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ABSTRACT

Studying the influence of linear factors on the spread of a directional response in industrial
experimentation has not been considered much in the literature. Several dispersion measures are
explored and their relationships described. The circular variance is a good dispersion measure that
transforms the angular dispersion into a statistic measured on a linear scale. Once this
transformation has been performed, established techniques for analysis can be employed for
analyzing factor influences on the directional dispersion. The proposed method is used to analyze

data from an actual experiment involving the balancing of automotive flywheels.
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1 Introduction

Studying factor effects on dispersion and improving quality through variation reduction are
the main ideas in robust parameter design that were popularized by Taguchi (1986). In some
applications, reducing the spread of the data by selecting an optimal combination of factors
is the primary goal of experimentation. In this paper we examine techniques for analysing
the influence of experimental factors on the dispersion of a directional response located on a
unit circle. The issue of control versus noise factors is also explored.

For example in the automotive industry, a number of rotating parts (such as brake ro-
tors, flywheels, crank shafts, and tires) need to be precisely balanced to prevent excessive
vibration. We can measure imperfection in the pért by identifying the direction, which is
disproportionately heavy (or light), and the magnitude of the imbalance. This papers con-
siders analysing the spread of the directional component only. If a combination of factors
could be found that locates all of the imbalances close together, then one of several strategies
can reduce production costs. In some cases, some global corrective action could be taken to
adjust the process to reduce the number of unbalanced parts. In other cases, the parts still
may need to be individually corrected, but the cost of corrections can be lowered simply by
having the imbalances all located in close proximity to one another on the part.

We now present some of the issues that arose from a real industrial experiment at an
automotive production plant involving the balancing of engine flywheels. The response
obtained from each flywheel was a location on the circumference of the part where a corrective
adjustment would be required to balance the part. The process of determining the location
of the imbalance is quite precise and uniquely determines a single point where the corrective
action should be taken. A 2% full-factorial experiment was run with ten observations at
each set of factor combinations. The four factors thought to influence the dispersion of the

imbalance are as follows:

A The location of a buttweld to the flywheel, either Fixed (F) or Random (R). In current

production, the selection of the location for joining these two critical pieces together
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was determined randomly.

B Flywheel radius grade, either Low (L) or High (H). Current levels used the lower grade

flywheel where a larger difference in radius was tolerated.

C Flywheel thickness grade, either (L) or (H). Currently, the low grade thickness was used

with a larger difference in flywheel thickness deemed acceptable.

D Size of Counter-weight attached at 0°, either (L) or (H). The size of the counter-weight

in production was presently at the low level.

In addition, a fifth factor E (ring gear imbalance) which is very difficult and expensive to
control was observed and a number of each of the three levels (L, M, H) were used in each of
the 16 runs. Typically, each of the runs consisted of between 1-3 Low, 5-7 Medium and 1-3
High observations. The data are provided in angular form (measured in degrees) in Table 1.

As a preliminary test of group dispersion differences, Bartlett’s test for homogeneity of
von Mises concentration parameters as described in Stephens (1982) can be used. Further
details of the test are provided in Section 3. The test disregards the structure of the factorial
experiment and considers each combination of factors as a different group. For the flywheel
data, the significance level of this test is approximately 0.0001. Hence, we conclude that
there are real differences between the dispersions of 16 factor combinations. A number of

questions arise from this conclusion, which will be studied in the remainder of the paper.

1. Can the relative importance of the four controllable factors be assessed to determine

how improvements to the process should be approached?

2. Since Factor C is actually expensive to control, can a combination of the other factors

be found that is robust to the different levels of this factor?

3. How can the information about the noise factor, E, be incorporated to give greater

insight into the working of the process?



Table 1: Automotive Flywheel Data

Run|A|{B|C|D Data
1 R|{L|L|L| 13 175 178 178 153 190 221 177 281 190
2 R|L|L|H|139 61 109 187 74 351 309 236 69 320
3 R{L|H|L]J111 122 105 49 189 188 177 151 62 329
4 R|L|H|H|170 162 19 337 171 114 341 10 266 201
5 R|H|L|L| 127 215 125 188 187 175 162 172 169 82
6 R{H|(L | H|150 84 113 318 84 353 301 12 82 351
7 R{H| H|L| 152 164 180 187 159 149 127 148 175 201
8 R|H|H|H| 184 128 177 186 163 178 196 155 150 120
9 F|L|L|L| 154 200 147 133 171 318 100 108 86 73
10 |F|L|L|H|198 165 31 51 314 84 267 135 318 14
11 |F|L|H|L| 345 43 4 295 75 138 149 141 198 175
12 |F|L|H|H| 153 194 207 136 144 206 151 202 104 188
13 ||F|H|L|L|140 134 170 62 109 127 132 116 94 183
14 F{H|L|H]j 340 111 128 327 81 301 3 335 215 334
15 F|H|H|L]| 160 152 187 158 143 91 200 143 84 191
16 |F|H | H | H| 171 156 171 195 159 153 188 125 107 98




