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Abstract

A major cause of disappointing results and a corresponding decline in interest in the use of
designed experiments is the lack of expert initial planning. In addition to the careful choice of
factors and levels, three essential components of a well planned (designed) experiment are the
techniques of blocking, replication and randomization. The impact of these techniques in
improving both the effectiveness and efficiency of planned experiments is illustrated using a case

study on the closing effort of the hatch of a car.
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Introduction

Having been involved in the teaching and application of statistical experimental design
for over 25 years, I was very pleased, during the '80's, to see the growth in interest in the
application of this highly efficient methodology to the solution of industrial problems. I am now

very concerned to see a corresponding decline in interest over the past few years.

There are several reasons for this waning enthusiasm. Firstly, as with the earlier
enthusiasm for control charts, a lot of people jumped on the "DOE" bandwagon, naively thinking
(or having been told) that this "new" technique would solve all their problems. Needless to say
it did not. In fact, strict adherence to standard operating procedure and straightforward analysis
based on the stratification of data by shift, machine, palette, raw material lot, filler head, cavity

and so on will solve a large number of the problems that plague industry.

Even when there is the potential for the solution of a problem by use of a well designed
experiment, the method has often failed or lead people in the wrong direction. Why is this? One
reason is that people undertake to do a "DOE" or a "Design of Experiment” without thinking
about the actual meaning of the words they are using, especially the critical word "design". This
word reflects the importance of careful up-front planning in the experimental process; too often
this critical stage is given far too little attention. For example, critical decisions on what factors
should be included in the experiment, what levels should be used and whether the levels of one
factor (say line speed in a continuous heat soak operation) should depend on another (say
temperature level) are often given far too little attention. These decisions can only be made by
a carefully selected team with experience in operations, engineering, and statistics. Further

discussion of these aspects of experimental planning can be found in Young (1989).

This case study.illustrates the use of blocking, replication and randomization, three critical
components of well-designed experiments that are often missing or glossed over in the usual
industrial short courses on experimental design. In fact, apart from some rather mechanical
instruction on the use of orthogonal arrays or their equivalent, many such courses are mainly

concerned with experimental analysis rather than design. This is very unfortunate since, if factors



and levels are well chosen, careful blocking, replication and randomization will almost always
greatly improve the precision of any experiment as well as guarantee the validity or accuracy of
the corresponding conclusions. These techniques will be illustrated in the following case study

from a car assembly plant.

The Problem

During the initial production of the hatch-back version of a new design of a car, the effort
needed to close the hatch was unstable; although the required closing effort was often perfectly

acceptable, it was often excessive.

Although there were many possible explanations for the problem, there was a strong
desire to investigate the influence on process stability of a component of the hatch gasket called
the stuffer. In particular there was concern that variation relative to nominal length, firmness and
location might cause problems. Since there were no scientifically determined specification limits
for these factors, levels were chosen at the high and low end of the observed variation. Thus, in
addition to determining the influence on closing effort of these three factors, another goal of the

experiment was to determine acceptable specifications.

Experimental Planning Considerations: The Need for Precision and Accuracy

In order to keep the required number of observations down, a two-level factorial
experiment was chosen. This entailed running all eight combinations of the three factors as
indicated in Table 1. For each factor, the negative sign represents a stuffer at the low end of

normal variation in placement, thickness or firmness and the -plus sign the high end.



Table 1: The basic design.
Note that the traditional method of "+" and "-" signs has been used
to denote the high and low levels of the factors. The numbers 1 and 2
could have been used just as well.

Factor
Run Length (L) Position (P) Firmness (F)
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

The eight desired treatment combinations were obtained by sorting stuffers as they came

in from the supplier.

Although this design is very efficient in that it provides estimates of the three main effects
and the three two-factor interactions, in its unreplicated form there is no effective measure of
error. The three-factor interaction can usually be safely assumed to be negligible and used but,
since it provides only one degree of freedom of information on error, it is not very sensitive to
detecting anything but very large effects. The alternative of using a probability plot (Box, Hunter
and Hunter, 1978, Section 10.9) to determine the significant effects is unreliable in view of the
considerable variation found in such plots for only seven points (Daniel and Woods, 1980,
Appendix 3a). Even if there were an effective error term, small experiments will usually result

in poor precision.

