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ABSTRACT

Statistically designed experiments have been used extensively for estimating or demonstrating
existing reliability but have seldom been used for improving reliability. Genichi Taguchi has
advocated their use not only for improving reliability but also for achieving robust réliability.
Robust reliability is part of his robust design philosophy whose aim is to make processes/products
insensitive to "noise" factors which are hard or impossible to control such as manufacturing
variables that cannot easily be controlled or environmental conditions in which the product is
operated. This paper first discusses experimental designs for reliability improvement and robust
reliability. Then analysis methods for reliability data are considered. These methods need to be
able to handle censored data which commonly occur because all units tested have not failed by
the end of | the experiment. In analyzing censored data from these experimental designs, some
difficulties with standard methods have been encountered and have provided the motivation for
recent work. This paper presents an overview of analysis methods which include standard
methods, an iterative imputation-based model selection procedure and one which takes a Bayesian
approach. Examples of fluorescent lamps, heat exchangers and drill bits are given to illustrate the
use of experimental design for improving reliability. The data from these experiments are

reanalyzed to show how some of the analysis methods can be applied.

Key words: Bayesian, Censoring, Complex aliasing patterns, Control and noise factors,
Estimability, Fractional factorial, Maximum likelihood estimation, Mixed-level orthogonal array,
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1. INTRODUCTION

While statistically designed experiments have been used extensively for estimating or
demonstrating existing reliability (Nelson 1982), they have seldom been used proactively to
improve reliability as advocated by Genichi Taguchi .(Ta,guchi 1986, 1987), i.e., to identify
factors that affect reliability and to recommend factor levels that lead to improved reliability.
Taguchi is better known for robust design, whose aim is to make processes/products insen-
sitive to “noise” factors which are hard or impossible to control. Such products/processes
are said to be robust to the noise factors. Examples of noise factors include manufacturing
variables that cannot easily be controlled and environmental conditions in which the prod-
uct is used. This important paradigm for improving products/processes has attracted much
attention in recent years (Kackar 1985) and can be applied to reliability. In order to ensure
good stability and adequate life, Taguchi (1986, page 149) recommended that noise factors
be considered in any experiment to improve reliability whenever practical to do so.

It is somewhat surprising that statistically designed experiments have not received more
attention as a means for improving reliability. Methods for analyzing lifetime data which
handle censored data (e.g., arising from units which have not failed by the end of the ex-
periment) existed as early as 1959. See Sampford and Taylor (1959) and Zelen (1959) which
discussed, respectively, how maximum likelihood estimation could handle right-censoring (or
Type I censoring) and Type II censoring in factorial experiments. Zelen (1959) looked at the
effect. of two accelerating factors, temperature and voltage, on capacitor lifetime, however,
so that the focus was not improvement. Hitzelberger (1967) in an article, “Improve Your
Reliability”, presented factorial experiments as a way to establish cause-and-effect relation-
ships between factors and a product/process characteristic. Unfortunately, the example he
gave dealt with quality rather than reliability. While there has been isolated use of such
experiments in the years following, the industrial statistical literature has been rather silent
on this matter.

It is in the 1980’s with North American industry’s introduction to Taguchi’s quality



engineering philosophy and methodology (first Taguchi and Wu 1980 and later Taguchi 1986,
1987) that we find a clear message to use designed experiments to improve reliability. In his
books, Taguchi provides examples of improving clutch spring and fluorescent lamp reliability.
Furthermore, there is documented evidence in the Symposia on Taguchi Methods (1984-‘1993)
that industry has heard the message. Specht (1985) reported on the improvement of heat-
exchanger reliability in a commercial hea.ﬁng system. Montmarquet (1988) discussed the
improvement of drill bit reliability in a multilayer printed circuit board drilling operation.
Phadke (1986) also reported an early application of Taguchi’s methodology at AT&T which
improved router-bit reliability in a printed circuit board cutting operation. The message has
recently made its way into textbooks on reliability. O’Connor (1991) in his third edition has
a chapter on designed experiments which is apparently influenced by Taguchi. No reliability
improvement examples are given, however. In Condra’s (1993) Reliability Improvement of
Design of Experiments we find the first textbook which is entirely devoted to this subject
and in which Taguchi’s robust design philosophy figures prominently. In assessing the use
of designed experiments for reliability improvement, Condra (1993 page 127) concludes that
they have not been used widely by reliability engineers in the past few decades. As for
robust design, he states that it is a potentially powerful tool whose exploitation for reliability
improvement is only beginning.

As North American industry began applying Taguchi’s methods, his philosophy and
methods also attracted the attention of researchers. Various studies were undertaken that
generated new lines of research which included improved experimental designs and analysis
methods for implementing his philosophy. Regarding experiments to improve reliability,
analysis of censored data from them has presented new challenges. Besides right-censored
data from units not failing.by the.end of.the experiment, other types of censored data arise
when units are inspected periodically for failure. In such situations in which units cannot be
monitored continuously, units produce left-censored data if they fail before the first inspection

and interval-censored data, otherwise. It is the censored data coupled with the moderately



to highly fractionated designs commonly used in industry to study a large number of factors
in a small number of runs that causes problems when standard methods are used. In order
to overcome these problems, Hamada and Wu (1991) proposed an iterative procedure based
on building up a model. Problems with standard methods were further explored by Hamada
and Tse (1992), which provided support for the strategy used in the iterative procedure.
Hamada (1993) also explored the analysis of robust reliability experiments with censored
data. Recently, Hamada and Wu (1992b) proposed a Bayesian approach which overcomes
limitations of the iterative procedure and also provides a natural framework for analyzing
robust reliability experiments.

