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ABSTRACT

We discuss models for recurrent event that incorporate both time trends and effects of past
events, such as renewal-type behaviour. Inference procedures, including tests for trend, are
developed and illustrated on repairable systems failure data. Simulations are used to examine the

accuracy of large sample approximations used for tests or interval estimation.
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1. INTRODUCTION

Processes involving recurrent events are common in reliability and many other areas.
For simplicity of exposition we will use reliability terminology in this paper and refer to
recurrent events (often failures or repairs) in repairable systems, but the models and methods
discussed apply to a wide range of problems. The literature on recurrent events in reliability
is large. Ascher and Feingold (1984) provide many details and references; for additional
examples see Cox and Lewis (1966), Crow (1974, 1982), Lee and Lee (1978), Bain and
Engelhardt (1980), Lee (1980) and Crowder, Kimber, Smith and Sweeting (1991). There has
been much discussion about modelling and about the appropriateness of Poisson processes
and renewal processes as models for repairable systems (e.g. Ascher and Feingold 1984,
chapters 2, 8). The purpose of this paper is to present a very useful family of models that
incorporates both Poisson and renewal behavior and to illustrate its application to reliability.
A major benefit of our work is the ability to assess Poisson and renewal assumptions with a
single, comprehensive model.

Consider a repairable system observed over time ¢ > 0 and suppose that events occur at
times ¢; < ty < .... Let o; = t; — t;_; (with ¢, = 0 and ¢ = 1,2,...) denote times between
events and let N(s,t) denote the number of events in the time interval (s,t]. We will also
write N(¢) for N(0,t). Quite generally, a probability model for such a point process may be
specified in terms of its conditional, or “complete” intensity function (CIF) as follows (see
e.g. Cox and Isham 1980, p. 9): define H; = {N(s) : 0 < s < t} as the “history” of the
process up to time t. Then the CIF is

. Pr{N(t,t+At)=1|H
At Hy) = lim riN( At) | Hi} (1.1)

That is, A(t; H;)At is for small At the approximate probability of an event in (¢,t + At],
given the process history up to ¢.

Poisson processes are models for which (1.1) is of the form

At H) = p(2), (1.2)



in which case p(t) is called the intensity or rate function. For Poisson processes it is well
known that N(t) has a Poisson distribution with mean R(t) = J§ p(u)du and that the
numbers of events in non-overlapping time intervals are independent. Renewal processes

on the other hand, are models for which (1.1) is of the form
At He) = h(t — twe) (13)

where ty(;-) is the time of the last event prior to ¢. Thus, (1.3) implies that the times z;
between successive events are independent and identically distributed (i.i.d.) with hazard
function h(z), which is the way renewal processes are usually defined.

We can use (1.1) to formulate models incorporating both time trends and renewal-type
behavior. Thus, for example, questions concerning whether a system is “bad as old” after
a repair (implying a Poisson process) or “good as new” (implying a renewal process) may
be addressed. More generally, there is the opportunity to build effects of past events into
a model. The purpose of this paper is to study one such class of models and associated

statistical methods. We consider processes for which (1.1) is of the form
17 — 0'70)
At Hy) =e , (1.4)

where z(t) = (21(t),. .., 2p(t))" is a vector of functions which may depend on both ¢ and H;
and 8 = (6y,...,0,) is a vector of unknown parameters. For convenience, all vectors are
considered to be column vectors. The model (1.4) is a special case of one considered by
Berman and Turner (1992), but our line of investigation is different from theirs.

Many common models are special cases of (1.4). These include Poisson processes with
intensity functions (i) p1(t) = exp(a + Bt) and (ii) p2(t) = at?, given by (i) z(t) = (1,t),
0 = (a,B) and (ii) z(t) = (1,logt)’, 8 = (loga,B)’, respectively. Statistical methods
for these models have been considered by many authors (e.g. Cox and Lewis 1966; Bain
and Engelhardt 1980; Lee and Lee 1978; Ascher and Feingold 1984; Crowder et al. 1991).
Renewal processes are obtained by taking z(¢) as a function of time since the last event,

u(t) = t — ty-). For example z(t) = (1,logu(t))’, & = (loga, B)' gives a renewal process
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where the z;’s have a Weibull distribution with hazard function h(z) = az®. Models with
z(t) = (1, 91(t), g2(u(t))’, where g, and g, are specified functions, incorporate both a time
trend and renewal-type behavior.