In order to be significant at approximately the five percent level, an effect must be
roughly two standard errors in magnitude. Thus the standard error (SE) is an excellent indicator

of the precision of an experiment (Cox, 1958, Section 8.2). The general formula for the SE for



comparing two means is

- - 1 1
SE(y1_y2):s —_—t — [1]
noon
where
s is the experimental error. In a simple experiment this can be approximated by the
overall process standard deviation.
n; is the number of independent runs in the experiment at the i* level of a given
factor (the number of observations in y,).
¥; is the mean of all n; observations at the i* level of the factor.

In an eight-run experiment with all factors at two levels (n,=n,=4)

- - s
SE (yH,y. ~ Yiow) = ‘\/‘_2‘

If the experiment is spread over a period of time that is representative of normal operating
conditions, and this is absolutely necessary if the conclusions are to be accurate, s will usually

be large and the resulting precision poor. In fact, a large s is often the primary reason for

experimenting.

In planning the hatch experiment, the original idea was to make each of the eight runs on
a different car and then replicate until the desired precision was achieved. The model for such

an experiment is

Yigg = *+ L4y () + o+ (D + @y + (PN + By 2]



where
Yir, is the observed force on the car ijkq. (i, j, k = 1, 2 and q = 1,...Q, the number of

runs (replicates) at each of the eight experimental conditions).
m is the overall mean.
I, p; and f; are the length, position and firmness main effects respectively.
(Ip);, (If)s etc. are the corresponding interaction effects.
0, is the experimental error term with distribution N(0, &?).
c is the car-to-car standard deviation for the process.

Knowledge of the overall process standard deviation can be used as a rough estimate of
©. This can then be inserted in the formula for the SE to determine the size of experiment that
will result in the required precision. In this case, since the engineers wanted to be fairly certain
of estimating effects to within approximately plus or minus one unit, they decided to try for a
SE of 0.5 (to ensure that an estimated effect of 1 unit would be significant at about the 5%
level). Substituting this value in equation 1, using the current process value of s = 4.61 for car-

to-car variation, and solving for n ='n, = n, results in n = 170. Clearly this is far too large.

It must be noted that it is not valid to increase »; by taking several repeat observations
during a single run of an experiment. An eight-run experiment can provide only eight
independent observations with the result that n; = 4 for comparing means. For instance, setting
up a car with a stuffer with a specific firmness, length and location and then taking five
observations of closing effort provides one independent observation (the mean of the five
observations) not five. Similarly, several observaﬁons on a single part or several parts in a row
during a single run of a process provides only one independent observation for analysis purposes.

It may, of course, be of interest to include the variation among such observations as another



experimental response variable. Further discussion of independence can be found in Cox (1958,

Chapter 1).

A much better design is to block the experiment such that a whole set of eight runs is
carried out on one car. This results in very high precision since car-to-car variation now enters

as a term (b,) in the statistical model as follows:

Yig =M + L+ p; + (Ip); *fio t UDu + @y + PNy + b, + €, [3]

where

b is the block (car) effect (¢ = 1, ... Q, the number of cars).
€, is the new error term (€, ~ N(0, 8?) where & is the within car standard).

Since the b, term pulls car-to-car variation out of the error term in equation 2, blocking
leads to a considerable reduction in experimental error. The within-car variation s = .879
currently observed in the process can now be used in equation 1 to determine sample size.
Substituting this value and solving for SE = .5 results in n = 6.2. This means that two sets of

eight runs should give the desired level of precision.

~ The drawback is that two cars cannot be regarded as particularly representative of
production. This drawback was overcome to some extent by using the signs ("levels") of the three
factor interaction LPF to set up blocks of size four (see Table 2). Thus all runs with "-" signs
in the LPF interaction were run on one day by one operator on the first car, those with "+" signs
by another operator on a second day on car two, with cars three and four used in a similar
manner for the last two blocks. Note that all runs on a given car (block) were carried out in a
single day by one operator.-This-was done because the more non-experimental factors held

constant within a block the higher the resulting precision.

The model for the revised experiment remains essentially the same as shown in [3] except

that the (Ipf);; term is dropped and g=1, 2, 3, 4 corresponding to the car the observation was



collected from. Note that not all combinations i, j, k, ¢ are included in this design.

The benefits of blocking are substantial:

1.