This article focuses on the analysis methods for experiments to improve reliability and
to achieve robust reliability and is organized as follows. First two classes of experimental
designs, fractional factorials and product arrays, are discussed with examples in Sections
2 and 3, respectively. In Section 4, an overview of analysis methods is given. Some of
these methods are demonstrated in Sections 5 through 7 which presents respective analyses
of experiments to improve fluorescent lamp and heat exchanger reliability and to achieve
robust reliability of drill bits in printed circuit board fabrication. Section 8 concludes with

a discussion and comments on other types of reliability improvement experiments.
2. EXPERIMENTS FOR IMPROVING RELIABILITY

Experiments for improving reliability have the following goals: 1) identify the important
factors that affect the reliability of a product/process and 2) choose levels of these factors
that lead to improved reliability. Like other quality characteristics, the relationship between
various factors and reliability can be studied using an appropriately chosen experimental
design. Typically in industry, a large number of factors may need to be studied in a relatively
small number of runs. Thus, highly fractionated 2*~? designs (Box, Hunter and Hunter
1978) or non-geometric Plackett-Burman (1946) designs such as their 12-run design are
often used. In a sequential approach to experimentation, these designs would initially be

used for screening out the unimportant factors before conducting a follow-up experiment
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with more levels so that the response-factor relationship can modeled in more detail. In
reality, the initial experiment may be the only one performed so that a proper assignment
of factors for the 2*~P designs can allow some potential interactions to be studied. Hamada
and Wu (1992a) has also shown that some information on interactions may also be obtained
from the Plackett-Burman designs. Taguchi often initially uses designs with more levels.
These include the 3*~? designs and mixed-level designs such as the L18(2 x 3"), which can be
used to study one two-level factor and up to seven three-level factors. Dey (1985) and Wang
and Wu (1991) catalogue other mixed-level designs. In a sequential experimental approach,
however, a design with more levels such as a response surface design (Box and Draper 1987)
which usually is not a fractional factorial would be used in a follow-up experiment.

The applications given in the Introduction illustrate the use of some of these designs.
Specht (1985) used a 12-run Plackett-Burman design to study ten factors (denoted by A-
H,J,K) chosen from many possible product design, material selection and manufacturing
factors to improve heat exchanger reliability. See Table 1 which gives the design and interval-
censored lifetime data from eight inspections. The interval (93.5,105) indicates that the unit
failed between 9350 and 10500 cycles, i.e., between the fifth and sixth inspections. (128,00)
indicates that the unit was still working at 12800 cycles, the last inspection. Note that one
unit was still functioning at the last inspection.

Tagﬁchi (1987 page 930) presented an experiment to improve the lifetime of fluorescent
lamps which used a 2%~ design. Five two-level factors denoted by A-E were studied using
a twice replicated 8-run experiment with defining relations D=AC and E=BC which was
conducted over 20 days with inspections every two days. The design and lifetime data appear
in Table 2. Besides the main effects, the experimenter also thought that the AB(=DE)
interaction.might be potentially-important. Note that there are right-censored data because
seven of the 16 lamps had not failed by the 20 day inspection

Examples of other designs discussed above include the clutch spring experiment in Taguchi

(1986, chapter 9) which used a 310-7 to study seven factors. Phadke used a mixed-level 32-



Table 1: Design and Lifetime Data for the Heat Exchanger Experiment

Factor

F B A CDEGH J K U Lifetime

1 1 1 1 1 1 1 1 1 1 1 (935, 105)
1 1 1 1 1 2 2 2 2 2 2 (42, 56.5)
1 1 2 2 2 1 1 2 2 2 1 (128, x)

1 2 1 2 2 2 2 1 1 2 1 (56.5,71)
1 2 2 1 2 1 2 1 2 1 2 (56.5,71)
1 2 2 2 1 2 1 2 1 1 2 (0,42

2 1 2 2 1 2 2 1 2 1 1 (56.5,71)
2 1 2 1 2 2 1 1 1 2 2 (42, 56.5)
2 1 1 2 2 1 2 2 1 1 2 (82 935)
2 2 2 1 1 1 2 2 1 2 1 (82 935)
2 2 1 2 1 1 1 1 2 2 2 (82 935)
2 2 1 1 2 2 1 2 2 1 1 (42, 56.5)

run design to study two four-level factors and seven two-level factors. We also know of one
study that used a Box-Behnken response surface design (Box and Draper 1987) as a follow-up
experiment to investigate four factors previously identified in a 2%-P screening design.

