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ABSTRACT

Recently, there have been many proposals for objectively analyzing unreplicated factorial
experiments. We review these methods along with some earlier and perhaps lesser known ones.
New methods are also proposed. The focus of this paper is a comparison of these methods and
their variants via an extensive simulation study. Many methods are comparable, but clearly some
cannot be recommended. The results from the study suggest some recommendations for
evaluating new methods. Finally, we outline some issues that this study has raised and which
might benefit from work in other areas such as multiple comparisons, outlier detection, ranking

and selection, and robust statistics.
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1. Introduction

Since the 1980’s, the objective analysis of unreplicated two-level factorial and fractional
factorial designs has attracted much attention. The analysis of unreplicated experiments
with say n runs presents a challenge because while n — 1 effects (excluding the overall mean)
can be estimated by contrasts, there are no degrees of freedom left to estimate the error
variance. Consequently, standard t tests cannot be used to identify the so called “active”
effects which are non-zero.

In practice, the standard method for identifying active effects continues to be a probability
plot of the contrasts, the first method for this problem proposed by Daniel (1959). See Daniel
(1983) for an interesting personal recollection. Plotting the unsigned contrasts on half-normal
probability paper, the contrasts for the “inert” effects fall along a straight line while those
for the active ones tend to fall off the line. There is a subjective element in deciding what
constitutes “falling off the line,” which has motivated the recent work to provide an objective
method.

This paper reviews various methods for analyzing unreplicated experiments given in Box
and Meyer (1986), Voss (1988), Lenth (1989), Benski (1989), Bissell (1989, 1992), Berk
and Picard (1991), Juan and Pena (1992), Loh (1992), Le and Zamar (1992), Dong (1993)
and Schneider, Kasperski and Weissfeld (1993). This flurry of activity seems to have been
motivated in part by Taguchi’s practice (Taguchi 1987) of pobling the smallest contrasts
to estimate the error variance in an ANOVA and applying the usual F distribution critical
values (Box 1988, Bissell 1989 and Berk and Picard 1991). The methods proposed in two
lesser known papers, Seheult and Tukey (1982) and Johnson and Tukey (1987), are also
studied as well as earlier work by Holms and Berrettoni (1969) and Zahn (1975a, b). Note
that Daniel’s (1959) proposal did provide an objective method, guardrails on a standardized
half-normal plot, but for the most part has been ignored. In order to analyze unreplicated
experiments, the assumption that at least some of the effects are “inert” (i.e., zero) needs to

be made. In fact, most of the existing methods assume effect sparsity, that only a few effects



are active, which seems to hold up in practice, say 20% (Box and Meyer 1986). Daniel (1976,
p. 75) suggested 25% and lowered it to 20% in Daniel (1983). These methods have various
motivations which will be considered in more detail in Section 2. |

In this paper, we focus on methods based on the unsigned contrasts or their corresponding
mean squares. This is because of the arbitrariness of ‘low” and “high” factor level labels
which has been pointed out by Shapiro and Wilk (1965), Seheult and Tukey (1982) and
Loh (1992). Since the method’s results should not depend on the labeling, we consider the
half-normal version, e.g., the half-normal probability plot of the unsigned contrasts rather
than the normal probability plot of the contrasts. Note that Daniel (1976, 1983) prefers the
normal probability plot for detecting problems with the data such as outliers, however.

We need a common notation to resolve some conflicts in the literature. Lists of the
notation used and methods studied in this paper are provided below for easy reference.
There are k (= n-1) effects denoted by x;; e.g., 7, 15, 31 for the commonly used designs
with run sizes n of 8, 16 and 32. By contrast or estimated effect, we mean the difference
of the averages of the observations at the high and low levels; the contrasts are denoted
by ¢; and the unsigned contrasts by |c;|. Also, the ith ordered unsigned contrast out of j
contrasts is denoted by |c|(i) j» The error vaﬁance is 0%, so that the variance of ¢; denoted
by 7% is [4/(k + 1)]o?. Thus the problem is to decide which x; are active, i.e., non-zero,
using the contrasts ¢;. Normally distributed errors are assumed so that the contrasts c; are
normally distributed. (Even if the errors are non-normal, the contrasts are nearly normal
by the Central Limit Theorem.) Finally, the size of the active ; will be given in multiples
of o, the error standard deviation.

