ezperiments, Condra [4] gave several examples from the elec-
tronics industry. Taguchi’s robust design philosophy figures prominently in Condra’s book
and is recommended reading. Recently, Bullington, Lovin, Miller and Woodall [3], reported
on the improved reliability of industrial thermostats.

The purpose of this paper is to illustrate how statistically designed experiments can be
used to improve reliability and to achieve robust reliability. First, separate classes of ex-

perimental plans for improving reliability and achieving robust reliability are discussed with
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examples in Sections 2 and 3, respectively. In Section 4, a brief discussion of analysis method-
ology for extracting the information from the experimental data is given. The methodology
must account for an important feature of such experiments known as censoring which oc-
curs when all the experimental units have not failed by the end of the experiment; this
type of censoring produces what is referred to as Type I or right-censored data. There are
also other types of censoring which typically arise in such experiments. In situations where
units cannot be monitored continuously, units must be inspected periodically until failure.
Periodic inspection produces left-censored data for units failing before the first inspection
and interval-censored data, otherwise, i.e., from units failing between two consecutive inspec-
tions. Appropriate analysis techniques which handle censored data are illustrated in Sections
5 through 7 which present respective analyses of experiments to improve fluorescent lamp

and thermostat reliability and to achieve robust reliability of night vision goggles.
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2. EXPERIMENTS FOR IMPROVING RELIABILITY

While there may be potentially many factors (parameters) that affect reliability, some
factors will tend to be more important, i.e., have a bigger impact on reliability as the values
of these factors are changed. These important factors can be identified empirically through
experimentation which involves making deliberate changes in the factor values and observing
the resulting reliability. Besides identifying the important factors, values for these factors
that yield reliability gains can be recommended. Statistically designed experiments provides
a systematic and efficient plan of experimentation to achieve thse goals. Several factors can
be studied simultaneously using as few resources as possible. Designed experiments have
been used successfully to improve other quality characteristics (see the Symposia on Taguchi
Methods, 1984-1993) and can be employed to improve reliability.

Some terminology will be helpful in describing various plans below. The plan of ex-
perimentation is referred to as the ezperimental design or design. The experimental design
consists of a list of runs, where a run is a combination of values (levels) at which the factors
in the experiment are set. The number of runs in the experimental design is called the run
size. The experiment then involves making units according to the conditions specified by
the runs in the experimental design and life testing these units to failure. Table 1 gives an
experimental design for three factors (denoted by A-C) with each factor being studied at
two levels (denoted by 1 and 2). Run 1 indicates that units are made with all the factors set
at their respective first levels. This particular design is called a two-level full factorial since
it consists of all possible combinations of the two levels for the three factors.

The run size for a two-level full factorial design in k factors is 2%, which quickly becomes
prohibitive for more than five factors. Designs with more than two levels, say three, allow
curvature effects to be assessed but require even more runs. Even for three factors, the run
size of the full factorial design is already 27 (i.e., 3%). Because of their large run sizes, these
designs tend not to be used in an initial experiment unless there are only a few potentially
important factors to be studied.

For the typical industrial situation, a large number of factors needs to be studied in a
relatively small number of runs. A sequential approachv to experimentation provides one

such strategy. An initial experiment using only a few levels (often two) for each factor is
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Table 1: Two-Level Full Factorial Design for Three Factors

Factor
Run A B C
1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2

used to screen out the unimportant factors. A follow-up experiment involving much fewer
factors but at more levels can then be performed to explore the response-factor relationship
in more detail. For the initial experiment, a subset or fraction of the full factorial design
design (called a fractional factorial design) can be used. For two-level designs, there are two
types, the geometric or 2¥~? designs (Box, Hunter and Hunter [2]) and the non-geometric
Plackett-Burman [16] designs. The notation for the geometric designs indicate the degree of
fractionation, i.e., a 27? fraction of a full factorial with run size 2¥~7.

Taguchi [25] (page 930) provides an example of a 2577 design which was used in an
experiment to improve the reliability of fluorescent lamps. The experiment studied five two-
level factors (denoted by A-E) in eight runs using a 2°~2 design or a quarter fraction of a
full factorial as given in Table 2. No further details on the factor names and levels were
provided, presumbably for reasons of confidentiality. Two lamps were made at each run and
life testing was conducted over 20 days with inspections for failure being performed every
two days. The lifetime data also appear in Table 2, with (14,16) meaning the lamp failed
between days 14 and 16 and (20, c0) indicating that the lamp was still working at the 20 day
inspection. Note that seven of the 16 lamps had not failed by the 20 day inspection which
yielded right-censored data.