Blocking results in the desired precision with far fewer observations (16 instead

of 340).

The relatively small blocks used enable the inclusion of four cars in the
experiment. This provides replication (representivity) and hence improves the

accuracy or reliability of the conclusions.

Since only four runs had to be performed per day, the experiment was much less
intrusive on the operator's time. He thus had time to carry out his normal duties
with relatively little pressure. In other situations, the relatively low number of runs
per day means more time to reach steady state and more time to ensure that the
experimental runs are carried out exactly as intended. This is especially important

with hard-to-change variables such as temperatures and viscosities.

If there is a problem with the execution of the runs in any block, they can be run
over again using another car on another day. Since any systematic difference
between the two days is removed by the block effect, this will not introduce any

bias into the experiment.

If, after the analysis of the experiment is carried out, the results look promising

but not definitive, two more blocks of four can be added in order to increase

precision (t0 SE (3,5, - ¥,,,) = //6).

Since most processes are relatively stable in the short term (within a block), a
blocked experiment not only results in relatively high precision for estimating the
effects of the factors of interest, but also in an estimate of the degree of instability

due to non-experimental factors (those factors that vary from block to block).



7. Since four separate runs can be carried out on a car fairly quickly, final shipment

to the customer of that car was never held up more than part of a day.

The final component of the design is the randomization of the order of the four runs in

each block. This provides insurance against systematic bias creeping in and leading to incorrect

conclusions.
Table 2: The experimental layout in blocks with the resulting
hatch closing efforts and the randomized run order in brackets.
Run Number Effects Closing Effort (CE) Treatment
(Table 1) L P LP F LF PF LPF Experimental Results Means
Block 1 Block 3
1 - - + - + + - 7.0 (2) 7.0 4) 7.0
4 + + + - - - - 704 15Q2) 725
6 + - - + + - - 6.5 (1) 7.0 (3) 6.75
7 - + - + - + - 7.0 (3) 4.5 (1) 5.75
Block 2 Block 4
) + - ; ; - + + 50(1) 140 @) 9.5
3 " + - - + - + 503) 110 (2 8.0
5 - - + + - - + 352 130D 8.25
8 + + + + + + + 4.5 4) 13.5 (3) 9.0
est. effects*  .875 -.375 375 -.500 0 250 ok

* Average difference between the means at the high and low levels of each factor
** Not meaningful since it is the difference between the averages of cars 1 & 3 and cars 2 & 4

The final experimental plan is presented in Table 2 with the resulting closing efforts and
run order indicated in brackets beside the data. The observed range of data (3.5 to 14) was felt
to be quite typical of the process. This is very reassuring as far as the representivity of the

experiment is concerned.

In Table 2 the runs listed in Table 1 are rearranged to facilitate identification of the blocks
(cars). Note that the three-factor interaction LPF corresponds to differences between cars. Since
every one of the other six effects has two observations at each of the high and low levels in each
block, these six effects are orthogonal to cars (balanced within cars) and will be unaffected by

car-to-car variation.



The Analysis

The analysis of variance (ANOVA) for the closing effort (CE) data in Table 2 is given

in Table 3. The format is typical of most standard statistical analysis programs.

Table 3: Analysis of variance of the closing effort
data from Table 2.

Source DF Sum of Squares Mean Square F Value Pr>F
Model 9 162.000 18.000 15.57 0.0017
Error 6 6.938 1.156
Corrected Total 15 168.938
R-Square Root MSE
0.959 1.075
Source DF Treatment SS Mean Square F Value Pr>F
Car (Blocks) 3 156.563 52.188 45.14 0.0002
Firmness (F) 1 1.000 1.000 0.87 0.3883
Position (P) 1 0.563 0.563 0.49 0.5116
Length (L) 1 3.063 3.063 2.65 0.1548
Firm*Pos (FP) 1 0.250 0.250 0.22 0.6583
Firm*Len (FL) 1 0.000 0.000 0.00 1.0000
Pos*Len (PL) 1 0.563 0.563 0.49 0.5116

Since the root MSE (root mean squared error) is small (s = 1.075 with 6 d.f.) compared

to normal process variation (normally in the range 2 to 19), the statistical model (equation [3])

has explained most of the process variation. (Note that the experimental s is close to the within-

car variation (s = .879) used to determine sample size). In fact, the experiment explains 95.9%

(R? = .959) of the experimental variation. Essentially all of this variation is, however, explained

by the overwhelmingly significant (p = .0002) car-to-car variation. The proportion of variation

explained by car-to-car variation is given by

% Car-to-Car Variation

10

SS(cars)

=100 x ——/] "/
Corrected SS

156;5 63
168.938

100 x

= 92.7%



This is a reflection of car-to-car instability in the process due to factors other than those that were

controlled in the experiment. No other factor was significant.