Before addressing these experiment-specific questions, a number of more fundamental
issues need to be addressed. Section 2 discusses three dispersion statistics: the circular
variance, the projection of the data onto the maximum eigenvector diameter, and the circular
standard deviation. Their relative strengths are outlined and some distributional results
provided. Section 3 outlines a strategy for modeling the dispersion for a factorial experiment
with replication, and discusses two models with intuitive interpretations often suggested by
the strategy. Finally, Section 4 illustrates the technique by giving a complete analysis of the

flywheel experiment data.

2 Measures of Dispersion

In this section we consider a number of possible dispersion statistics which might be suitable
for studying the spread of the observed directional data. It is desirable that the statistic
be a simple, intuitively pleasing and computationally convenient measure of the spread of
the data, regardless of the shape or distribution of the original data. In addition, it would
be advantageous if the measure has known and manageable distributional properties under
more restrictive assumptions about the original data.

Before considering specific candidates, we begin with a brief review of notation and funda-
mental quantities for directional data. Consider the simplest situation of a single population
of directional data responses located on the circumference of the circle. From this population
we obtain a sample, (61,---,6,). The 6;’s can also be identified as vectors of unit length
starting at the origin and pointing in the direction of their angle, with the usual convention
that 0° points horizontally to the right, with positive angles rotating counter-clockwise. The
vector that corresponds to angle 0; is called u;, and from this vector representation, we can
calculate the resultant vector by summing the vectors. The overall resultant vector, u., of the
sample has length R = (¢* + 32)%, where ¢ = Y, cos §; and s = }; sin 6;. Another quantity of

interest is R = R/n, the standardized length of the resultant vector. The average direction



for the sample, frequently called the mean direction in the literature, is defined to be the

angle of the resultant vector and can be obtained as follows

arctan(s/c), ifc>0,

NJE

, ifc=0and s >0
(1)

=, ifc=0and s <0

7 + arctan(s/c), otherwise.

A common choice for distribution on the circle is the von Mises distribution with mean
direction p and concentration parameter k, denoted VM (u,k). It possesses some of the
desirable properties associated with the normal distribution for traditional data measured

on a linear scale (Mardia, 1972, pp.55-58) and has the probability density:

£(6) = exp{k cos(8 — )},

2 Io(k)

where Io(k) is the modified Bessel function with £ > 0 and 6 € (—=, 7).

One possible candidate for quantifying the dispersion presented by Fisher and Lee (1992)
models the von Mises concentration parameter, k,.a,s a function of a linear combination of
explanatory variables. Frequently, data sets can be reasonably assumed to come from this
distribution. The maximum likelihood estimate of k can be found by solving the equation,
A(k) = R, where A(k) = Ii(k)/Io(k), the quotient of modified Bessel functions. Dobson
(1978) and Best and Fisher (1981) suggest a number of improvements to this estimate to
reduce, but not eliminate, the bias and instability of this estimate. However, the estimate
of the concentration parameter, l;:, is too dependent on distributional assumptions. For data
that do not follow the von Mises distribution (i.e. heavy-tailed or asymmetric), this quantity
does not have a sensible interpretation. In contrast to the variance for traditional linear data,
k cannot be used to describe a general characteristic of the data without making the von
Mises assumption. Therefore, a more robust general summary is sought. Alternate statistics

are considered in the following subsections.



2.1 Circular Variance

The circular variance, So = 1 — R, is a common dispersion statistic used to quantify the
variability of a sample of directional data. It ranges in value from zero to one. A value of
zero corresponds to no variation in the data, while So = 1 means that the data is uniformly
distributed on the circumference of the circle. It follows the usual convention that a small
value for the variance means that the data is concentrated near the average, but unlike the
variance obtained for linear data, it has a finite maximum.