The data from these designs can be analyzed using a parametric model such as a lognor-
mal or Weibull regression model. These models and their analyses are presented in Section
4. Analyses of the fluorescent lamp and heat exchanger experiments will be discussed in

Sections 5 and 6, respectively.



Table 2: Design and Lifetime Data for the Fluorescent Larhp Experiment

Factor

A B C D E Lifetime

1 1 1 1 1](14,16) (20,00)
1 1 2 2 21(18,20) (20,00)
1 2 1 1 2/(08,10) (10,12)
1 2 2 2 1/(18,20) (20,00)
2 1 1 2 1](20,00) (20,00)
2 1 2 1 2](12,14) (20,00)
2 2 1 2 2/(16,18) (20,00)
2 2 2 1 1](12,14) (14,16)

3. EXPERIMENTS FOR ACHIEVING ROBUST RELIABILITY

Taguchi’s robust design is also referred to as parameter design because its objective is
to find levels of engineering parameters (called control factors here) that yield a robust
product/process, i.e., that make the product/process insensitive to the variation of hard or
impossible to control noise factors. Taguchi’s tactics for carrying out robust design are to
specify a criterion for assessing noise factor effects and then use experimentation to estimate
the criterion. Note that while noise factors are difficult or impractical to control in production
or in use, for purposes of the experiment (i.e;, to learn about the effect of the noise factors),
the noise factors need to be controlled during the experiment. Following the notation used
in Welch, Yu, Kang and Sacks (1990), a criterion for assessing the effect of the noise factors
(termed the loss and denoted by L(-) ) at a particular combination of control factor levels

Xeontror Canl be defined for a general loss function [(-) as:

' L(xcoﬁirol) = /-:Z(Y(xcontrol) xnoise))f(xnoise)dxnoise ) (1)

where Y (Xcontrol Xnoise) 18 the random quality characteristic observed at a particular com-
bination of control and noise factor levels (Xcontrols Xnoise) and f(-) is the joint probability

density function of the noise factors. In this formulation, the objective of robust design is to
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find a product/process design Xcontroi With minimum loss. In applying robust design to reli-
ability, Y is the lifetime random variable; some appropriate loss functions will be discussed
later in the example given in Section 7.

Taguchi (1987) proposed using experimentation to estimate the loss (1) and modelling
the estimated losses in terms of the control factors. Taguchi recommends using specialized
experimental plans referred to as product (or crossed) arrays. A product array consists of
two plans or arrays, one for the control factors called the “control array” and the other for
the noise factors called the “noise array”. The product or crossed array design is so named
because all the noise factor combinations specified by the noise array are experimented at
every combination of the control factors specified by the control array.

As an example, consider an experiment for improving the lifetime of drill bits (i.e., num-
ber of holes drilled before breakage) used in fabricating multilayer printed circuit boards
(Montmarquet 1988). In designing multilayer circuit boards, small diameter holes are de-
sired because they allow more room for the circuitry. The strength of small diameter drill
bits is greatly reduced, however, so that breakage becomes a serious problem; broken bits
cannot be removed from the boards requiring the boards to be scrapped. A product array
consisting of a 16-run control array and an eight run noise array was used to study 11 con-
trol factors (A at four levels and B-J and L at two levels) and five noise factors (M-Q at
two levels) as displayed in Table 3. The control factors were selected material composition
and geometric characteristics of drill bits such as the carbide cobalt percentage in a drill bit
(factor A) and radial rake (factor F). The noise factors dealt with characteristics of different
types of multilayer circuit boards that would be drilled such as board material (factor O)
and number of layers in a board (factor P). Thus, 16 different drill bit designs specified by
the control factor. array were.used in.the eight different production.conditions specified by
the noise factor array. Note that testing was stopped after 3,000 holes were drilled and 11%
of the tested drill bits had not failed by that time.

Taguchi (1987) originally proposed estimating the loss L(Xcontrot) for €ach Xcontror specified



Table 3: Product Array Design and Lifetime Data for the Drill Bit Experiment

(experiment ended at 3000 cycles)

Noise Array

1 1 1 1 2 2 2 2 M
1 1 2 2 1 1 2 2 N
1 1 2 2 2 2 1 1 O
1 2 1 2 1 2 1 2 P
1 2 2 1 2 1 1 2 Q
Control Array
A DBCVFGHTIEIIJL Lifetime
1 1 1 1 1 1 1 1 1 1 1]1280 44 150 20 60 2 65 25
1 1 1 1 1 2 2 2 2 2 22680 125 120 2 165 100 795 307
1 2 2 2 2 1 1 1 1 2 2[2670 480 762 130 1422 280 670 130
1 2 2 2 2 2 2 2 2 1 1]265 90 T 27 3 15 90 480
2 1 1 2 2 1 1 2 2 1 2|3000 440 480 10 1260 5 1720 3000
2 1 1 2 2 2 2 1 1 2 12586 6 370 45 2190 36 1030 16
2 2 2 1 1 1 1 2 2 2 13000 2580 20 320 425 85 950 3000
2 2 2 1 1 2 2 1 1 1 2| 800 45 260 250 1650 470 1250 70
3 12 1 2 1 2 1 2 1 13000 190 140 2 100 3 450 840
3 1 2 1 2 2 1 2 1 2 213000 638 440 145 690 140 1180 1080
3 2 1 2 1 2 1 2 1 1 1/|3000 180 870 310 2820 240 2190 1100
4 1 2 2 1 1 2 2 1 1 2|30 612 1611 625 1720 195 1881 2780
4 1 2 2 1 2 1 1 2 2 13000 1145 1060 198 1340 95 2509 345
3 2 1 2 1 1 2 1 2 2 23000 970 180 220 415 70 2630 3000
4 2 1 1 2 1 2 2 1 2 1/]3000 3000 794 40 160 50 495 3000
4 2 1 1 2 2 1 1 2 1 2| 680 140 809 275 1130 145 2025 125