Assuming that times of events are observed more or less exactly, parametric inference for
models of the form (1.4) is shown below to be straightforward, and fast with current compu-
tational power. The remainder of the paper develops and investigates inference procedures.
It is also easy to incorporate covariates into the analysis, though we do not explore this in
the current paper.

Section 2 describes maximum likelihood estimation and hypothesis tests. Section 3
presents examples, including methods of model assessment. Section 4 provides a brief check
on large sample methods by simulation. Section 5 considers tests for time trends and gives
some simulation results on the adequacy of large sample approximations and on power prop-

erties of the tests. Section 6 concludes with some remarks on extensions to this work.

2. MAXIMUM LIKELIHOOD METHODS

We consider the likelihood function for a single process with CIF (1.4) observed over
the time interval (0,T]. If several independent processes are observed the log likelihood,
score equations and information matrices are merely sums of expressions of the form (2.4)-
(2.6) below. The likelihood is proportional to the probability density for the observed data,
which is of the form {n events, at times ¢; < ... <t, < T}, where n > 0. Very generally, the
likelihood is (e.g. Andersen, Borgan, Gill and Keiding 1993, pp. 57-8; Berman and Turner
1992)

L(6) = [[ Mts; Hy,) - exp {_ /0 A Ht)dt} (2.1)

=1
where A(t; Hy) is given by (1.4).
It should be remarked that (2.1) is valid under a variety of procedures for choosing T.

In particular, T does not have to be pre-specified, but could be chosen as the time of some

event (in which case T' = ¢,,) or based on past events in the system. It should also be noted



that for Poisson or renewal processes it is sometimes possible to derive so-called conditional
likelihoods by conditioning on some aspect of the observed data (e.g. see Cox and Lewis
1966, p. 46). This is usually done to remove nuisance parameters. We will not consider such
refinements here, except peripherally in section 4. It is easily checked for the special cases of

Poisson and renewal processes (see (1.2) and (1.3)) that (2.1) gives the well known results

10) = Tote) e { [ o) (22)

and

£(6) = I £(@) - Flensa), (2.3

=1
respectively. In the renewal process case (2.3), we have z1 = ty,z; = t; — t;1(¢ = 2,...,n),
gty =T —t,, and h(z), F(z) = exp {— g h(u)du} and f(z) = —F'(x) are, respectively,
the hazard, survivor and density functions for the z;’s.

For general models of the form (1.4) the log likelihood function £(8) = log L(8) is, from
(21),

n T '
08) =" 0'z(t;) — / 970 gt . (2.4)
=1 0
The maximum likelihood or score equations are, for r = 1,...,p,
n T '
U,(9) = 82(00) =3 z(t) - / 2 (t)e? O, (2.5)
T =1 0

and the p X p observed information matrix (@) has entries

2 T ]
ol [ 20z O (2.6)

I,(0) = ~ 59,00, =/

In special cases we may be able to evaluate the integrals in (2.4)-(2.6) analytically but in
general, numerical integration is needed. We discuss their computation below.

If n or, when independent realizations of a process are observed, the total number of
events is large and appropriate conditions on the model hold then in order to get interval
estimates or tests for & we may treat 0 as approximately normally distributed with mean

6 and covariance matrix I(8)~1. Score or likelihood ratio statistics may also be used in the
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usual way (e.g. Lawless 1982, Appendix E). Types of conditions needed to prove asymptotic
results rigorously are discussed by Andersen et al. (1993, section VI.1.2); a key requirement
is that the observed information increase sufficiently fast asymptotically. To be certain that
asymptotic approximations are satisfactory in specific finite-sample situations it is best to
carry out checks via simulation. We present some simulation results in sections 4 and 5.
The maximum likelihood estimate (m.l.e.) 6 may be obtained by solving the equations