Calculation of R, and hence the variance, is straightforward and well-defined for all data
sets. Rivest (1982) noted that for highly concentrated samples the circular variance properly
normalized has approximately the same distribution as the linear variance of the angles
measured on a (0,27) scale. Various authors, including Watson and Williams (1956), have
studied the distributional properties of nSy = n — R for a sample of n observations from
a von Mises distribution. Mardia (1972, p. 113) summarizes results about the expectation
and variance of So under the von Mises assumption, while Watson and Williams (1956) show
that 2k(n — R) = 2nk(1 — R) ~ x2_, for data from a concentrated von Mises distribution.

To improve these approximations for small concentrations and small sample sizes which
are often typical of industrial data sets, the method of matching the first two moments of
the circular variance is used. Using this method, we assume that y(1 — R) ~ X}, for some 7,
f to be determined by the moments. Solving the two equations obtained by equating means

and variances,

[i-a-5] =1 (2)

and

1 1 1
ARt S _
7 [n(l 4 nkA 4n2k2] 2f (3)

gives the following solutions for the multiplicative coefficient, 7, and the estimated degrees

of freedom, f,
2nk(l—A)—1
TT kI - A —A— L | )

4nk
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Figure 1: Ratio of Estimated Coeflicient and 2nk

and

f=7[1—A—ﬁ] ; (5)
where A = A(k).

To verify that these expressions approach the %ralues predicted by Watson and Williams
(1956), we substitute in the Taylor expansion of A(k) ~ 1—1/2k—1/8k? for k large (Mardia

1972, p.63) to obtain

Nzk{(n—1)+ﬁ}~)2

v R T nk (6)
2n
and
1\ 1+ +a '
frf{m-n+ )T B -y (™)
k] 1- L

as anticipated when n — oo and k — co. Figures 1 and 2 illustrate the difference in values
of the coefficient and degree of freedom using the asymptotic and (v, f) estimates. The plots
show the ratio of the two estimates and highlight the differences for small concentrations and
small samples. However, if k is moderate (i.e. k > 2) and the sample size, n, is at least 10,

then the difference between the estimated and asymptotic values will be small. Therefore,
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Figure 2: Ratio of Estimated Degrees of Freedom and n — 1

for von Mises data, the distribution of the circular variance can be well approximated by a
chi-squared random variable with some adjustment to the degrees of freedom and the multi-
plicative constant. Empirically, quantile-quantile plots of 1000 simulated observations each
from a von Mises distribution with a variety of sample sizes (n=>5 to 100) and concentration
parameters (k € (2,16)) show that the approximation to a chi-squared distribution is good
for a wide range of these values (Anderson, 1993).

The circular variance will be a good dispersion statistic for a large number of distributions.
It is a simple and intuitively pleasing measure of dispersion, and is robust to outliers and
distributional shape (see Anderson, 1993). In addition it has manageable distributional
properties for data originating from a von Mises distribution. Hence, the circular variance

or its monotonic transformation satisfies the criteria established earlier.

2.2 Projection onto the Maximum Eigenvector Diameter

Consider data located on the circle as a bivariate data set, (z;,y;) = (cos 6;,sin 6;) with the

obvious restriction that 2 +y? = 1. From this representation the 2 x 2 matrix (z,y)(z,y)
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can be determined, along with its two eigenvalues and corresponding eigenvectors. The
eigenvector which corresponds to the maximum eigenvalue defines a diameter through the
circle. For example, if the eigenvector is (z*,y*), then the diameter is defined to run from
(z*,y*) to (—z*, —y*). The rationale for examining the eigenvector defined by the maximum
eigenvalue is that this direction is frequently used as a measure of direction in multivariate
analyses, and hence by projecting data onto it, we obtain a linear measure of spread from
the centre of the data. For a unimodal symmetric directional distribution, this corresponds
to the skewed cross-section along the axis of symmetry.

The projection of the original data onto this diameter can be obtained by multiplying
c¢i = (z:,9:)T(z*,y*), to obtain a univariate value on the interval (—1,1). A useful convention
is to adjust the sign of the eigenvector to give a projection close to 1, not —1. From this
projection, we define the contribution to the statistic of each individual observation to be
6; = (1 — ¢;)/2, where é; =~ 0 corresponds to an observation near the centre of the data,
and §; ~ 1 denotes an observation opposite to the centre of the data. Hence, the dispersion
statistic is _; §;, the sum of the individual contributions.