It sometimes happens that, although not statistically significant, a factor may be regarded
as promising in view of its magnitude. The largest effect in this experiment is length with

Viomg ~ T = 8125 = 7.25 = 875.

Note that this is identical to the L effect in Table 2. As discussed earlier,
_ — 1 1 =
SE Viong ~ Yshort) = Sy 88 27 538.

Thus a 95% confidence interval for the effect of moving from the low end to the high end of
specifications is
Yiong = Yswore = 16y SE Gtong = Yshon)
or

0.875 * 2.447 x .538 = 0.875 = 1.317

which gives the range
(-.442, 2.194).

Thus, lengths consistently near the high end of specifications may increase the average closing
effort by as much as 2.19 units (but might decrease it by up to 0.442 units). If a change in mean
of about 2 units is of practical importance, it is worth getting more data to increase precision and
thus narrow the width of the confidence interval. How much more data is needed to achieve the
desired precision can be found by trying various values of » in the standard error formula. In
view of the fact that the expected mean change was 0.875 and especially that 92.7% of the
experimental variation is due to factors other than thosc associated wifh the stuffer, it was

decided to look elsewhere.
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Reanalysis Ignoring the Blocking
A reasonable guess as to what might have happened if the experiment had not been

blocked but had been performed on 16 randomly chosen cars, can be obtained by lumping the
SS(Car) together with the SS(Error) to give a modified

SS'(Error) = 1565625 + 6.9375 © df
= 163.500

The resulting ANOVA table is given in Table 4.

Table 4: ANOVA table for the hypothetical 16 run experiment (blocking ignored)

Source DF Sum of Squares Mean Square F Value Pr>F
Model 6 5.438 0.906 0.05 0.9992
Error 9 163.500 18.167
Corrected Total 15 168.938
R-Square Root MSE
0.032 4.262
Source DF Type I SS Mean Square F Value Pr>F
Firmness (F) 1 1.000 1.000 0.06 0.8198
Position (P) 1 0.563 0.563 0.03 0.8642
Length (L) 1 3.063 3.063 0.17 0.6910
Firm*Pos (FP) 1 0.250 0.250 0.01 0.9092
Firm*Len (FL) 1 0.000 0.000 0.00 1.0000
Pos*Len (PL) 1 0.563 0.563 0.03 0.8642

Not surprisingly, none of the experimental effects is significant. On a superficial basis this
seems to agree with the result in the previous section. There is, however, a major difference: this
time the root MSE is s’ = 4.262 as compared to s = 1.075. This compares closely to the overall
process s = 4.61 discussed earlier. As well, only 3.2% of the variation has been explained. A

95% confidence interval from the unblocked experiment would have width

12



4.262

+

+1(9) s’ + 2262 %

0| =
00 | =

+ 4.816

as compared to 1.317. Clearly, the precision is much poorer. A 95% confidence interval for
the effect of length would be
0.875 £ 4.816 or (-3.941, 5.691).

Although this is certainly not significant, we are now, because of the poor precision, left
with the much less satisfying conclusion that the effect could be anywhere in this much wider

range.

Blocking in an Unreplicated Experiment

An indication of the fact that blocking can play a useful role even in an unreplicated
experiment can be gained by ignoring the results from blocks 1 and 2 and analyzing blocks 3 and
4 as though they comprised the entire experiment. These two blocks have been chosen because
they cover all eight combinations of the three factors under study and because the relatively large
difference between cars three and four (blocks) best illustrates the benefits of blocking in this

situation.