Bullington et al. [3] provides an example of a 12-run Plackett-Burman design which was
used in an experiment to improve the reliability of industrial thermostats. Eleven factors

(denoted by A-K) were studied using the design given in Table 3 in which ten thermostats



Table 2: Design and Lifetime Data for the Fluorescent Lamp Experiment

Factor

A B C D E Lifetime

1 1 1 1 1 1 1](14,16) (20,00)
1 1 2 2 2 1 2((18220) (20,00)
1 2 1 1 2 2 2/(08,10) (10,12)
1 2 2 2 1 2 1/(18,220) (20,00)
2 1 1 2 1 2 1](20,00) (20,00)
2 1 2 1 2 2 2](12,14) (20,00)
2 2 1 2 2 1 2](16,18) (20,00)
2 2 2 1 1 1 1/((12,14) (14,16)

Table 3: Design and Lifetime Data for the Thermostat Experiment
(with censoring time of 7342)

Design

A B C D E F G H I J K Lifetime Data

1 1 1 1 1 1 1 1 1 1 1 957 2846 7342 7342 7342 7342 7342 7342 7342 7342
1 1 1 1 1 2 2 2 2 2 2 206 284 296 305 313 343 364 420 422 543
1 1 2 2 2 1 1 1 2 2 2 63 113 129 138 149 153 217 272 311 402
1 2 1 2 2 1 2 2 1 1 2 76 104 113 234 270 364 398 481 517 611
1 2 2 1 2 2 1 2 1 2 1 92 126 245 250 390 390 479 487 533 573
1 2 2 2 1 2 2 1 2 1 1 490 971 1615 6768 7342 7342 7342 7342 7342 7342
2 1 2 2 1 1 2 2 1 2 1 232 326 326 351 372 446 459 590 597 732
2 1 2 1 2 2 2 1 1 1 2 56 71 92 104 126 156 161 167 216 263
2 1 1 2 2 2 1 2 2 1 1 142 142 238 247 310 318 420 482 663 672
2 2 2 1 1 1 1 2 2 1 2 259 266 306 337 347 368 372 426 451 510
2 2 1 2 1 2 1 1 1 2 2 381 420 7342 7342 7342 7342 7342 7342 7342 7342
2 2 1 1 2 1 2 1 2 2 1 56 62 92 104 113 121 164 232 258 731

were manufactured at each of the 12 run settings. These factors were chosen from many
across a 14 stage manufacturing process and include the Beryllium copper grain size (factor
E), the heat treatment (factor H), the power element electroclean (factor J) and power
element plating rinse (factor K). Each factor was studied at two levels such as factor E with
grain sizes of 0.008 and 0.018 inches or factor H at 45 minutes and 240 minutes at 600
degrees Fahrenheit. Table 3 also presents the lifetime data; the experiment was stopped at
7432 (x1000) cycles resulting in 22 right-censored observations at runs 1, 6 and 11. See
Bullington et al. [3] for a detailed account of the experiment.

While highly fractionated 2¥~? and Plackett-Burman designs are ideally used as screening
designs, in practice, the initial experiment may be the only one performed. Consequently, a

properly chosen 2577 design can allow some potential interactions to be studied. For example



in the fluorescent lamp experiment, besides the factors A-E main effects, the experimenter
also thought that the A x B interaction might be potentially important. The design given in
Table 2 allows the A X B interaction to be estimated. By factor main effects, it is meant the
additive effects of the factors on reliability. The interaction between two factors indicates
the degree of non-additivity of the factor effects; that is, if interaction is present, the effect
of changing the levels of one factor on reliability depends on the level of the other factor.
That is, the presence of an interaction can impact the recommendations made for setting the
important factors. See Box et al. [2] for more discussion. Also, for Plackett-Burman designs,
Hamada and Wu [9] has shown that some information on interactions may be obtained.

Taguchi [25] often initially uses designs with more than two levels. These include the
3k=? designs (i.e., three-level fractional factorial designs) and mized-level designs such as the
18 run design which can be used to study one two-level factor and up to seven three-level
factors. For example, the clutch spring experiment in Taguchi [24] (chapter 9) used a 37~*
design to study seven factors in 27 runs, a quarter replicate of a three-level full factorial
design. Phadke [15] also used a mixed-level 32-run design to study two four-level factors and
seven two-level factors. Dey [5] and Wang and Wu [27] catalogue other mixed-level designs.