An interesting connection between this new measure and the circular variance exists. If
the angular average of the data and the direction defined by the maximum eigenvalue are
the same, then 2§; is equivalent to 1 — cos(6; —6.), which is the contribution of an observation
to the circular variance sum of squares. Therefore these two entirely different approaches
to dispersion analysis yield the same statistic, if the same choice of the location is used.
Hence an alternate interpretation of the circular variance is to think of each observation’s
contribution to the overall circular variance as a function of its projection onto the diameter
defined by the circular average.

Simulation results for a comparison of the direction of the eigenvector for the maximum
eigenvalue with the circular average direction show that there is more variation in the new
estimate of the centre of the data. If the concentration of the data is small, then the

circular average has much less variability. Table 2 summarizes the results from 1000 data
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Table 2: Comparison of Eigenvector and Circular Average Approaches

Variance Variance Ratio | Correlation

n | k || Eigenvector Centre | Circular Average | Eigen to Average
2| .348 .0806 4.29 311
4 || .0369 .0282 1.31 877
10 | 8| .0145 .0142 1.02 987
16 || .00541 .00539 1.00 .997
2 .101 .0390 2.58 .622
4 || .0167 .0140 1.19 .909
20 | 8 .00689 .00650 1.06 .985
16 || .00330 .00329 1.00 997

sets each with 20 observations from a von Mises distribution (generated using the algorithm
suggested by Best and Fisher, 1979) with population mean zero and a variety of concentration
parameters. The fifth column, considers the ratio of the variances of the eigenvector mean
and the circular average. This column highlights the increased variability in the eigenvector
method.

The circular variance is a preferred measure because it is simple, has less variability then

the eigenvector method and has a rich literature on its distributional properties.

2.3 Circular Standard Deviation

The circular standard deviation is another alternate statistic to the circular variance. Unlike
the linear case where the standard deviation is simply the square root of the variance, for
directional data, the form of this new statistic is so = {—2log (1 — So)}%, where S; is the
circular variance. Hence it can be simplified to {—2log(R)}>.

The circular standard deviation is a non-negative statistic ranging from zero for no dis-
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persion in the data, to infinity for the data uniformly distributed around the circle. Less is
known about the distributional properties of this statistic than the circular variance when
the data comes from a von Mises distribution. Mardia (1972, p. 24) commented that the
circular variance is “more useful than s, for theoretical investigations.”

To estimate the distribution of sy we exploit its relationship to the circular variance.

Using Taylor series expansions, we obtain
o /250 {14 350+ oo (S0 + 5 (S0f ), (8)
where Sy = 1 — R is assumed to be small. This supports the conclusion drawn in Mardia
(1972, p. 24) that for small values of Sy, the circular standard deviation reduces to a multiple
of the square root of the variance. However, for data from a von Mises distribution with
moderate concentration parameters (say k € (1,20)), the additional terms of the expansion
will not be negligible and will influence the shape of the distribution. Quantile—quantile plots
of 1000 simulated circular standard deviation values for data from von Mises distributions
with sample sizes ranging from 5 to 100, and concentration parameter k € (2,16) show that
the distribution of the circular standard deviation is quite nearly normal for a variety of
sample sizes and dispersions. See Anderson (1993).
Therefore, the circular standard deviation and the circular variance are two strong choices
for a dispersion modeling, both satisfying the criteria established earlier in this section. It
will subsequently be convenient to utilize the connection between them, namely so =~ /25,

for concentrated data.

3 Dispersion Modeling

Analogous to the study of dispersion effects for traditional linear data as described by Nair
and Pregibon (1988) and Box (1988), this section describes a method for determining the
effects of factor levels on the spread of directional data. Factors can often be broken into

two categories. Control factors are those which are relatively easy to adjust (or control).
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Noise factors, on the other hand are expensive or impractical to control in production, but
can be controlled during experimentation. Desensitizing the process to noise variation is the
objective of robust design.

Two common choices of general designs are available. The first involves genuine replicates
for the observations at each factor combination, while the second involves sampling across a
variety of noise factor levels to determine what levels of control factors are robust to changes
in the noise factors. If the data is of the first fofm, then our dispersion measures within
each cell gives an indication of the short term variation in the system, but may not give an
accurate assessment of variation over the total range of production conditions. The second
approach strives to simulate a range of possible operating conditions by changing the levels of
some factors which are known to be variable but are typically hard to control in production.
This approach gives a more realistic assessment of long term variability in the process, and
allows the experimenter to gain information about what combinations of the control factors
might reduce this variability. Both approaches can be incorporated within the dispersion
modeling framework that we now describe.