In Section 4, the paper compares the methods listed above as well as some new proposals
presented in Section 3. To date, only limited studies comparing some of these methods have
been done: Zahn (1975b), Voss (1988), Berk and Picard (1991), Loh (1992), Dong (1993),
Haaland and O’Connell (1993). The problem in comparing these methods is to do so on
an equal basis since they perform differently when all the effects are inert. Thus, a cali-



bration is needed which we do by considering sequential procedures based on the particular
statistics used by the various methods. That is, the largest unsigned contrast is tested to de-
termine whether the corresponding effect is active. Then the next largest unsigned contrast
is considered and so forth. Thus, the goal of the comparison is to identify which statistics
inherently provide better performance. Performance of the procedures is evaluated through
an extensive simulation study. |

In Section 5, the paper presents some requirements for evaluating new methods and lists
some issues raised by the study that merit further attention. Section 6 concludes with some

specific recommendations for the practitioner.
2. Existing Methods

Daniel (1959)

Daniel (1959) used the idea of detecting outliers in a data set by probability plotting as
discussed above: i.e., the outliers, those falling above the line, correspond to active effects.
Note the implicit assumption of few active effects in order to draw a line through the bulk
of small contrasts and how this method ingeniously avoids the need for estimating o. Its
subjectivity was mentioned above, however. ‘

Daniel (1959) also presented an objective graphical method, a standardized probability
plot with guardrails, which plots the unsigned contrasts divided by the ordered unsigned
contrast corresponding to order statistic closest to the 0.683 percentile. Note that the 0.683
percentile of the half-normal distribution is equal to 7, and suggests an estimate for the
contrast standard deviation 7 when all the effects are inert. Thus, for example, for k=15

effects, the unsigned contrasts are standardized by |c|(;1) and have the form:

|°|(i)/|c|(11)- (1)

These statistics are referred to as modulus ratios since they are ratios of modulii or



List of Notation

number of runs

number of contrasts

current number of contrasts being considered in sequential test
error standard deviation

contrast standard deviation

ith effect

ith contrast - estimate of ith effect

ith order statistic of the unsigned contrasts

mean square based on ¢;

ith smallest mean square

expected value of ith standard half-normal order statistic out of j
median of ith standard half-normal order statistic out of j
expected value of ith standard normal order statistic out of j
median of ith standard normal order statistic out of j

pooling level in Holms and Berrettoni (1969)

final level in Holms and Berrettoni (1969)

largest integer less than x

smallest integer greater than x

interquartile range of all contrasts ¢;

probability of an effect being active (Box and Meyer 1986)
model parameter for active effects in Box and Meyer (1986)
pseudo standard error; see Lenth (1989) (11)

iterated median absolute deviation; see Juan and Pena (1992)
probability of declaring i effects active under all inert effects
experimentwise error rate

individual error rate

number of active effects



List of Methods

DAN59 Daniel (1959) uses (1)

HB69  Holms and Berretoni (1969) uses (2)
ZAHNT5 Zahn (1975a, version S) uses (4)
ZAHN75(m) uses m smallest contrasts to estimate 7
STUKS2 Seheult and Tukey (1982) uses (5)

BM86 Box and Meyer (1986)

JTUKS87 Johnson and Tukey (1987) uses (7)
LEN89 Lenth (1989) uses (11)

BEN89 Benski (1989)

BIS89 - Bissell (1989)

BP91 Berk and Picard (1991) uses (14)
HLOH92 half-normal version of Loh (1992)
JP92 Juan and Pena (1992) uses (21)
DONG93 Dong (1993) uses (22)