by the control array from the data obtained by varying the noise factors according to the
noise array and then modeling it as a function of the control factors. Alternatively, Welch
et al. (1990) proposed modeling the response Y directly as a function of both the control
and noise factors and then evaluating the loss using the estimated response model. Their
rationale for the latter approach, termed the response-model approach by Shoemaker, Tsui
and Wu (1991), was that it would be more likely to find a simple model for the response
than one for the much more complicated estimated loss. Examples in Welch et al. (1990)
and Shoemaker et al. (1991) provide evidence for preferring the response-model approach.
Shoemaker et al. (1991) showed that the approach also provides more information.

For achieving robust reliability, the response-model approach is a natural one because
the same parametric regression models mentioned in Section 2 can be used. The product
array data allows a model to be fit consisting of all C main effects (possibly some C x C
interactions), all C'x N interactions and all N main effects (possibly some N x N interactions),
where C and N denotes control and noise factors, respectively. The C x N interactions play
an important role because the fact that the loss (1) changes for different control factor
combinations means that these interactions must exist. Figure la displays a simplified
relationship between a response Y and one control factor (at two levels) and one noise
factor (over an interval) and shows that the effect of the noise factor is substantially smaller
at control factor level 1 (C1). Thus, robust design exploits the existence of interactions
between control and noise factors. Note that having a C' x N interaction is not sufficient for
an opportunity for robustness as is shown in Figure 1b where the magnitude of the change
over the noise factor interval at both levels of the control factor is the same. Consequently,
an N main effect is also needed which explains the inclusion of both C' x N interactions and
N main effects in the model. The.C.main effects and C x.C interactions indicate the general
response value about which the response varies as the noise factors vary according to their
distribution; the amount of variation depends on the magnitudes of the N main effects and

C x N interactions.



By taking the response-model approach, alternate designs to a product array have also
been suggested. For example, Welch et al. (1990) proposed using a single plan or array for
both the control and noise factors. Shoemaker et al. (1991) explored the economic advantages

of single arrays over product arrays.
4. ANALYSIS METHODS FOR CENSORED DATA

For analyzing the experiments discussed in the previous two sections, we consider the

following parametric regression model (Lawless 1982):

{

Y, = log(ti) = xiTﬁ + o¢;, 1= ]., ceey N, (2)

where the {t;} are the lifetimes, the {x;} are the corresponding vectors of covariates values,
B is the vector of location parameters and o is the scale parameter. The errors {€;} are
ii.d. standard extreme-value r.v.’s if the lifetimes have a Weibull distribution and are i.i.d.
standard normal r.v.’s if the lifetimes follow a lognormal distribution. The models with these
two error distributions are called the lognormal and Weibull regression models, respectively.
For the reliability improvement experiments given in Section 2, the covariates consist of an
intercept, the factor main effects and possibly some interactions. For the robust reliability
experiments presented in Section 3, the covariates consist of an intercept, the C' main effects,
possibly some C' x C interactions, the C' x N interactions, the N main effects and possibly
some N x N interactions, where C and N denote control and noise factors, respectively.
Because of the typically small amount of data collected in these experiments, there appear
to be little qualitative differences between the use of either model; there is not enough data to
differentiate between the two error distributions. The lognormal regression model has some
advantages, however, because of its connection with the normal regression model and has
been exploited in recent work (Hamada and Wu 1991, 1992b). For complete data, i.e., when
all lifetimes observed, the analysis is straightforward using maximum likelihood estimation

(Lawless 1982). As mentioned in the Introduction, the censored data present new challenges
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in the context of analyzing reliability experiments. Next we give an overview of methods for

handling the censored data which highlights these challenges.

4.1 A Quick and Dirty Method

A quick and dirty (QD) method which continues to be used in practice treats the right-
censoring times as actual failure times and then analyzes them by standard methods for
complete data. (For interval-censored data, an interval endpoint or midpoint is used.) Al-
though simple, ignoring the censoring can lead to wrong decisions because the unobserved
failure times and right-censoring times may differ greatly depending on the particular fac-
tor level combination. A simulation study in Hamada and Wu (1991) showed that the QD
method can perform quite poorly. Hamada (1992) also pointed out that Taguchi’s (1987)

minute accumulating analysis treats the right-censored data similarly.
4.2 Fitting Saturated Models and Their Submodels

One obvious approach for handling censored data is to specify a saturated model and
fit it using maximum likelihood estimation (MLE). The approach has several drawbacks,
however. First, the MLEs need not exist, i.e., at least one is infinite, so that testing cannot
be done by comparing the MLEs with their standard errors. Silvapulle and Burridge (1981)
gave necessary and sufficient conditions for the existence of MLEs for model (2). In the
reliability context, Hamada and Tse (1992) concluded that estimability problems will tend
to occur for saturated and nearly saturated submodels.