U,(6) = 0 (see (2.5)) using Newton’s method. This employs the iteration scheme
60Ut = 9U) 1 1(0V)tU(9Y) j=1,2,.. (2.7)

where U(8) = (Uy(9), ...,Up(8))" and Y is an initial guess at 8. To calculate £(8),u(8) or
I(8) we generally need to use numerical integration. This may be conveniently described as
follows: let 0 = a; < a3 < ... < a,, = T and associated constants w, ..., w,, be defined such

that
m ' T '
> wjeo 2(aj) = /0 920 gt (2.8)

i=1

to a desired degree of accuracy. The w;’s are determined by selecting a particular quadrature
rule (e.g. Press, Flannery, Teukolsky and Vetterling, 1986, chapter 4).

There are often discontinuities in the covariates z(t) at the event times ¢y, ...,%, so it is

important when using numerical integration to write

T ’ ntl g ’
/ 04t =3 / 970 gy, (2.9)
0 =1 ti—1

where to = 0 and t,41 = T, and to evaluate the n + 1 integrals on the right-hand side of
(2.9) separately. More generally, the integral should be split at each discontinuity point for
z(t), but we will assume that jumps occur only at the ¢;’s. Quadrature formulas tailored
to specific types of covariates may be constructed but for general purposes it is simplest to
employ general numerical integration software or to program a simple method such as the
trapezoidal rule or Simpson’s rule (e.g. Press et al. 1986, chapter 4). to approximate the

’th integral in (2.9). Using Simpson’s rule, for example, we select a positive integer k; and



define A; = (t; — ti—1)/2k;. We define a;;’s and w;;’s by

@ = tioa + (j — DA j=1yu 2k +1 (2.10)
Wit = Wigk41 = 1/3; Wi =... = Wik =4/3; wiz=...= wigk-1=2/3
and then
t ' 2k;+1 01
/ 60 Z(t)dt =~ Z w;je z(aij) . (2].].)
ti1 7=1

Using (2.8), we obtain approximations for £(8), u,(@) and I,,(0) in (2.4)-(2.6) as

PA0) = 3 0z(t) — 3 w;e? %) (2.12)
=1 7=1
UA0) = Y. 2r(t) — Y wyze(a;)ed @) (2.13)
=1 j=1
IA(8) = 3" wyz,(a;)zs(a;)e? %) . (2.14)
i=1

Berman and Turner (1992) note that the GLIM software package may be used to maxi-
mize (2.4), but a direct approach via (2.7) is often simpler. It should be noted that the main
requirement for (2.12)-(2.14) is that the values of z(ay), ...,2(an) be available. When z(%) is
a function of the process history there is no difficulty. In cases (not considered in this paper)
where z(t) includes measured time varying covariates it will often be necessary to impute
some z(a;) values by interpolation.

To make clear the numerical procedures we consider a family of models discussed in
sections 3 and 5.

Example. We consider the model (1.4) with
A(t; Hy) = 6a+ﬂ91(t)+'ygz(u(t)), (2.15)

where 0 = (o, 3,7)" and g¢1(t) and go(u(t)) are specified functions. As in section 1, u(t) is
the time since the most recent event, ¢ — ¢y(;~). Models where g;(z) is either z or log z and

g2(z) is either z or log z are especially useful.
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In terms of (2.12)-(2.14) we have z(a;) = [1,¢:1(q;), g2(u(a;))]’. The approximate 3x1

score vector U4(0) and 3x3 information matirx I4(8) are thus

1
U4(6) = ; ) |- 2_; h;(6)z(a;) (2.16)
T p@e) | T

14(8) = 3 h;(8)z(a;)a(a;) (2.17)

where h;(0) = w; exp[8'z(a;)].