First, we determine if there appear to be any significant differences between the estimates
of dispersion for the groups. Stephens (1982) describes Bartlett’s test for the homogeneity
of concentration parameters from von Mises data. For each of the groups in a 2" factorial
design, define Q; = mS; and ¢ = m — 1 where [ ranges from 1 to 2" for the different groups
and S; is the circular variance of group . We also define T'= Y, Q; and ¢t = }7; ¢;. The test

statistic for testing if a difference between groups exists is Z/C, where

Z =tlogT — E(ql log Q) —tlogt + Z(QI log q1) (9)
1 1

and

1 1 1
C=147"— ——==1, 10

w0 (Ta 1) 1o
where s is the number of groups.

The test statistic, Z/C, is approximately chi-squared with (s — 1) degrees of freedom

under the null hypothesis of no difference between groups. Therefore, for a test of size 1 — a,
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we would reject that hypothesis if
9 Z
P> 2) <. (1)

However, it is important to note that Bartlett’s test is sensitive to assumptions of nor-
mality, which in this case corresponds to the data originating from a von Mises distribution.
Therefore, this test should be viewed primarily as a diagnostic method for determining if
large differences exist between groups. If there is no evidence against the hypothesis that
the variance estimates are constant, then the remaining analysis will likely not be beneficial.
However, if differences between group dispersions are noted, as in the flywheel example, we
proceed with further analyses.

Using the circular variance as our starting point for choice of a dispersion measure, we
obtain the resultant length for each combination of factors in the experiment and calculate
the circular variance. A suitable transformation of the data is sought using the one parameter

Box-Cox power transformation family of the form:
(1-R}=XT+e¢ (12)

where ) is the transformation power (if A = 0, then the natural logarithm is used). X
is the design matrix (comprised of —1’s and 1’s for a two-level factorial design), T is the
vector of parameters, and ¢ ~ MV N(0,0%1,) is the vector of error terms. Because we
are using a dispersion statistic measured on a linear scale, the model has the same form
as dispersion analyses for traditional linear data and the error term can be assumed to be
normal, rather than from a directional distribution. This transformation to a linear scale is
essential, because we have little intuitive feel for directional dispersion measures, and we are
able to use the existing methods for a linear response. |
The Box-Cox (1964) approach to data transformations strives to balance three separate
goals: simplicity of structure, variance homogeneity, and nofmality. As in our example,

some simplifying assumptions about the model may be required to have some degrees of
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freedom available for estimating an error term. For example, just the main effects and two-
factor interaction terms can be considered for the initial choice of transformation. Once an
optimal transformation has been identified, we can examine the full model and determine
the relative importance of the different factors and their interactions. Because the circular
variances can be reasonably approximated by a chi-squared distribution in many cases and
Hawkins and Wixley (1986) showed that the optimal choice of a chi-squared variable is near
A=t

addition, A = 0 and A = % are often contained in the 95% confidence interval of the Box-Cox

the suggested power transformation parameter will frequently lie in A € (—1,1). In

procedure.
We obtain a model with multiplicative effects and errors on the circular variance for

situations where A = 0 and the model takes the form log(1 — R) = X T +¢. For example for

a two-way design we obtain
log(1 — Rijx) = 00 + Ai + B; + ABj; + €ij. (13)

This can be interpreted as the circular variance being influenced by the factors in the fol-
lowing way

(1 — Rijp) = e et eBi eABii gouin

= o, A} B; AB}; €7, (14)

g

where oy is the baseline measure of variability of the data, and A}, B}, and AB]; are the main
and interaction effects of the factors, respectively. To interpret the factor effects, if A; > 0,
and hence AY > 1, then level ¢ of factor A increases the circular variance. Conversely,
if A; < 0, then level 7 of the factor reduces the variance. Because the range of Sy is
restricted to the range 1 — R € [0, 1], we have an additional concern for this modeling which
is not present for traditional linear data where the variance does not have a finite upper
bound. For directional data, log(1 — R) € (—oo0,0] which means that the linear combination
of factor effects must also be restricted to lie in this range. For a general linear model,