Krall, Uthoff and Harley (1975) proposed using an MLE-based forward selection proce-
dure. Building the model up tends to mitigate estimability problems, but still requires a
certain amount of computation; an iterative algorithm is required to obtain the MLEs for
each model fit. If a stepwise selection procedure is used instead, the amount of computation
required increases substantially. Lawless and Singhal (1980) proposed an efficient algorithm

for an all subsets procedure which finds good submodels of a saturated model. While the

11



MLEs of saturated and nearly saturated models are not likely to exist, the likelihood is still
well defined so that sequences of submodels could be fit and compared using appropriate
likelihood ratio tests. There are computational difficulties associated with the estimability
problems, however, which the software needs to handle as shown in Clarkson and Jennrich
(1991). Nevertheless, the computational cost can be quite high because many possible models
may be fit.

For the Plackett-Burman 12-run, mixed-level fractional factorial and 3¥~? designs, the
computational cost is even higher and may be prohibitive because of the enormous number
of possible models. If we consider a comprehensive model for these designs, say containing
all main effects and two-factor interactions, the number of effects exceeds the number of runs
and therefore cannot be fit. As Hamada and Wu (1992b) pointed out, there is no saturated
comprehensive model for these designs because of their complex aliasing patterns; e.g., a
main effect is partially aliased with several if not many two-factor interactions rather than
being completely aliased with a one or a few two-factor interactions as is the case for 2k-p
designs. Take for example the 12-run Plackett-Burman design where each factor main-effect
is partially aliased with all two-factor interactions not involving the factor. For the heat
exchanger experiment with ten factors in Section 2, a second-order model would have 55
effects plus an intercept. Consequently, the number of possible models to be fit can be
enormous, even when restrictions are made on the class of models such as including at least
one of the corresponding main effects for any interaction appearing in the model.

As a final comment, the likelihood ratio testing approach which handles the estimability
problem may not be entirely useful for robust reliability experiments unless the MLEs of the
final model selected exist. In the context of analyzing ordinal data (which applies here as
well), Chipman and.Hamada (1993).pointed out that in choosing. control factor levels, finite

estimates are needed to evaluate the loss (1).
4.3 Tterative Imputation-Based Model Selection

The computational problems and requirements of the standard MLE based methods
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presented in the previous section motivated Hamada and Wu (1991). They proposed an
iterative model selection procedure based on imputation. By imputing the censored data
to obtain “complete normal” or pseudo-complete data, any of the standard model selection
techniques can be used at much less computational cost. Note that this procedure can be
used for the lognormal regression model (1) since the log lifetimes are normally distributed.

The iterative model selection procedure consists of a three-step loop:

1. Imputation
2. Model Selection

3. Model Fitting

An initial model chosen by the experimenter which may consist only of main effects for highly
fractionated designs is fit using maximum likelihood estimation. In the imputation step,
the censored data are replaced by conditional mean lifetimes based on the current model.
The next model is then chosen based on these pseudo-complete or pseudo-uncensored data
using any standard method such as stepwise selection. The chosen model is then fit using
maximum likelihood estimation, the censored data are imputed, and so forth until the next
chosen model stops changing.

The procedure exploits the simplicity of a complete data problem to solve an incomplete
data problem. While the use of standard methods on pseudo-complete data lacks theoretical
justification, the simulation study given in Hamada and Wu (1991) showed that the method
performs well and is far superior to the QD method. The procedure also relies on maximum
likelihood estimation so that there are potential estimability problems. These tend to be
avoided since the procedure builds up thé model rather than starting with a saturated model.

In earlier work, Hahn, Morgan and Schmee (1981) used imputation to analyze left-
censored yield data from an experiment on a chemical process. Their method starts out
by imputing the censored data based on the model obtained by the QD method, i.e., a least-

squares fit treating the censoring values as actual observations. Imputing the censored data
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by their conditional means, the next model is chosen based on the least-squares estimates
(LSEs) from the pseudo-complete data. The LSEs of the chosen model, which do not require
an additional fitting, are used in the next imputation. A key difference with that proposed
by Hamada and Wu (1991) is the reliance on LSEs rather than MLEs; the latter directly
incorporates the censoring information in fitting the current chosen model. A rationale for
the LSEs is that for a fixed model, iterative LSEs at convergence are nearly equal to MLEs
(Aitken 1981) and therefore can be viewed as one-step MLEs. Despite its simplicity, the sim-
ulation study in Hamada and Wu (1991) indicates that the LSE based procedure performs

worse especially for heavier censoring.
4.4 A Bayesian Approach

The estimability problem of the MLE based methods presented in the previous sections
motivated the Bayesian approach proposed in Hamada and Wu (1992b). The Bayesian
approach is a natural one because important factor effects might be expected to be large but
not infinite. By using proper prior distributions, posterior distributions with finite modes
result and can be used to obtain finite estimates. Also, the posterior distributions allow the
importance of factorial effects to be assessed without using the asymptotic approximations
employed by the MLE based methods.