As a numerical illustration we consider the model (2.15) with g1(t) = t and go(u(t)) =
u(t), and the data for Plane 6 in section 3, consisting of n = 30 events at times 23, ...,1788.
We used the Newton iteration scheme (2.7) to find 0 = (&, B,ﬁ/)’ . In this case it is possi-
ble to evaluate the integrals in (2.4)-(2.6) mathematically and thus numerically. For com-
parison we also used numerical integration based on Simpson’s Rule: (2.10) with k; =
6 for i = 1,..,31 was sufficient to give 8 and I(8) to four significant digits as & =
(—4.891,0.0008735, —0.001241) and

0.0300 3.385 0.1788
I1(0) =10*| 3.385 4527 177.7
0.1788 177.7 21.10

The estimated covariance matrix (9)'1 gives standard errors for &, B,’? of 0.559,0.000391
and 0.00322, respectively.

This and another example are discussed further in Section 3. We remark that with
various models and data sets, the use of (2.7) combined with numerical integration provided

inferences very rapidly. Calculations were programmed in S-Plus (StatSci 1994).

3. EXAMPLES

To illustrate the use of models (1.4) and associated inference procedures we consider

a subset of the much discussed data on airplane air conditioning failures given by Proschan

8



(1963). We will look at the data on just two planes, denoted as Planes 6 and 7 by Cox and
Lewis (1966, p. 6). Times between events (air conditioning failures) for each plane are as

follows:

Plane 6: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95 (n=30)

Plane 7: 97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24 (n=27) .
Times are in operating hours for the equipment.
Figures 1 and 2 display plots of the cumulative number of failures vs. cumulative op-
erating time for each plane. Trend curves, to be described below, are also shown. Plane 6
displays an increasing rate of failure whereas Plane 7 has an approximately constant rate.

To investigate the failure process we considered event process models (2.15) with CIF
A(t; Hy) = exp {a + Bt + yu(t)} (3.1)

fof each plane.

Following the numerical procedures described in the Example of section 2, we obtained
maximum likelihood estimates § = (&, B, 4) and associated information matrix I (@) for each
plane. Table 1 shows, under Model (1), the estimates and standard errors, obtained as
the square roots of the diagonal entries in the estimated covariance matrix I (é)‘l. The
maximized log likelihoods f(é) are also shown. For both planes it is clear that there is no
evidence against the hypothesis H : v = 0. Specifically, Wald tests of H may be based on
the statistic W2 = 42/(I(8)~1)ss which, if H is true, is approximately distributed as X1y
The values for Planes 6 and 7 are .15 and 1.88, respectively. Thus, there is no evidence of
renewal-type behavior within the model (3.1).

We also show in Table 1 estimates &, 8 and standard errors when v = 0, as Model (2).
The maximized log likelihood £(8) = £(&, 3,0) is also shown. Another way to test H : v = 0
in Model (1) would be to use the likelihood ratio statistic LR = 2£(8) — 20(0), which, if
H is true, is approximately le)‘ We obtain LR=0.15 and 1.80 for Planes 6 and 7, in close
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agreement with the Wald statistics.

It is also of interest to test for a time trend by considering the hypothesis H' : 8 = 0.
This can be done either under Model (1) or Model (2). In the former case, for example, the
Wald statistic is 3%/(1(8)~1)3,. Observed values are 4.98 for Plane 6 and 0.24 for Plane 7.
A comparison of these values with x%l) quantiles indicates rather strong evidence of a trend

for Plane 6 and no evidence against H' for Plane 7.

Table 1. Estimates for Model (3.1) for Air Conditioning Failures

Model Plane 6 Plane 7
(1)  Estimates (&,3,7) -4.891,.000874, -0.00124 -4.517, -.000162, .00487
Std. errors 559, .000391, .00322 425, .000335, .00355
0) -149.40 -143.30
(2)  Estimates (&,4)  -5.018, .000918 -4.275, -.0000647
Std. errors 463, .000377 .379, .000322
4(8) -149.47 -144.20