In contrast with the initial use of multi-level factor designs, the sequential approach to ex-
perimentation uses such designs in a follow-up experiment. Box and Draper [1] give different
designs referred to as response surface designs which allow the response-factor relationship
to explored in more detail. For example, an internal document from a North American au-
tomobile manufacturer reports the use of an eight run experiment to screen seven factors.
(The same design given in Table 2 consisting of the first seven columns was employed.) Four
factors were identified and studied further using a 27-run Box-Behnken design given in Ta-
ble 4. (—1,0,+1) denotes the three levels for each factor; each of the rows 1-2, 4-5 and 7-8
specify four runs since the 4 notation means all combinations of the first and third levels
are used. Other designs such as the central-composite designs (with five factor levels) can
be employed. See Box and Draper [1] for more details.

The lifetime data from these experimental designs can be analyzed using a parametric

model such as the lognormal or Weibull regression models. These models have the form

(Lawless [12]):



Table 4: Box-Behnken Response Surface Design for Four Factors

Factor
A B C D
+1 +1 0 0
0 0 1 =1
0 0 0 0
+1 0 0 +1
0 £1 =1 0
0 0 0 0
+1 0 +1 0
0 +1 0 +1
0 0 0 0
Y,'=log(T,~)=a:iT,8+ae,-, i=1, ..., n, (1)

where the {T;} are the lifetimes, the {z;} are the corresponding vectors of covariates values,
B is the vector of location parameters and o is the scale parameter. For the Weibull model,
the errors {¢;} are independent and identically distributed (i.i.d.) standard extreme-value
random variables (r.v.s), whose probability density function (pdf) and survival function
(Sf) are exp(w — exp(w)) and exp(exp(—w)), respectively. For the lognormal model, the
errors {¢;} are i.i.d. standard normal r.v.s, whose pdf and Sf are gaud(w) and gau fc(w),
respectively.

Appropriate analysis methodology for fitting these models using censored data are dis-
cussed in Section 4. Analyses of the fluorescent lamp and thermostat experiments will be

presented in Sections 5 and 6, respectively.

3. EXPERIMENTS FOR ACHIEVING ROBUST RELIABILITY

Taguchi’s robust design is also referred to as parameter design because its objective is
to find levels of engineering parameters (called control factors) that yield a robust prod-
uct/process, i.e., that make the product/process insensitive to the variation of hard or im-

possible to control noise factors. Robust design is therefore strikingly different from the



traditional approach of handling sources of variation by control which can be costly. For ex-
ample, the Ina Tile Company was faced with reducing an unacceptable amount of variation
in their tiles’ size caused by an uneven temperature distribution in the kiln (Kackar [11]).
Rather than purchasing an expensive kiln which would have controlled the temperature dis-
tribution better, it was found through designed experiments that increasing the lime content
in the tile formulation decreased the tile size variation by a factor of ten. In other words,
a tile formulation was found that was insensitive to the existing oven’s uneven temperature
distribution.

Taguchi’s tactics for carrying out robust design are to specify a criterion for assessing
the effect of the noise factors and to estimate it by experimentation. Note that while noise
factors are difficult or impractical to control in production or in use, for purposes of the
experiment (i.e., to learn about the effect of the noise factors), the noise factors need to be
controlled during the experiment. The criterion for assessing the effect of the noise factors
(termed the loss and denoted by L(-) ) at a particular combination of control factor levels

Teomtrol Canl be defined for a general loss function I(-) (Welch, Yu, Kang and Sacks [28]) as:

L(xcontrol) = /l(Y(zcontroly znoise))f(znoise)dxnoise ) (2)

where Y (Zcontroly Tnoise) 18 the observed lifetime at a particular combination of control and
noise factor levels (Zconirols Tnoise) and f(+) is the joint probability density function of the
noise factors. The objective of robust design then is to find a product/process design T ontrol
with minimum loss. Some appropriate loss functions for reliability will be discussed below.

Taguchi [25] proposed estimating the loss (1) via experimentation and then modelling
the estimated losses in terms of the control factors. Taguchi uses specialized experimental
plans referred to as product arrays. A product array consists of two plans or arrays, one
for the control factors called the control array and the other for the noise factors called the
noise array. The product array design is so named because all the noise factor combinations
specified by the noise array are run with every combination of the control factors specified
by the control array.