This approach is relatively simple to implement using the recent advances in Bayesian
computing. That is, the resampling methodology makes calculating the entire posterior
distribution or some characteristic pretty straightforward to do. Wei and Tanner (1990b)
showed how posteriors for censored data regression models could be calculated using data
augmentation (Tanner and Wong 1987). Wei and Tanner (1990a) also showed how the
posterior maximizer could be calculated without computing the entire posterior by what they
called the Monte Carlo EM. Wei and Tanner (1990 a,b) used an improper prior, however,
which Hamada and Wu (1992b) showed could be extended to the proper conjugate prior given
by Raiffa and Schlaifer (1961). Besides producing well-behaved posteriors, the conjugate
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prior allows the robustness of the results to be investigated. See Hamada and Wu (1992b)
for more details.

In analyzing 2*~? designs, a saturated comprehensive can be entertained using a standard
Bayesian analysis. Thus, for these designs, the iterative model selection procedure of Hamada
and Wu (1991) is not needed. For designs with complex aliasing patterns such as the 12-run
Plackett-Burman design, however, Hamada and Wu (1992b) proposed adapting this iterative
model selection procedure. That is, the imputation is based on the posterior maximizer
instead of the MLEs. For the same reasons given previously, this adapted iterative model
selection procedure requires much less computation than an entirely Bayesian approach.

For analyzing robust design experiments, the Bayesian approach has an additional advan-
tage. Chipman and Hamada (1993) showed how the Bayesian approach can easily combine
the uncertainty of the model estimates with the variation of the noise facfors in choosing con-
trol factor levels; previous work had not accounted for the model estimates’ uncertainty. This

idea can be applied to robust reliability experiments and is currently being implemented.
5. ANALYSIS OF FLUORESCENT LAMP EXPERIMENT

For the fluorescent lamp experiment presented in Section 2, first consider a standard MLE
based analysis using the lognormal regression model. Table 4 gives the MLEs and standard
errors for the five main effects (A-E) and the AB interaction which the experimenters thought
might be important. The intercept is denoted by Int. Based on these results, the main effects
D, B, E and A are important in the order given.

An additional effect (BD=AE) can be entertained if a saturated model is fit, but the
MLEs do not exist for this model since both replicates at the fifth run are right-censored.
The Bayesian approach of Section 4.4, which circumvents the estimability problem, can be
taken using a relatively diffuse prior distribution with mean zero for the effects. The quantiles
corresponding to central 0.95 and 0.99 intervals of the posterior distribution are displayed in

Table 5. These results show that BD is not important and confirm the importance of main-

effects, D, B, E and A. Hamada and Wu (1992b) also showed that these results hold for a
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Table 4: MLEs and Standard Errors of Lognormal Regression Model

for the Fluorescent Lamp Experiment

Effect MLE Std Err
Int  2.939 0.064

A -0.117 0.062

B 0.201 0.060
AB -0.049 0.062

C 0.051 0.062
D -0.273 0.062
E 0.153 0.063
o 1.590 0.043

much éharper prior distribution. The sign of these effects suggests that reliability will improve

at recommended settings A; B, D, E,, where the subscript indicates the recommended level.
6. ANALYSIS OF THE HEAT EXCHANGER EXPERIMENT

Hamada and Wu (1991) used the iterative model selection procedure to analyze the heat
exchanger experiment presented in Section 2. The main effects model for the ten factors
whose MLEs exist was fit and used to impute the censored data. A stepwise selection
procedure applied to the pseudo-complete data identified the model (E, EG, EH). The same
model was chosen in the next iteration.

Now consider the saturated model consisting of the ten main effects and the effect asso-
ciated with the unassigned design column U in Table 1. Since the MLEs do not exist for this
model, the Bayesian approach can be taken. Table 6 gives the quantiles corresponding to
central 0.95 and 0.99 intervals of the posterior using a relatively diffuse prior. While B, C,
E, K and U appear important, recall that all main effects are aliased with fhe 36 two-factor
interactions not involving the factor; U is aliased with all 45 two-factor interactions between
the ten factors. The U effect’s importance means that some two-factor interactions are im-
portant and can explain the main effects B, C and K. See Hamada and Wu (1991) for details.

E is much larger so that E is clearly important. Thus, the Bayesian analysis of the saturated
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Table 5: Posterior Quantiles Using Diffuse Prior
for the Fluorescent Lamp Experiment

Quantile
Effect .005 .025 .975 .995
Int 2.83 2.84 3.02 3.07
A -0.24 -0.19 -0.02 -0.00
B 0.07 0.09 0.26 0.31
C -0.06 -0.05 0.12 0.17
AB -0.15 -0.10 0.07 0.08
E 0.02 0.04 0.21 0.26
D -0.40 -0.35 -0.18 -0.17
BD -0.10 -0.05 0.11 0.13
o 0.10 0.10 0.20 0.24

model confirms the importance of E and identifies the presence of some interactions.
7. ANALYSIS OF THE DRILL BIT EXPERIMENT

Taking the response-model approach, a Weibull regression model (1) consisting of an
intercept, C' main effects, one C' x C interaction (D x E), N main effects, two N x N
interactions (M x P, M x @) and all the C x N interactions, was fit using the product
array data from Table 3. Table 7 presents only the MLEs and respective standard errors for
the important effects. Since factor A has four levels, the main effect is modeled by linear,
quadratic and cubic components which are denoted by A;, A, and A., respectively.