SKW93 Schneider et al. (1993) uses (23)
MSKW SKW93 accounting for k'

MLEN LEN89 accounting for &’

MDONG uses iterative DONG93 estimator
CORR correlation coefficient probability plot uses (24)
HSW half-normal Shapiro-Wilk uses (26)
DISP dispersion test uses (27)



absolute values. Note how the unknown scale is removed by the standardization and that only
the largest four of the 15 unsigned contrasts (about 25%) can be tested sequentially starting
with the largest. The guardrails drawn on the plot are the corresponding critical values
for the modulus ratios (1). Active effects are then identified by the standardized contrasts
which exceed their corresponding guardrails. Birnbaum (1959) gave approximations for the
distribution of the largest modulus ratio and showed that it is the most powerful test when
there is only one active effect. Zahn (1975a) pointed out problems with the guardrails but

this need not concern us.

Holms and Berrettoni (1969)

Holms and Berrettoni (1969) proposed a method called chain-pooling. The method works
with the mean squares M; which are proportional to the squared contrasts ¢} and compares
the largest standardized mean squares. The standardization is based on the smallest mean
squares whose corresponding effects are likely not active; the determination whether a par-
ticular mean square is pooled or not is based on all smaller mean squares.

More formally, starting with the m (possibly equal to one) smallest mean squares, use
Um1) = (m + 1)M(mi1)/ Tt M) to determine whether the next largest mean square
M(m41) should be pooled or not at level o001, say 0.25. Pooling is stopped once the p-value
falls below a1 Then declare active those effects corresponding to the larger mean squares
whose p-values are less than ayfina using:

j-1

iMuy/(Y- My + Myy), (2)

=1

where the j-1 smallest M;’s are pooled. Critical values based on all inert effects for k=15 are
given in their Table 1. That is, ape. controls how many of the smallest mean squares are
pooled while a;n. controls how many of the largest mean squares are declared significant.
Thus, a straiegy is defined by m, apoot and ayging. The motivation for this procedure was

the case when there are a large number of active effects; thus, an estimate for error variance



needs to be based on a small number of contrasts in which case m should be set small and

possibly to one.

Zahn (1975a)

Motivated by Daniel (1959), Zahn (1975a) proposed using an alternative estimate of the -
contrast standard error for standardizing the unsigned contrasts based on the smallest 68.3%
of the unsigned contrasts. That is, 7 can be estimated by the slope of the regression line
through the origin on Daniel’s half-normal plot:

Szann = Y lel@lzlae/ D 1215w | (3)

=1 =1
where m = floor[0.683k+0.5] and ||« is the expectation of |¢|(;). Zahn (1975b) showed that
SzanN has a smaller mean square error than |c|(;1) for k=15 which explains the suggestion,

his Version S, of using:

lel(s)/ Szann- (4)

Like (1), (4) is designed for testing only a few of the largest unsigned contrasts, i.e.,
four for k=15 since m=11. Zahn (1975b) also studied Versions XR and SR based on (1)
and (4) respectively, where 7 is re-estimated in subsequent tests based on a variable m,
m' = floor[0.683%' + 0.5], where k' is the current number of contrasts being considered. Note

that |z|)e is used in estimating 7 in both the S and SR version.

Seheult and Tukey (1982)

Seheult and Tukey (1982) used an outlier procedure based on the quartiles of a synthetic
batch of contrasts, namely zero plus all the contrasts with both signs giving a total of 2%+1 -1
synthetic contrasts. The threshold is twice the interquartile range or because of the symmetry
of the synthetic batch is four times the median of the unsigned contrasts plus zero. 1n the

terminology coined by Tukey (1977), the outliers are those exceeding one-and-a-half hinge
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spreads outside the nearest hinge. Assuming normality, the probability of exceeding the
threshold is very small, 0.007. Seheult and Tukey (1982) then proposed using this threshold
iteratively by 'removing the largest contrast and its associate if they exceed the threshold
and applying the procedure to the remaining 2* — 1 synthetic contrasts.