As an example, consider an experiment that was performed to improve the reliability of

a night vision goggle tube sub-assembly (Reed [18]). The tube sub-assembly is insulated by
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a combination of protective coatings which degrades over time and exposure to humidity
and temperature. One goal of the experiment was to make the tube insulation reliability
robust to the handling of tube when the coatings are applied. The noise factor (denoted by
N) had two levels, whether the tube is handled or not. Ten control factors (denoted by A-J)
were chosen from many across a 17 step manufacturing process and include factors related to
the tube packaging such as type of coating, primer, and electrical connection configuration.
Each control factor was also studied at two levels according to a 12-run Plackett-Burman
design; e.g., two types of primer coating (factor B) and two types of lead coating material
(factor H) were used. Therefore, the product array consisted of a a 12-run Plackett-Burman
design for the control factor array and a simple noise factor array (a single factor at two
levels) as displayed in Table 5. At each of the 24 control and noise factor combinations, one
tube was manufactured and then life tested under a high temperature cycling and humidity
regimen. The tubes were inspected for failure every two days for 20 days. The lifetime data
presented in Table 5 makes some assumptions because it is unclear from Reed [18] whether 16
of the tubes failed between days 18-20 or whether they were still functioning at 20 days. For
purposes of illustration, they are treated here as still functioning, resulting in right censored
data. Note also that six of the tubes failed before the first inspection at day two yielding
left-censored data.

For analyzing the product array data, Taguchi [25] proposed estimating the loss L(Zcontrot)
(2) for each T ontrol specified by the control array from the data obtained by varying the noise
factors according to the noise array and then modeling the estimated losses in terms of the
control factors. That is, he proposed constructing responses from the noise array data and
analyzing them by standard methods for designed experiments such as analysis of variance.
Alternatively, Welch et al. [28] proposed modeling the response Y directly in terms of both
the control and noise factors and then evaluating the loss using the estimated response model.
Their rationale for the latter approach, called the response-model approach by Shoemaker,
Tsui and Wu [20], was that it would be more likely to find a simple model for the response
than one for the much more complicated estimated loss. Examples in Welch et al. [28] and
Shoemaker et al. [20] give evidence for preferring the response-model approach because it

also provides additional insight.
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Table 5: Product Array Design and Lifetime Data for the Goggle Experiment

Noise Array
Control Array N

A B CDEVFGHTIIJ 1 2
1 11 1 1 1 1 1 1 1}(0,2) (20, 00)
1 11 1 2 2 2 2 2 2((20,00) (20,00)
1 1 2 2 1 1 1 2 2 2/(0,2) (0,2)
1 21 2 1 2 2 11 2((,9 (20, 00)
1 2 2 1 2 1 2 1 2 1((20,00) (20,00)
1 2 2 2 2 2 1 2 1 1/[(20,00) (7,9)
2 1 2 2 1 2 2 1 2 1](20,00) (20,00)
2 1 2 1 2 2 1 1 1 2((20,00) (0,2)
2 11 2 2 1 2 2 1 1/((0,2) (0,2)
2 2 2 1 1 1 2 2 1 2]|(20,00) (20 00)
2 2 1 2 2 1 1 1 2 2|(20,00) (20,00)
2 2 1 1 1 2 1 2 2 1]|(20,00) (20,00)

For reliability applications, the response-model approach is a natural one because the
same parametric regression models given in Section 2 can be used. The product array
data allows a model to be fit consisting of all C main effects (with possibly some C' x C
interactions), all C' x N interactions and all N main effects (with possibly some N x N
interactions), where C and N denote control and noise factors, respectively. The C x N
interactions play an important role because the fact that the loss (2) changes for different
control factor combinations means that these interactions must exist. Figure 1 displays a
simplified relationship between a response Y and one control factor (at two levels) and one
noise factor (over an interval) and shows that the effect of the noise factor is substantially
smaller at control factor level 1 (C1). Therefore, robust design exploits the existence of
interactions between control and noise factors.

Once estimates for the response model effects have been obtained, recommendations for
the important control factors settings need to be made. For a simple model with few noise
factors, they may be apparent from inspection of the model directly; i.e., by observing what
the significant effects are with their signs and magnitudes. Shoemaker et al. [20] gave an

example, but for complicated models, this approach may be tedious.
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An alternative is to specify some meaningful criterion or loss (2) and use the identified
model to evaluate them. The loss can then be evaluated using the estimated response model
(1) for some distribution of the noise factors. In practice, because it may be difficult to
specify such a distribution, the criterion can be evaluated over the noise combinations given
by a noise array. The same noise array from the experiment need not be used, however.
For example, instead of a fractional factorial design, the loss could be evaluated using a full
factorial design. The noise combinations can also be weighted appropriately to reflect their
probabilities of occurrence. Similarly, the loss can be evaluated for all possible settings of
the control factors.