The column labeled "blocked" in the "Experimental Results" column of Table 5 contains
the data; the estimated effects are in the row labeled "Blocked" below the contrast coefficients.
A probability plot (Box, Hunter & Hunter, Section 10.9) of the estimated effects is given in
Figure 1.
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Table 5: Contrast Analysis for various possible experimental

results from unreplicated eight-run experiments

Experimental Results

Run Number Effects Blocked Random
(Table 1) L P LP F LF PF LPF 1 2 3 4
1 - - + - + + - 7.0 13.5 70 11.0 45
4 + + - - - - 7.5 13.0 75 70 1.5
6 + - - + + - - 7.0 70 140 45 7.0
7 - + - + - + - 4.0 45 110 135 11.0
2 + - - - - + + 14.0 11.5 45 13.0 7.0
3 - + - - + - + 11.0 145 135 140 13.0
5 - - + + - - + 13.0 75 130 70 14.0
8 + + + + + + + 13.5 7.0 7.0 1.5 13.5
Estimated Effects
Blocked 1.163 -1.125 1.125 -375 -125 125 6.375
Random 1 =375 -125 1.125 -6.375 1375 -1.375 375
Random 2 -2.875 .125 -2.125 3.125 1375 -4.625 -375
Random 3 -3.375 1.625 -3.125 -3.125 -875 3.125 1.375
Random 4 -1.875 3.125 375 3375 -375 -1.375 4375
8 ! ! !
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Q . . .
(o] : : :
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@ ; ;
§ L ................... ..................... .................. -
© o !
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Figure 1: Probability plot of the estimated effects from
an unreplicated, blocked design (cars 3 and 4).
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The block (LPF) effect (3, - 5., = 6:375) stands out clearly from the rest; it is more
than three times as large as any of the other six effects. None of the other effects stand out. In
this case, the conclusion would be essentially the same as in the fully replicated experiment
discussed earlier. However, the decision clearly depends much more on individual judgement of
the appearance of the probability plot than does the much more objective significance test of the
earlier section. For this experiment, there would be little disagreement regarding the conclusion.
In general, although effective with larger experiments, probability plots from small samples are
too erratic to give reliable conclusions with eight- or nine-run experiments. This is well illustrated

by the plots in Appendix 3a of Daniel and Woods (1980).

In this case one can use the non-significant effects to estimate s

2 X ¥ (non-significant effects)*
\ number of non-significant effects

2 x (11632 + (-1.125)2 + . + .125%)
\ 6 |
- 1.163 (6 df)

which is remarkably close to the value of 1.075 found in the earlier section. The standard
error is thus sAW2 = .822, which is, of course, wider than in the replicated experiment because

here we have only four observations at each level of each factor.

The important point is that, even in an unreplicated experiment, blocking will usually
increase precision. It also improves accuracy (reliability of the conclusions) relative to those
possible if all eight runs had been carried out on one car. Although it is not replication in the
usual sense of repeating the entire experiment on a second car, one can see by inspection of
Table 5 that each effect is-estimated from the four observations in each block (since there are two
observations at each level of each effect in each block); Thus we have replicated the contrast and

have some idea of its consistency over two different cars.
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An example of a very successful blocked fractional factorial experiment can be found in
Young, Whitney and Abraham (1991).

How Randomization Protects Against Systematic Bias

During any experiment there is always some chance that misleading conclusions will
result from an unexpected systematic shift in the process due to a change in one or more external
(non-experimental) factors. The use of small blocks that can be completed in a relatively short
period of time minimizes this danger since there will be relatively little chance for the non-
experimental factors to change during the execution of the runs within the block. Block-to- block
changes are estimated by the block term in the model (Model 3). As well, all effects are
estimated independently in every block; if the order of the runs within a block is randomized
separately for each block, there is virtually no chance that the effect of any factor will suffer the
same degree of bias in all blocks. The combination of blocking and randomization will provide

strong protection against bias.

Since none of the main effects or two-factor interactions were significant in this
experiment, the observed difference between cars three and four can be used to simulate the
effect of systematic bias occuring during an unblocked experiment. The standard order found in
traditional contrast matrices or in Taguchi's orthogonal arrays always has one main effect contrast
with the first half of the runs at its low level followed by the rest at its high level (Table 1). As
a result, without randomization, any systematic shift in the process that occurs about half way
through the experiment will result in this effect looking significant. A shift earlier or later may
cause a two-factor interaction to appear significant. For instance, if the eight-run experiment
described in the last section had been run in the order of Table 1 without being blocked, and the
results of blocks three and four been obtained because of a change in car, operator, or batch of
parts, then force would have looked highly significant as seen in the probability plot in Figure
1.