Note the similarity with Benski’s (1991) outlier test to be discussed later which uses dr
the interquartile range of the original contrasts ¢; (which does not include the additional zero
contrast). dp which is a robust estimate of spread provides a basis for estimating = (Juan
and Pena 1992). Since dr estimates 28-1(0.75)r, then dp/(2971(0.75)) = dr/0.7413011
estimates 7. Consequently, in the spirit of Daniel (1959) and Zahn (1975a), the estimate

denoted by 7pr could be used to standardize the unsigned contrasts:
|C|(i)/ ToF (5)

Box and Meyer (1986)

Box and Meyer (1986) presented a Bayesian approach based on effect sparsity, i.e., there
is a small proportion of active effects agerive. They used a scale contaminated model which
assumes that the active effects have a N(0,02,,,,.) distribution. Letting K? = (02,40 +
02 1ive )/ T2 octive, then the contrasts ¢; follow a (1—aqetive )V (0, 07, ctive )+ Qactive N (0, K202, )
distribution. For each effect, the marginal posterior probability of being active is computed
and declared active if the probability exceeds 0.5. Specifically, the posterior probability of
each of the possible 2¥ models (i.e., an effect is active or not) is first computed. Then, the
marginal posterior probability is the sum of the posterior probabilities over all those models
containing the particular effect. Box and Meyer (1986) noted that estimates for agetive and
K based on ten published analyses of data sets were (0.13-0.27) and (2.7-18) with averages
of 0.2 and 10, respectively. This provides empirical support for the principle of effect sparsity

and motivated their recommendation of 0.2 and 10 for a,ive and K, respectively.



Johnson and Tukey (1987)
Johnson and Tukey (1987) proposed a procedure based on display ratios which are the

unsigned contrasts divided by their respective typical order statistics; i.e.,

lel@y/ |1 2] yes (6)

where |Z|(;). is the median of the half-normal ith order statistic in a sample of size k. Their
motivation for the display ratios was to make comparison easier since the natural reference
line is now horizontal with its height being an estimate of 7. Contrast this with the half-
normal plot, whose natural reference line is a line through the origin whose slope is an
estimate of 7. |

The objective method that Johnson and Tukey (1987) proposed is based on ratio-to-scale

statistics which are computed as:
ratio-to-scale = display ratio/median display ratio. (7

Critical values given in their Table 12 are for the maximum ratio-to-scale in a sample of size
k. Johnson and Tukey (1987, p. 203) then proposed using the ratio-to-scale statistics se-
quentially, dropping the contrast corresponding to the maximum ratio-to-scale and applying
the procedure to the remaining contrasts. Note the similarity with Daniel (1959) except that

display ratios are used and the denominator is the median rather than the 0.683 percentile.

Voss (1988)
Voss (1988) presented what he termed generalized modulus ratio (GMR) tests. He con-

sidered non-decreasing functions f of the |c|(;) standardized by a linear combination of them:

f(|°|(i))/2aif(|c|(i)), (8)
for some constants a;. Note that (1), (2), (4) and (14) to be discussed later fall in this

class. The main result in the paper is that GMR tests control the experimentwise error,
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the probability of declaring at least one inactive effect active. Voss (1988) considered for
example a method based on the smallest 50% of the mean squares (f(z) = z?) in which a;

is a constant 1/m for the smallest m(= 0.5n) unsigned contrasts and zero, otherwise.