Within the model (3.1) we have found that a Poisson process is adequate (i.e. v = 0) for

each plane. Figures 1 and 2 show the estimated cumulative mean functions, or trend curves,
t -~ -~
A@) = / eStBugy — &Pt _ 1)/ (3.2)
0

for each plane. They suggest that the parametric form selected in (3.1) is satisfactory, and
formal tests do not provide any evidence to the contrary. We have not, however, demon-
strated that the full model (3.1) is necessarily satisfactory and consequently some checks are

desirable. The generalized residuals

i
éiz/j\(t;Ht)dt i=1,...,n (3.3)

ti-1
may be used to do this. If the true intensity is used in (3.3) instead of the estimated one,
the é;’s are i.i.d. standard exponential random variables (e.g. Cox and Isham 1980). Thus,

if the assumed model is satisfactory, the é;’s should look roughly like such a sample. Useful
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checks are to examine index plots (i.e. é; or logé; vs. ¢) and exponential probability plots.
Figures 3 and 4 illustrate this for Plane 6, using the assumed Model (2) of Table 1. This
gives & = A(t;) — A(t;_y) with A(¢) given by (3.2) with & = —5.018, 3 = .000918. Figure
3 is a plot of é; vs. ¢ for z = 1,...,30; it shows no unexpected features. Figure 4 is a
probability plot of the ordered é;’s vs. the expected standard exponential order statistics

=(1/n)+...+(1/(n—¢+1)) with n = 30. The plot is reasonably close to a straight line
with slope 1, but there is an interesting suggestion of a change in slope, possibly reflecting
a mixture of two distributions. In fact, we note in Figure 1 that failures tend to cluster to
some extent, which would produce the type of pattern seen in Figure 4. We will not pursue
this further, but it could be worthwhile to consider some type of cluster process (e.g. Cox

and Isham 1980) for failures.

4. CHECKS ON LARGE SAMPLE APPROXIMATIONS

To obtain confidence limits or tests for parameters we rely on the approximate nor-
mality of the maximum likelihood estimates 0 in large samples. It is, of course, desirable to
check the adequacy of such approximations for the small to medium sample sizes encountered
in practice. We present here a limited but useful investigation.

We considered the model (3.1) with parameter values @ = 0.0, 8 = 0.03 and v = 1.0;
these relative values are plausible ones in application involving 20-100 events. We simulated
2000 series of n events from this process for each of n = 20, 50, 100 and 200, and obtained
estimates &, 3,4 and their standard errors s(&), s(,@), s(%) for each series, as described in
sections 2 and 3. Large sample theory indicates that for large n the variables

W1=§Y:A—a Wy = 'B— W3=:7_A7
s(&) s(B) s(9)
are each approximately standard normal. Table 2 shows the proportion of the 2000 samples

for each sample size for which w;(: = 1,2, 3) satisfied (i) —1.96 < w; < 1.96 (ii) w; <

—1.96 (iii) w; > 1.96. The probabilities of these occurrences under the standard normal

distribution are .95,.025,.025, respectively. We also checked other percentage points, but

11



Table 2 shows the main pattern in the results.

Table 2. Empirical Probabilities for Wi, W, W3 and Standard Normal Quantiles

W W Ws

n =20 C .9385 9255 9155
L .0130 0575 .0830

U .0485 .0170 .0015

n =50 C 9430 9385 9245
L .0160 .0460 .0685

U .0410 .0155 .0070

n=100 C 9475 9435 9395
L .0180 0365 .0545

U 0345 .0200 .0060

n=200 C .9500 9440 9410
L .0165 0315 .0470

U 0335 .0245 .0120

Nominal coverages for C(—1.96 < W; <1.96), L(W; < —1.96) and U(W; > 1.96)
are .95, .025, .025, respectively.

Table 2 shows that for smaller sample sizes the two-sided coverages (C) are somewhat
less than .95, though quite close for n greater than 50. The one-sided probabilities (L and
U) are relatively much further off the nominal .025, even for n = 200. The approximations
for W3 are somewhat poorer than those for W; and W,. These results suggest that two-sided
tests or confidence intervals based on W;, W, or W3 should have approximately correct
coverage, but that a little more caution is needed for one-sided procedures; Table 2 indicates

the degree of over- or under-coverage for each parameter.
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5. TESTING FOR A TIME TREND