For achieving robust reliability, as little dependence as possible on the noise factors is
desired. Also high reliability on average is required. Hamada [6] considered criteria based
on the linear part (z73) of model (1), i.e., the mean log lifetime for the lognormal regression
model. In this paper, reliability will be assessed in terms of the probability of exceeding a

certain time T, such as a warranty period. Using model (1), this survival probability can be

defined as:

S f{(log(T) — 2" B)/a}, (3)

where Sf is the appropriate survivor function and & = (Zcontrols Teontrolxnoises Enoise). FOr a
given control array combination, these probabilities can be evaluated over all the the noise
array combinations with the evaluations representing a sample of probabilities. The sample
can be summarized by various quantities such as its mean and standard deviation. Taking
a worst case approach, the minimum probability can be used. Based on these criteria,
control array combinations with large mean, large minimum probability and small standard
deviation are desirable. Analysis of the goggle experiment in Section 7 will illustrate the use

of these criteria.
4. ANALYSIS METHODS FOR CENSORED DATA

For model (1), when all the lifetimes are observed, i.e., complete data, the analysis is

straightforward using maximum likelihood (ML) estimation (Lawless [12]). Problems arise
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with analyzing censored data, however, and will be discussed below. Next, a brief overview
of some methods for analyzing censored data is given.

One method which continues to be used in practice treats the right-censoring times as
actual failure times and then analyzes them by standard methods for complete data. (For
interval-censored data, an interval endpoint or midpoint might be used.) Although simple,
ignoring the censoring can lead to wrong decisions because the unobserved failure times and
right-censoring times may differ greatly depending on the particular factor level combination.
A simulation study in Hamada and Wu [8] showed that this method can perform quite poorly
by missing some important effects and mis-identifying spurious effects.

The ML estimation methodology can easily handle both failure and censored data. The
MLE’s for (8, o) are found by maximizing the following likelihoods: for the Weibull regression

model,

LB,0)= Tl (1/0)exp{((yi—a"B)/o)—eapl(yi—a:"B)/ol}x [I explexp~(yi—z:"B)/0l}

1€EFAIL 1€CEN
(4)

and for the lognormal regression model,

L(B,o)= [l (1/o)gaud{(y; — =" B)/o} I gaufe{(yi—=z"B)/c}, (5)

i€FAIL i€CEN
where {i € FAIL} denotes those observations which are failures and {i € CEN} denotes

those observations which are censored. Standard errors for the MLE’s can also be obtained
(Lawless [12]). Various commercially available software perform these computations such
as SURVIVAL, the SYSTAT survival analysis module (Steinberg and Colla [23]), or the
LIFEREG procedure in SAS [19]. Note that for a censored datum, its contribution to the
likelihood is simply the probability of being censored. Similarly for an interval-censored
datum (a,b), its contribution to the likelihood is the probability of failing between times a
and b.

One problem with the ML estimation approach for censored data is that the MLEs
may not exist, i.e., at least one parameter estimate is infinite, so that testing cannot be

done by comparing the MLEs with their standard errors. Silvapulle and Burridge [21] gave
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necessary and sufficient conditions for the existence of MLEs for model (1). In the reliability
context, Hamada and Tse [7] concluded that estimability problems will tend to occur for the
designs discussed in Sections 2 and 3 where the fitted model has nearly the same number of
parameters as number of observations.

The estimability problem of the ML approach motivated the Bayesian approach proposed
in Hamada and Wu [10]. The Bayesian approach is a natural one because important factor
effects might be expected to be large but not infinite. By using proper prior distributions,
posterior distributions with finite modes result and can be used to obtain finite estimates.
Also, posterior distributions allow the importance of factorial effects to be assessed without
using the asymptotic approximations employed by the ML method. Hamada and Wu [10]
considered the lognormal regression model (1) and used the natural conjugate prior (Raiffa

and Schlaifer [17]):

p(B,0) = o~ exp{~(8 — fo)" Ao(B — fo)/20°} x o ¢*eap(—rosh/20%) . (6)

The posterior is proportional to the product of the likelihood (5) and the prior (6) and is
relatively simple to obtain numerically using recent advances in Bayesian computing. An
appropriate choice of the prior parameters (v, 3, B, Ao) give a very diffuse or essentially
non-informative prior. In fact, the sensitivity of the results based on the current data can
be assessed by trying more informative priors. See Hamada and Wu [10] for more details.