Once the response has been modeled, recommendations for the important control factors
settings need to be made. For a simple model with few noise factors, they may be apparent
from inspection of the model directly; i.e., by observing what the significant effects are and
their magnitudes. Shoemaker et al. (1991) gave an example, but for complicated models,
this approach may be tedious if not impossible.

An alternative is to specify some meaningful criterion or loss and use the identified model
to evaluate them. The loss (1) can then be estimated using some distribution for the noise

factors. In practice, because it may be difficult to specify the distribution, the criterion can
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Table 6: Posterior Quantiles Using Diffuse Prior
for the Heat Exchanger Experiment

Quantile
Effect .005 .025 975 .995
Int 4.180 4.190 4.262 4.273
F -0.050 -0.040 0.031 0.041
B -0.145 -0.134 -0.059 -0.049
A -0.068 -0.054 0.019 0.029
C - 0.034 0.044 0.117 0.123
D -0.026 -0.016 0.057 0.069
E -0.340 -0.329 -0.257 -0.247
G -0.061 -0.049 0.023 0.035
H -0.058 -0.045 0.029 0.040
J -0.022 -0.012 0.058 0.068
K 0.028 0.039 0.111 0.121
U -0.191 -0.176 -0.104 -0.094
o 0.028 0.028 0.028 0.028

be evaluated over the noise combinations given by the noise array. The same noise array
from the experiment does not have to be used. For example, instead of a fractional factorial
design, the loss could be evaluated using a full factorial design. The noise combinations can
also be weighted appropriately to reflect their probabilities of occurrence. Similarly, the loss
can be estimated for all possible settings of the control factors.

For achieving robust reliabi]ity, besides requiring high reliability on average, as little
dependence as possible on the noise factors is desired. This suggests estimating the mean
and standard deviation of the mixture of lifetime distributions given by (2) with the mixture
defined by the noise factor distribution. Ideally, there is a control factor setting that simulta-
neously maximizes both the mean and minimizes the standard deviation; otherwise, tradeofts
between the two need to be made. By taking a worst case approach, the minimum mean
lifetime over the noise factor distribution provides another criterion which can be maximized

as a basis for choosing the control factor settings. Finally, Taguchi’s (1987) larger-the-better
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Table 7: MLEs and Standard Errors of Weibull Regression Model
for the Drill Bit Experiment

Effect MLE Std Err | Effect MLE Std Err
Int 6.182 0.047 | A\N -0.047 0.021
Ay 0.279 0.021 | BN  -0.094 0.042
A, -0.268 0.043 | IN -0.111 0.044
0.071 0.018 | DO 0.181 0.058
-0.194 0.043 | BO -0.136 0.047
-0.265 0.043 | GO 0.277 0.054
0.154 ~ 0.042 | 10 -0.429 0.054
0.132 0.048 | EO  -0.376 0.061
0.218 0.048 | LO 0.294 0.059
-0.272 0.044 | A,P  -0.123 0.061
-0.231 0.043 | DP 0.269 0.059
-0.272 0.043 | BP 0.213 0.048
-0.225 0.041 | CP -0.119 0.059
0.179 0.058 | IP 0.195 0.054
0.136 0.047 | EP 0.143 0.061
0.898 0.059 | JP 0.156 0.060
0.862 0.057 | LP -0.194 0.060
0.548 0.057 | MP 0.237 0.057
-0.174 0.061 | GM 0.236 0.054
0.079 0.061 | JM 0.149 0.059
-0.117 0.054 | LM 0.123 0.059
0.202 0.060 | o 0.350 0.030

s
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signal-to-noise ratio (LTB S/N ratio) for assessing the effect of noise factors is applicable
here and is based on the loss in (1) using the loss function [(Y) = 1/Y 2. Control factor
settings with large LTB S/N ratios, defined as —10l0g10 L(Xcontrot), can then be identified.
Other criteria are possible such as that based on the probability of exceeding a specified time
such as a warranty period, but are not considered further.