The presence or absence of time trends in recurrent events is often of interest, and
numerous tests for trends have been given. We focus here on monotone trends, in which case
events either tend to occur more frequently (increasing trend) or less frequently (decreasing
trend) as time passes. Ascher and Feingold (1984, chapter 2) have discussed the difficulty of
giving a comprehensive definition of trend, but the most important case of absence of trend
is that of a renewal process, the most important sub-case being the homogeneous Poisson
process (HPP), for which inter-event times are exponential. Cox and Lewis (1966, chapter
3) and Ascher and Feingold (1984, chapter 5) discuss many tests for monotone trend, usually
with the null hypothesis being that the process is either a HPP or a general renewal process.

The models (1.4) provide a way to incorporate or test for time trends with a renewal
process. For example, the model (2.15) is a renewal process if # = 0 but if B # 0 exhibits
a time trend. We may test for trend by testing that 8 = 0. In this section we consider
trend tests based on (2.15), and carry out a small simulation study to compare these tests
with two widely used tests (Ascher and Feingold 1984, pp. 73-83). Our objectives are to
examine the power and robustness of the tests, and to assess the adequacy of the large sample
approximations used for the distributions of the various test statistics.

First we describe trend tests based on (2.15), which amount to tests of H : # = 0. Letting
0 = (o, 3,7) as in the example of section 2, we may use any of three asymptotically (large T
or n) equivalent test statistics which arise from maximum likelihood theory. The first is the
Wald statistic W = 3/s(8), where s(3) = (I (é)‘l)%2 is the standard error for the maximum
likelihood estimate ,3 If H is true, W is approximately standard normal, and large values
of |W| provide evidence of trend. A second possibility is to use thé likelihood ratio statistic
R = 24(8) — 24(0), where 8 = (&,0,7) maximizes £(8) subject to H : 8 = 0. From (2.5), &
and ¥ satisfy

T
n — /eo“""”(“(t))dt =0 (5.1)
0

13



n T
> ga(u(t) — [ gu(t)e Dt =, (5.2

=1

and may be obtained using Newton’s method and the approximations (2.13) and (2.14). If

H is true, R is approximately x%l); large values of R provide evidence of trend. A third

test statistic based on (2.15) is the standardized partial score statistic (e.g. Lawless 1982,

Appendix E). In the interests of brevity we will omit it in our discussion; in simulations it

behaved similarly to the likelihood ratio statistic.

The other trend tests which we consider are based on the following statistics:

(i) The Laplace statistic (e.g. Ascher and Feingold 1984, pp. 78-9)

(i)

T - (n-1)T/2
LA = e rmeye

(5.3)

where T' = t,,. Under a HPP, i.e. if # = 0 and v = 0 in (2.12), LA is approximately
standard normal; large values of |LA| provide evidence of trend; LA arises as a score
statistic for testing # = 0 in a nonhomogeneous Poisson process with A(¢; H;) =

exp(a + Bt) (e.g. Cox and Lewis 1966, chapter 3). We give the form (5.3) because
in our simulations below we generated a fixed number of events (n) for each series. If
instead one stops observation at an arbitrary time T' > t,, a little different form for

LA arises, in which n — 1 is replaced by n.

The Lewis-Robinson (1974) statistic, also given for the case where T' = t,,,

1/2
52
LR=LA{ - . (5.4)

% @@= a2/(n—1)

This statistic, based on rather heuristic arguments, was constructed to be valid when
the null hypothesis is a renewal process, in which case LR is approximately standard

normal. Large values of |LR)| provide evidence of trend.
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The statistics LA and LR should be effective when trends are such that ¢;(¢t) = ¢ in
(2.15). We therefore ran simulations for which the true model was of the form (2.15) with
g1(z) = z and gy(z) = z. To make the comparisons with LA and LR “fair”, we used the
statistics W and R based on (2.15) with g;(z) = g2(z) = . We simulated data from two

types of models:

Model A:  A(t; Hy) = e+ with a = 0 and various § values

Model B:  A(t; Hy) = e*tAt+74()  with o = 0, 4 = 1 and various J values

We tested for no trend (i.e. that # = 0) using W, R, LA and LR with nominal significance
levels of .05 and .10. Two-sided tests were used so that the null hypothesis of no trend Wa,é
rejected at the .05 level if the absolute value of the test statistics W, LA and LR exceeded
1.96, and at the .10 level if they exceeded 1.645. We would expect the statistics W and
R to perform well, since they are based on the family of models from which the data were
generated. The statistic LA should perform well for Model A, since it arises as a score
statistic for H : 8 = 0 for that model, but it may perform poorly for Model B, where the
null model is not a HPP. The statistic LR, although derived heuristically, should perform
well both for Models A and B.

We simulated a fixed number of events n for each process, with n = 20, 50 and 100. We
generated 2000 processes for each model considered, so that empirical probabilities (propor-
tions) should be within .01 of their true values roughly 95% of the time. Table 3 shows the
empirical probabilities of rejection for the hypothesis of no trend when 8 = 0 in Models A
and B. Under Model A all tests have close to the nominal size for each n, except for a mild
excess rejection rate for W and R at n = 20. For Model B three features are noticeable: (i)
The Laplace statistic LA is far off the correct coverage (it is based on the wrong model), (ii)
The Lewis-Robinson statistic LR holds close to the nominal level, and (iii) W and R exceed

the nominal size a little, particularly at n = 20.
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Table 3. Empirical Probabilities of Rejection Under Null Hypothesis of No Trend

n w R LA LR

Model A 20 .0531 057 .054 057
1202 129 103 115

50 .053 .054 .049 .050

- .107 108 102 105

100 .053 .055 .055 051

.106 108 105 110

Model B 20 073 .086 .009 055
133 145 .024 119

50 .058 061 .005 053

114 115 021 .108

100 .061 062 .008 .056

114 115 .022 110
1 Test with nominal size .05; % Test with nominal size .10

We also examined the power of the various statistics. Figure 5 shows the empirical power
of W, R ,LA and LR for Model A, and Figure 6 compares W, R and LR for Model B,
for sample size n = 50 and nominal test size .05. For Models A and B the test statistics
W and R based on the model (2.15) give somewhat higher power than the Laplace and
Lewis-Robinson tests. This is to be expected, since (2.15) is the model from which the data
are generated.

The main points arising from our study are as follows. The Laplace test is good at
detecting trend departures from a homogeneous Poisson process but may seriously mislead
when used to detect trend departures from general renewal processes. The Lewis-Robinson
test, on the other hand, is very good generally and its simplicity and robustness make it an
important test. Trend tests based on (2.15) are more powerful when that family of models
is appropriate, provided g,(t) and go(u(t)) are specified more or less correctly. Of course,

when the objective is to model the event process and not just test for trend, (2.15) is useful,
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as demonstrated in previous sections.

6. CONCLUDING REMARKS

Models of the form (2.15) are useful for exploring series of events, particularly when one
might expect renewal-type behavior, perhaps with a time trend superimposed. In that regard
we have examined the use of (2.15) for trend testing, as well as illustrated its application
to two sets of data for which there have been many discussions about renewal vs. Poisson
modelling. Processes with CIF (1.4) are considerably more general, and allow time trends,
past process history, and external time-varying covariates to be incorporated in a model. We
have shown in section 2 how estimation may easily be implemented, and further experience
on the application of these models would be valuable.

Inference procedures based on large sample properties of maximum likelihood appear
reasonably satisfactory in the situations we have examined. For short series of events (e.g.
n = 20) and for one-sided procedures in general, an investigation of ways to improve accuracy
would be useful. Parametric bootstrap and other resampling methods deserve consideration.

Finally, the model (2.15) is a special type of modulated renewal process (Cox 1972),
and it is thus possible to use the semiparametric partial likelihood method described by
Cox (1972) and Oakes and Cui (1994) for estimating § and testing for trend. We found in
simulations that unless n was very large the large sample approximations associated with
this approach was poor and hence did not include in our discussion. Further examination of

this approach would be interesting.
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qare § Power of 4 tests: Model A, n=50
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