The Bayesian approach is illustrated in Section 7 in the analysis of the goggle experiment.
5. ANALYSIS OF THE FLUORESCENT LAMP EXPERIMENT

Consider the fluorescent lamp experiment presented in Section 2. Recall that the exper-
iment studied five factors (A-E) using the design in Table 2. Besides the five main effects
(A-E), the experimenters thought that the A x B interaction might be important. Taking
the ML approach, a lognormal regression model was fit using the lifetime data in Table 2.
Table 6 gives the MLEs and significance levels (p values) for the five main effects (A-E) and
the A x B interaction (with the intercept denoted by Int). Based on these results, the main
effects D, B, E and A are important in the order given. Therefore, only four of the five

factors are important, with A being only marginally important. The sign of these effects
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Table 6: MLEs and P Values of Lognormal Regression Model
for the Fluorescent Lamp Experiment

Effect MLE P Value
Int 2.939 0.000

A -0.117 0.059

B 0.201 0.001

AB -0.049 0.430

C 0.051 0.408
D -0.273 0.000
E 0.153 0.015
o 1590 0.000

suggests that reliability gains can be achieved at recommended setting A; B, D, E,, where

the subscript indicates the recommended level.
6. ANALYSIS OF THE THERMOSTAT EXPERIMENT

Next consider the thermostat experiment presented in Section 2 which studied eleven
factors (A-K). Taking the ML approach, a lognormal regression model with eleven factor
main effects (A-K) was fit using the Table 3 lifetime data whose results are given in Table
7 (Model 1). (At most 12 effects can be fit simultaneously because of the design run size of
12, so that only main effects could be considered in an initial analysis.) Based on Table 7,
nine of the factors appear to be important. One potential reason for there being so many
was pointed out by Bullington et al. [3]: each group of ten units was produced at the same
time so that the variability among the ten units tends to be smaller that if they had been
produced at different times. This reduced variability which is used in the statistical testing is
one possible explanation for the large number of significant effects. Some additional analysis
using Hamada and Wu [8] and [9] which account for the properties of the 12-run Plackett-
Burman design used in this experiment suggests the presence of an E x H interaction,
however. Further evidence of an interaction is seen in Table 7 by noting that the MLEs
for all factors except E and H have nearly the same magnitude. Consequently, a model
(Model 2) was fit in which the factor B main effect (the least significant from Model 1) was
dropped and replaced by the E x H interaction. The results in Table 7 indicate that only
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Table 7: MLEs and P Values of Lognormal Regression Models
for the Thermostat Experiment

Model 1 Model 2
Effect MLE P Value | Effect MLE P Value
A -0.312 .0001 A -0.091 .3890
B 0.221 .0024 EH 0.663 .0024
C -0.319 .0001 C -0.098 3474
D 0.285 .0001 D 0.064 D174
E -1.023 .0001 E -1.023 .0001
F 0.231 .0016 F 0.010 .9219
G -0.390 .0001 G -0.169 1075
H -0.557 .0001 H -0.557 .0001
I -0.332 .0001 I -0.112 2872
J -0.277 .0001 J -0.056 .5958
K -0.352 .0001 K -0.131 .2149

E, H and E x EH effects are important. An alternate analysis in Bullington et al. [3] found
E and H important and recommended E;H;. Using the signs of the important effects in
Table 7 (Model 2), the same recommendation is obtained. While the original analysis did
not account for the possibility of an interaction, the same recommendations result because

the two factors have a synergistic effect.
7. ANALYSIS OF THE GOGGLE EXPERIMENT

In the robust reliability experiment to improve night vision goggles presented in Section
3, there were ten control factors (A-J) and a single noise factor (N). Taking the response-
model approach, a lognormal regression model (1) can be fit which consists of an intercept,
ten C main effects, one N main effect and ten C x N interactions, where C' and N denote
control and noise factors, respectively. Using the product array data given in Table 5, the
MLEs for this model do not exist. Consequently, the Bayesian approach (Hamada and Wu
[10]) was taken. Using a relatively diffuse prior, Table 8 gives the central 0.95 and 0.99
intervals of the marginal posteriors for each effect. The important effects appearing in bold
face are those whose central 0.95 intervals do not contain zero; in fact, the 0.99 intervals for
all of these except the I x N interaction do not contain zero. Based on these results main

effects, B and D-H, and interactions, Ax N, C x N, Ex N, I x N, J x N, are important.
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Table 8: Posterior Quantiles Using Diffuse Prior
for the Goggle Experiment

Quantile Quantile
Effect .005 .025 .975 .995 | Effect .005 .025 .975 .995
INT 260 264 299 3.07|N -0.11 -0.05 0.29 0.35