there is no convenient way to adjust the range of the XT to accommodate this restriction,
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since extrapolation into some regions of the design space could lead to an expected value of
log(1 — R) which might be positive and hence lie outside of the interpretable range of values.
McCullagh & Nelder (1989) comment that a transformation is less desirable if the possibility
exists of ob‘taining a value for XT outside of defined boundaries. However, the boundary
of the range corresponds to an unlikely extreme of the data being uniformly distributed
around the circle. For several industrial examples considered by the authors, the common
range for the resultant vector length is (.45,.95), which corresponds roughly to the von
Mises concentrations parameter, k € (1,20). and circular variances of (.05,.55). This yields
a log(So) range of (—3.0,—0.6) which is a reasonable distance away from the problem area
near zero. If there is a noticeable gap between the edge of the projected region and zero
relative to the expected spread of the data, we would not expect obtaining estimates of
log(So) outside of the acceptable range to be a major problem when prediction of variance
effect is restricted to the usual interpolation between the high and low levels of the factors. In
addition, if we are doing a dispersion analysis with the goal of variance reduction, then this
problem area lies at the opposite extreme to our desired target region of minimal variance.
As 1 — R decreases, log(1 — R) — —oo which is in a stable area away from the boundary.
In this region we can expect the variance estimates for different factor combinations to be
well-defined.

Alternately if A = %, then we might choose to model the circular standard deviation,
instead of the square root of the circular variance. As demonstrated in the previous section,
if the spread of the data is small, the two are nearly proportional. The advantage of this
choice is that it can be much more easily interpreted as it yields an additive model with an
additive error,

so=XT+e. (15)
Again illustrating with the same two-way design, we obtain the following model:
Sijk = 00 + Ai + Bj + ABij + €k (16)

where 0y is the baseline estimate of the circular standard deviation of the data, and A;, B;,
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and AB;; are the main and interaction effects of the factors, respectively. Once again, A; < 0
corresponds to level ¢ of factor A reducing the spread of the data.

In different industrial applications, one of the models described above may agreeur more
closely with the physical understanding of the process, and hence be preferable.

After a suitable transformation has been selected, a half normal plot of the factor effects
can provide insights into the relative influence of different factors. Factors influencing the
directional dispersion can then be identified and further examined to suggest a suitable
combination of factor levels to attain the minimum variability.

Therefore, a strategy for analyzing dispersion from a factorial experiment involving direc-
tional data had been outlined. We now address a further approach to analysing the robust-
ness of the process to changing noise factor levels. For linear data, it is well-established that
in many situations the use of robust design can give an overall reduction in response variabil-
ity without having to control the levels of noise factors. Two major approaches are taken to
study possible exploitable relationships between control and noise factors (Shoemaker, Tsui

& Wu, 1991):

1. Loss modeling involves studying a measure of the dispersion directly as a function of

control and noise effects to determine an optimal setting for control factors levels.

2. Examining the response directly can provide insights into specific relationships between

control and noise factors.

For directional data, no location model for exploring the factor effects of a factorial design
currently exists (see Anderson, 1993 for an explanation of the difficulties associated with such
a model). However, the two methods for examining the dispersion effects can be extended
to the circular data situation, even in the absence of a working model.

The first method has already been described, but we now clarify how the control and noise
factor are directly incorporated. If we have control factors, C, and noise factors, IV, we can

choose an orthogonal array with factor effects of interest for the control factors (called CA, for

18



control array) and a similar array for the noise factors (NA). Subsequently, the noise array is
run for each row of the control array, to give the product array. Ideally, it would be desirable
to have replicates at each combination of factors. Once the standardized length of the
resultant vector and hence the circular variance are calculated for each combination, analysis
of control, noise and control-by-noise factor effects could Be studied directly. However, in
practice this replication may not be feasible if the cost of multiple runs is prohibitive.

H only one observation is available from each combination of the product array, then
the standardized length of the resultant vector for all observations at a given control factor
setting is calculated and an overall estimate of the circular variance is obtained across all
noise level settings. In this way, a measure is taken of how the variation of the process behaves
under a wide variety of noise conditions. Once the circular variances have been obtained for
each of the combinations of the CA, we model the dispersions using the procedure outlined
earlier. For this model we attempt to minimize the spread of the data across the range of
the noise array.