If a systematic shift in the process occurs at the beginning of the fifth run of an eight-run

16



8
experiment, two of the (4) = 70 (eight choose four) possible arrangements of the signs of one

contrast will link either the high ('+') or low (-') level of the contrast with the last four runs.
Since there are seven contrasts, a total of 7 X 2/70 or 20% of the possible randomizations would
lead one of the seven contrasts being significant because of this shift. The other 80% of the time
the bias would be spread more randomly over the seven contrasts. Although a 20% probability
of a contrast looking significant for the wrong reason is rather bad, it is certainly better than the
100% probability when there is no randomization. A similar calculation for a sixteen-run
experiment shows that only 0.23% of the time would a shift half way through the experiment
correspond to either the high or low leﬂlel of one of the fifteen contrasts. This is certainly a very

good reason to use sixteen-run experiments if possible!

An indication of how randomization would help in an eight-run experiment can be
obtained by ignoring the blocking, randomizing the order of the runs, and leaving the observed
closing efforts in the same order. This simulates a major process shift after the fourth run in a

situation in which none of the effects is significant.

A representative selection of four of one hundred such randomizations that were made is

included in Table 5. Probability plots for these four are given in Figure 2.

Plots like that in part a) of Figure 2 occurred 24% of the time and corresponded to all
four large observations coinciding with either the high or low levels of one of the seven contrasts.
With a plot like this, most analysts would incorrectly decide that one effect is significant.
Although this is not good, it is certainly better than not randomizing, which would result in one

contrast always appearing significant.
Of more interest is the fact that a substantial number of plots looked like parts b) and c).

Most experienced analysts would not judge any of the contrasts in these to be significant. Many,

however, looked like part d) and would be harder to judge.

17



2 T T T 4
o ° o
L3
o} R . 2} - .
°
o
- ° S
§ -2 . - § 0F . o -
8 8
2 4l | £ 20 . |
% E .
_6 - . oo oo onal ..4 - . -
. ; s i s s i s
-2 -1 o] 1 2 -2 -1 0 1 2
expecied value (normel deviate) expecied value (normal deviate)
a) Random 1 b) Random 2
4 T T T 5 T T T
® . g @
e 1r . £
g ®? 2F 7
g Or . 8
(23
Q 1 4 o0 1 -
o - - -
5 g :
2 | ] o o} e m
*
_3 - . et s - _1 - -
* *
-4 ! 1 1 = . i : ;
-2 -1 Y 1 2 -2 -1 0 1 2
expected value (normal deviate)

expected velue {normal deviate}
¢) Random 3 - d) Random 4

Figure 2: Probability plots of four randomizations of the
eight-run experiment on cars three and four.

Clearly, in even an eight-run experiment, randomization offers some protection. There is,
‘however a very good chance of drawing the wrong conclusions. This danger can, to a great
extent, be avoided by blocking. The danger essentially disappears when a blocked sixteen-run

experiment is carried out. Randomization of runs within blocks should still be used.
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Conclusions

As far as the effect on closing effort is concerned, the influence of the stuffer is clearly
negligible in comparison with other factors that vary from car to car. In view of this result,
specifications were set up corresponding to the ranges studied in the experiment. The process
engineers then shifted their emphasis to other more promising factors. Although the experiment
did not solve the problem, it put to rest concerns regarding the stuffer. And it did this at a very

low cost to the production department.

Blocking played a very major role in this experiment by greatly increasing the precision
with which the influence of the stuffer could be estimated. The direct replication in blocks of the
2? runs adds greater credibility to the accuracy and generality of the conclusions drawn since the
results were consistent over a representative sample of cars. It also provided an independent
measure of experimental error, thus avoiding the judgment required by a probability plot analysis.
Randomization of the order of the treatments provided insurance against unknown systematic bias
leading to incorrect conclusions. Lack of care in choosing factors and levels and the absence of

these three critical components of design are the most common cases of failed experiments.
It should also be emphasized that, although there is a greater risk of things going wrong

in small eight- and nine-run experiments, it is still better to follow a systematic factorial plan that

is randomized and blocked than to use the "lets try this" fire-fighting approach.
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