-0.15 -0.08 0.32 040 | AN -0.68 -0.62 -0.21 -0.16
074 0.80 1.15 1.24|BN -0.12 -0.05 0.29 0.35
-0.23 -0.18 023 028 | CN -0.82 -0.72 -0.34 -0.27
-0.79 -0.71 -0.32 -0.24 | DN -0.22 -0.17 024 0.31
031 037 077 0.84 | EN -0.58 -0.50 -0.07 -0.01
0.04 0.10 0.52 0.60|FN -0.09 -0.03 039 045
-0.60 -0.52 -0.12 -0.07 | GN -0.46 -0.37 0.03 0.09
027 032 0.70 0.82 | HN -0.35 -0.24 0.16 0.23
-0.35 -0.27 0.12 0.20 | IN -0.53 -0.44 -0.04 0.03
-0.25 -0.18 0.23 0.30 | JN -0.79 -0.71 -0.33 -0.27
o 0.02 0.02 0.07 0.11

“—=maHEEgQwE >

For this experiment, the relationship between the response and the control and noise
factors is too complicated to make control factor level recommendations simply by inspecting
the model. Consequently, the criteria discussed in Section 3 based on the survival probability
(3) distribution (mean, standard deviation and minimum probability) can be evaluated over
the two levels of the single noise factor for each of the possible combinations of control
factors (1024 = 2'°) and then ranked appropriately (out of 1024, with 1 being the best). In
calculating the survival probability (3), the posterior maximizer was used to estimate (3, 0)
and the time T was taken to be 100. Table 9 presents the 25 best control factor combinations
according to the mean criterion. Based on the first eight rows of Table 9, a good choice of
factor levels would be ByD; E,F,G1H, with factors A, C, I and J chosen according to the
eight rows. The standard deviation criterion is also small so that these combinations are
robust to the noise factor. Also, note that any choice of A, C, I and J will not do as can be
seen by the last row of Table 9. Consequently, there are a nuﬁlber of possible factor settings

at which high reliability and robust reliability can be achieved.
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Table 9: Best Factor Settings for the Goggle Experiment

Criterion
Settings Mean Std Dev Min Prob
A B CDETF G H I J|Value Rank | Value Rank | Value Rank
1 2 1 1 2 2 1 2 2 2)1.000 1] 0.000 478 | 1.000 1
1 2 2 1 2 2 1 2 2 1/|1.000 21 0.000 479 | 1.000 2
2 2 2 1 2 2 1 2 1 1]1.000 3| 0.000 524 | 1.000 3
2 2 1 1 2 2 1 2 1 2{1.000 41 0.000 525 | 1.000 4
1 2 1 1 2 2 1 2 1 2]1.000 51 0.000 588 | 1.000 5
1 2 2 1 2 2 1 2 1 1]1.000 6 | 0.000 590 | 1.000 6
2 2 2 1 2 2 1 2 2 1]1.000 71 0.000 621 | 1.000 7
2 2 1 1 2 2 1 2 2 2]1.000 8 | 0.000 622 | 1.000 8
1 2 1 1 2 2 2 2 2 2099 91 0.000 639 | 0.999 9
1 2 2 1 2 2 2 2 2 11/0.99 10 | 0.000 641 | 0.999 10
1 2 1 1 2 1 1 2 2 2]0.99 11 | 0.000 640 | 0.999 11
1 2 2 1 2 1 1 2 2 11099 12 | 0.000 643 | 0.999 12
2 2 1 1 2 2 1 2 2 110999 13| 0.001 669 | 0.998 13
2 2 2 1 2 2 2 2 1 11099 14 | 0.007 701 | 0.990 14
2 2 1 1 2 2 2 2 1 21099 15| 0.007 702 |1 0.990 15
2 2 2 1 2 1 1 2 1 11099 16 | 0.007 704 | 0.990 16
2 2 1 1 2 1 1 2 1 21099 17 | 0.007 705 | 0.990 17
1 2 2 1 2 2 1 2 1 210992 18 | 0.011 714 | 0.984 18
1 2 1 1 2 2 2 2 1 2/|0.947 19 | 0.076 759 | 0.893 21
1 2 2 1 2 2 2 2 1 110946 20 | 0.076 761 | 0.893 22
1 2 1 1 2 1 1 2 1 210946 21 | 0.076 762 | 0.892 23
1 2 2 1 2 1 1 2 1 1]0.946 22 1 0.077 763 | 0.891 24
2 2 2 1 1 2 1 2 1 11]0.927 23 | 0.010 712 | 0.919 19
2 2 1 1 1 2 1 2 1 2]0.927 24 | 0.011 713 | 0.919 20
2 2 1 1 2 2 1 2 1 110926 251 0.104 774 | 0.853 25

19




ing Research Corporation of Ontario, and the Natural Sciences and Engineering Research

Council of Canada.

10.

11.

12.

13.