The second approach parallels the examination of control-by-noise interactions for linear
data, but because of the absence of a model a quantitative assessment of control-by-noise
interactions using the response-model approach is not possible. However, qualitative com-
parison of different relationships between control and noise factors can give insight into these
relationships and suggest dispersion reduction strategies. The key to these qualitative meth-
ods is a directional data inferact_ion plot (see Figure 6 for an example and Anderson (1994)
for details). The four radial lines mark the circular averages of the factor combinations being
considered. The circumscribed arcs show the change in response values across one of the
factor’s levels while the other factor is held fixed. As Shoemaker, Tsui & Wu (1991) noted,
the absolute magnitude of the control-by-noise interaction is not of primary interest, but
rather the existence of a control factor combination which gives responses robust to changes
in the noise factor levels.

Recall for the linear case, real interest lies not in the particular slopes of the interaction
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lines, but rather with the overall width of the band that encompassed all noise combinations
for a given set of control factor levels. In this way, we can obtain a graphical qualitative
analysis of the range of data over the set of noise levels considered. Because of the lack of
an underlying model for the directional response from a multi-way design, the loss model
approach is superior. It gives a quantitative assessment of which control factor combinations
are best for minimizing the spread of the data over the range of noise factor levels. However,
analyzing dispersion through a single statistic, like the circular variance or the circular
standard deviation, can sometimes disguise interesting attributes in the data. The graphical
presentation of control-by-noise interactions can complement the more formal quantitative

methods obtained by modeling a function of the dispersion directly.

4 Automotive Example

- In this section we consider a complete analysis of the flywheel data, and illustrate the previ-
ously described techniques. Because of the strong evidence obtained by applying Bartlett’s
test (here Z/C = 44 with significance level 0.0001, see Section 1), we proceed with the dis-
persion analysis. First, the standardized resultant length, R, (see Table 3) for each of the
factor combinations is obtained, and the circular variance calculated.

The full model to be fitted to the data follows equation (12) where X is the design matrix
with a column for the overall mean plus 15 orthogonal columns, one for each main and
interaction effects. To implement the Box-Cox procedure, we must make a few simplifying
assumptions about the model. If we assume the full model with the effects, there are no
degrees of freedom available for an error estimate and the model (1 — R)* = XT + ¢ for
any value of A will fit the data perfectly. If we eliminate only the four-way interaction, that
gives only one degree of freedom for error, and we have most likely overfit the data with too
complicated a model. Therefore, to carry out the method we consider two possible design

matrices: (i) only the four main effects, and (i) the four main effects and their 6 two-way
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Table 3: Flywheel Dispersion Summaries by Group

Group R So | log(So) | o
1 0.812 | 0.188 | -1.672 | 0.645
2 0.203 | 0.797 | -0.228 | 1.783
3 0.510 | 0.490 | -0.713 | 1.161
4 0.054 | 0.946 | -0.055 | 2.418
5 0.815 | 0.185 | -1.687 | 0.640
6 0.434 | 0.566 | -0.568 | 1.293
7 0.936 | 0.064 .-2.752 | 0.363
8 0.915 | 0.085 | -2.460 | 0.423
9 0.604 | 0.396 | -0.925 | 1.005
10 0.154 | 0.846 | -0.168 | 1.933
11 0.234 | 0.766 | -0.267 | 1.703
12 0.836 | 0.164 | -1.806 | 0.599
13 0.845 | 0.155 | -1.863 | 0.581
14 0.349 | 0.651 | -0.429 | 1.452
15 0.809 | 0.191 | -1.653 | 0.652
16 0.861 | 0.139 | -1.972 | 0.547
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Figure 3: Box-Cox Maximum Likelihood Estimate of Lambda

interactions terms.

Figure 3 shows the plot of two Box-Cox transformation analyses for the flywheel data
assuming the models (i) and (ii). For (i), the maximum value for the likelihood occurs for
A = 0.09 with the 95% confidence intervals covering the range (—0.56,0.83). For (ii), the
maximum value occurs at A = 0.32 and the 95% confidence intervals includes (—0.28,0.95).
Hence the choice of either the circular standard deviation model or the log transform remain
good options as both lie well within the confidence intervals for acceptable values for A and
have good interpretations. The difference between the two curves for any given A gives
the improvement in the likelihood function by extending the model to include the two-way
interactions. The final two columns of Table 3 contains the log circular variance and circular
standard deviation values. The current levels of production correspond to group 1, with a

resultant length for the group of size 0.812. This corresponds to a group with the seventh
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smallest dispersion of the 16 groups, so there is some promise for improvement by selecting
a better set of factor combinations.