For the drill bit experiment, the relationship between the response and the control and
noise fac‘tors as seen from Table 7 is too complicated to make control factor level recom-
mendations simply by inspecting the model. Consequently, the criteria discussed above can
be estimated, namely the mean, standard deviation, minimum mean and LTB S/N ratio
using all possible combinations of noise factors (32 = 2°) and evaluated at all possible com-
binations of control factor (4096 = 4 x 2'°) and then ranked appropriately (out of 4096,
with 1 being the best). Table 8 presents the best five control factor combinations for each
criterion along with the other criteria and ‘their ranks. Several observations can be made:
(i) the combination least sensitive to the noise factors ranks rather poorly on other criteria,
especially the mean; (ii) the other three criteria identify many of the same combinations;
(iii) there is little difference between the top few combinations. Based on Table 8, a good
choice of factor levels would be A4 Dy B,CyF1GoH I, E1J5L,. Note that this combination is

also rather robust to the noise factors.
8. DISCUSSION

The paper has presented the use of designed experiments for reliability improvement and
for achieving robust reliability. While the experimental designs are the same ones used for
improving any quality characteristic, it is the analysis of censored lifetime data from these
designs that has provided new challenges. In this context, standard methods need to deal
with estimability problems because of the censoring or require a large amount of computation
because many possible models may be fitted, especially for designs with complex aliasing
patterns. Standard MLE based methods may be used if the censoring is not too severe as

was demonstrated in the drill bit experiment, however. A Bayesian approach (Hamada and
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Table 8: Best Factor Settings for the Drill Bit Experiment

five largest means

std dev

settings mean LTB S/N min mean
A D B CPF G H 11 E J L| value rank | value rank || value rank || value rank
4 2 1 2 1 1 1 2 1 2 2] 8877 1] 1.084 497 | 18.776 2 || 7.122 4
4 2 2 2 1 1 1 2 1 2 2| 8.877 2 || 1.064 469 || 18.781 1] 7.088 7
4 2 1 2 1 2 1 2 1 2 2]8.613 31/ 0.903 205 || 18.552 4 || 7.150 3
4 2 2 2 1 2 1 2 1 2 2] 8.613 4 | 0.681 66 || 18.618 3| 7.116 5
3 2 1 2 1 1 1 2 1 2 21|8.571 51 1.396 1246 || 18.312 10 || 6.128 71

five smallest standard deviations

settings mean std dev LTB S/N min mean
A D B CVF G HTIE J L| value rank || value rank | value rank | value rank
4 2 2 1 2 2 2 1 1 2 11}6.209 2171 ] 0.325 11 15.825 1071 || 5.540 199
4 2 2 1 1 2 2 1 1 2 1|6.517 1629 || 0.325 21 16.249 735 | 5.848 117
4 2 2 1 2 2 1 1 1 2 116.829 1102} 0.325 3|l 16.658 463 || 6.160 66
4 2 2 1 1 2 1 1 1 2 17137 6741 0.325 4| 17.043 271 || 6.468 35
1 2 2 1 1 2 1 1 1 2 1] 5.321 3306 0.418 5 || 14.439 2233 || 4.414 835

five largest LTB S/N ratios

settings mean std dev LTB S/N min mean
A D B CVF G HI E J L| value rank || value rank | value rank || value rank
4 2 2 2 1 1 1 2 1 2 2] 8.877 2 || 1.064 469 || 18.781 1] 7.088 7
4 2 1 2 1 1 1 2 1 2 2] 8.87 1] 1.084 497 || 18.776 2 | 7.122 4
4 2 2 2 1 2 1 2 1 2 2]|8.613 4 | 0.681 66 || 18.618 3| 7.116 5
4 2 1 2 1 2 1 2 1 2 2] 8.613 3| 0.903 205 | 18.552 4 || 7.150 3
4 2 2 2 2 1 1 2 1 2 2] 8.569 8 || 1.064 470 || 18.461 5 || 6.780 17

five largest minimum means

settings mean std dev LTB S/N min mean
A D B CF G H I E J L| value rank || value rank || value rank || value rank
4 2 2 2 1 1 1 1 1 2 2] 8.333 20 || 0.815 120 || 18.299 11 || 7.424 1
4 2 2 1 1 1 1 1 1 2 2|7.945 88 || 0.594 32| 17.934 41 || 7.274 2
4 2 1 2 1 2 1 2 1 2 2|8.613 3/ 0.903 205 || 18.552 4| 7.150 3
4 2 1 2 1 1 1 2 1 2 2| 8.877 1 1.084 497 | 18.776 2| 7.122 4
4. 2 2 2 1 2 1 2 1 2 2] 8.613 4 | 0.681 66 || 18.618 3| 7.116 5
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Wu 1992b) summarized in the paper addresses both drawbacks. Its current implementation
is for the lognormal regression model or for the normal regression model after transforming
the lifetime response. The Bayesian approach could be extended to the Weibull regression
model.

Other types of reliability improvement experiments need to be explored for highly reliable
product where lifetime based experiments discussed in this paper are not feasible. Two
possibilities are the use of acceleration factors to speed-up failures (Nelson 1990 and Meeker
and Escobar 1993) and the collection of degradation data, i.e., monitoring the degradation
of surrogate characteristics for reliability (Lu and Meeker 1993).

There are indications that statistically designed experiments are now being used more
often for improving reliability than in the past. It is hoped that the trend continues with
more experiments for achieving robust reliability being performed. As other types of relia-
bility improvement experiments are considered, new challenges for analyzing them will arise.

Finally, the use of alternate experimental designs needs to be investigated.
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Figure 1: Example Response Functions and Opportunity for Robustness

(a) opportunity for robustness
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(b) no opportunity for robustness
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