14.
15.

REFERENCES

. G.E.P. Box and N.R. Draper, Empirical Model-Building and Response Surfaces, 1987;

John Wiley & Sons.

. G.E.P. Box, W.G. Hunter and J.S. Hunter, Statistics for Ezperimenters, 1978; John

Wiley & Sons.

. R.G. Bullington, S.G Lovin, D.M. Miller and W.H. Woodall, “Improvement of an

Industrial Thermostat Using Designed Experiments,” Journal of Quality Technology,
vol 25, 1993, pp 262-270.

. L.W. Condra, Reliability Improvement with Design of Experiments, 1993; Marcel Dekker.

. A. Dey, Orthogonal Fractional Factorial Designs, 1985; Halsted Press.

M. Hamada, “Reliability Improvement Via Taguchi’s Robust Design,” Quality and
Reliability Engineering International, vol 9, 1993, pp 7-13.

. M. Hamada and S.K. Tse, “On Estimability Problems in Industrial Experiments with

Censored Data,” Statistica Sinica, vol 2, 1992, pp 381-391.

M. Hamada and C.F.J. Wu, “Analysis of Censored Data from Highly Fractionated
Experiments,” Technometrics, vol 33, 1991, pp 25-38.

M. Hamada and C.F.J. Wu, “Analysis of Designed Experiments with Complex Alias-
ing,” Journal of Quality Technology, vol 24, 1992, 130-137.

M. Hamada and C.F.J. Wu, “Analysis of Censored Data from Fractionated Experi-
ments: a Bayesian Approach,” University of Waterloo Institute for Improvement in
Quality and Productivity Research Report RR-92-11, 1992.

R.N. Kackar, “Off-Line Quality Control, Parameter Design, and the Taguchi Method
(with discussion),” Journal of Quality Technology, vol 17, 1985, pp 176-209.

J.F. Lawless, Statistical Models and Methods for Lifetime Data, 1982; John Wiley &
Sons.

F. Montmarquet, “Printed Circuit Drill Bit Design Optimization Using Taguchi’s
Methods — .013"” Diameter Bits,” Sizth Symposium on Taguchi Methods, 1988; Ameri-
can Supplier Institute, pp 70-77.

W. Nelson, Applied Life Data Analysis, 1982; John Wiley & Sons.

M.S. Phadke, “Design Optimization Case Studies,” ATHT Technical Journal, vol 65,
1986, pp 51-68.

20



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Plackett, R.L. and Burman, J.P. “The Design of Optimum Multifactorial Experi-
ments,” Biometrika, vol 33, 1946, pp 305-325.

H. Raiffa and R. Schlaifer, Introduction to Statistical Decision Theory, 1961; McGraw-
Hill.

T.L. Reed, “Reduction of Gain Change and Improved Humidity Reliability in Gen III
Night Vision Goggle Tube Sub-Assembly Using an L, Taguchi Orthogonal Array,”
Sizth Symposium on Taguchi Methods, 1988; American Supplier Institute, pp 247-268.

SAS Institute Inc., SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume 2,
1989; SAS Institute, Inc.

A.C. Shoemaker, K.L. Tsui and C.F.J. Wu, “Economical Experimentation Methods
for Robust Design,” Technometrics, vol 33, 1991, pp 415-427.

M.J. Silvapulle and J. Burridge, “Existence of Maximum Likelihood Estimates in Re-
gression Models for Grouped and Ungrouped Data,” Journal of the Royal Statistical
Society, Ser. B, vol 48, 1986, pp 100-106.

N. Specht, “Heat Exchanger Product Design via Taguchi Methods,” in Third Sympo-
sium on Taguchi Methods, 1985; American Supplier Institute, pp 302-318.

D. Steinberg and P. Colla, SURVIVAL: a Supplementary Module for SYSTAT, 1988;
SYSTAT Inc.

G. Taguchi, Introduction to Quality Engineering, 1986; Asian Productivity Organisa-
tion.

G. Taguchi, System of Ezperimental Design, 1987; Unipub/Kraus International Pub-
lications.

G. Taguchi and Y.I. Wu, Introduction to Off-Line Quality Control, 1980; Japan Quality
Control Association.

J.C. Wang and C.F.J. Wu, “An Approach to the Construction of Asymmetrical Or-
thogonal Arrays,” Journal of the American Statistical Association, vol 86, 1991, pp
450-456.

W.J. Welch, T.K. Yu, S.M. Kang and J. Sacks, “Computer Experiments for Quality
Control by Parameter Design,” Journal of Quality Technology, vol 22, 1990, pp 15-22.

21



	