With the set of transformations selected, we revert to the full model with all main effects
and interactions included. When the log of the circular variance (Log(So)) and the standard
deviation (so) are modeled separately against the 15 effects we obtain the analysis of variance
tables summarized in Table 4. From Figures 4 and 5, which give the half-normal plots for
the factor effects for the i:espective analyses, we see that there is considerable overlap in the
dominant factors identified according to the two models. For both transformations, factor
“B” is the most influential effect, with the two-way interaction “CD” also contributing
significantly. Assuming that a hierarchical model is suitable, we would include the main
effects “B”, “C” and “D”, with the two-way interactions “CD” and “BC”. For the log
variance, these are the five largest effects, while for the circular standard deviation model,
they comprise the four largest effects, with “C” added to maintain the hierarchical structure.
Since the multiplicative model for the variance is more easily interpreted for this particular
data set, and the factors identified are consistent for the two models, the determination of
the best factor combinations here is based on study of the log transformation. Hence the

final model is
log(l — R) =09+ B; + Cj + Dy + (BC)tJ + (CD)Jk + €ijkl- (17)

The optimal choice is high-high-high for “BCD”, which yields a mean for log circular variance
of —2.218. If these levels of the factors are selected, we would expect the circular variance
to be near 0.1, from a resultant length of 0.891. Alternately, if the present production levels
are used the resultant length is 0.812. By changing from the current production levels to the
new set of factor combinations, we would be able to reduce variation from 0.188 to 0.109,
a 42% reduction. The estimates of variability obtained here are based on knowledge that
 noise factor “E” has been allowed to vary across its usual range of values within each group.
Hence this assessment of the dispersion will likely be more indicative of the true variability

than if “E” had not been incorporated. Therefore, a substantial savings can be realized by
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Table 4: Dispersion Analysis

Log(So) So
Source || Sum of Squares | Rank || Sum of Squares | Rank
A 0.069 (12) | 0.004 (14)
B 3.563 (1) | 1.909 (1)
C 1.071 (4) 0.337 (8)
D 0.924 (5) 0.706 (3)
AB 0.263 (10) | 0.114 (10)
AC 0.015 (15) | 0.057 (12)
AD 0.632 (7) 0.380 (5)
BC 1.123 (3) | 0.524 (4)
BD 0.091 (11) || 0.001 (15)
CD 2.004 (2) | 1.029 (2)
ABC 0.872 (6) 0.355 (6)
ABD 0.418 (8) 0.343 (7
ACD | 0.371 (9) 0.299 (9)
BCD | 0.016 (14) || 0.011 (13)
ABCD || 0.021 (13) || 0.080 (11)
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Figure 4: Half-Normal Plot of Effects from Log(So) Model
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Figure 5: Half-Normal Plot of Effects from so Model
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Figure 6: Circular Interaction Plot of “CD”

studying the dispersion effects from this factorial experiment.

We return now to the questions raised in Section 1. By using the dispersion modeling
approach outlined here, the relative influence of the factors can be assessed. Factor “B” is
the most influential in affecting the dispersion of the response.

Given that factor “C” is expensive to control, we can also treat it as a noise factor and
plot some of the control-by-noise interactions and see if it may be possible to exploit one of
them. The “CD” interaction is shown in Figure 6. Recall, the goal of examining this plot is

to identify if one level of the control factor (here “D”) gives a smaller range of values across
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the noise factor (here “C”). Clearly, the range of the low level of factor “D” gives a much
smaller range of responses and hence would be preferable if it were too expensive to control
the level of “C” in production.

This illustrates why both loss modelling and the control-by-noise interaction plots are
usefully applied to the same data, since one may provide insights not revealed by the other.
In this case, different results are obtained if “C” will be controlled in production or not.
Hence, while the overall optimal combination of factor for “BCD” is high-high-high, if factor
“C” is not controlled in production, then “D” at the low level is a superior choice. As can be
seen from Table 3, all four circular variance estimates for “BD” at the high-low combination
(rows 5, 7, 13 and 15) are consistently small.

This example demonstrate the methods described and also gives some practical illustra-

tions of the insights that may be gained about the process through this type of analysis.
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