Lenth (1989)
Lenth (1989) considered a robust estimator of the contrast standard error 7, which he

termed the pseudo standard error estimate or PSE:
PSE = 1.5 - mediang;|<2.550} |, (9)

where

8o = 1.5 - median|c;]|. - (10)
That is, PSE is a trimmed median which attempts to remove contrasts corresponding to
active effects. Active effects are then identified using the mé,rgin of error ME=t%¢ 975,44 PSE
with degrees-of-freedom df=k/3 or the simultaneous margin of error SME=t..4PSE, where
4 = (1 +0.95'/%)/2. Note that PSE is consistent for 7 (as k — oco) when there are no
active effects but overestimates 7, otherwise. The degrees-of-freedom k/3 come from an
approximation of PSE? by a scaled x? distribution. Using the PSE to standardize the
contrasts gives statistics of similar form as in Daniel (1959) and Zahn (1975a):

|e|(;)/PSE. (11)

Benski (1989)

Benski (1989) proposed using a modified Shapiro-Wilk test for normality (Shapiro and
Francia 1972) to test the presence of active effects coupled with an outlier test for identifying
the particular effects that are active. The motivation for the Shapiro-Wilk test is a ratio of
two estimates of variation, the squared estimated slope of the probability plot regression line

and the standard deviation of the contrasts. The modified Shapiro-Wilk statistic W’ is

k ok k
W' = (3 zere)* 1 2w 3 (cy — 9)°), (12)

=1 =1 =1
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where  is the average of the ordered contrasts c(;) and z(;), are expected standard normal
order statistics in a sample of size k. Normality is rejected for small values of W' which in
this context corresponds to the contrasts all not having the same mean (i.e., some are non-
zero). Since (12) can also be viewed as a correlatioﬁ-type statistic (i.e., the mean of z;y is
nearly zero), a large value (close to one) indicates a strong association between the expected
normal order statistics aﬁd the ordered data. Consequently, small values of W’ are taken
to indicate the presence of at least one active effect. Note that the original Shapiro-Wilk
test uses constants a; based on best linear unbiased estimation rather than the 2(;). based
on least-squares estimation presented here.

Once the Shapiro-Wilk test indicates the presence of active effects, Benski (1989) pro-
posed using an outlier test to identify the active effects. The outlier test is based on a robust
estimate of spread which uses the assumption of zero mean for the inert effects to arrive
at the interval (—2dF,+2dF), where dr is the interquartile range, the difference between
the first and third quartiles of the contrasts ¢;. Those contrasts falling outside the interval
are candida.tes for active effects. Benski (1989) proposed the following procedure: if the
Shapiro-Wilk test is rejected, combine the p-values of both tests and declare the largest
contrast active if the combined test is rejected. Then, drop the largest contrast and perform
the same procedure on the remaining contrasts.

Because this procedﬁre is a hybrid of two tests it cannot be directly compared with the
other methods which use a single statistic. A comment about the first test is worthwhile. The
Shapiro-Wilk test does not account for the arbitrariness of the factor level labels. Shapiro
and Wilk (1965) noted this drawback in applying their test statistic to data from a factorial
experiment. Also, the test does not use the information that the mean of the inert contrasts
is zero. This suggests using a half-normal version with the unsigned contrasts |c;| which will
be presented in Section 3. The outlier test based on dr will be studied in terms of the form

(5) discussed previously.
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Bissell (1989, 1992)

When there are no active effects, all the mean squares M; have the same scaled x? distri-
bution, whose variance is a function of its mean. This relationship between the theoretical
mean and variance provided the motivation for Cochran’s (1954) dispersion tests which eval-
uates whether the relationship is supported by the data. Letting M and S3, denote the
sample mean and variance of the mean squares, respectively, then the test statistic is the

coefficient of variation for the M;’s:

SM/M, (13)

where k is the number of mean squares. The test rejects for large values with critical values
for Spr/M being based on the approximation that ((k — 1)/2)(Sy/M)? ~ X{e—1) given in
Table 12 of Bissell (1992) for k=2(1)31. Bissell (1989) suggested dropping several mean
squares that are obviously active and then retesting the remaining effects. Note that the x?
approximation does not account for the fact that the estimate M is used rather than the

true mean.

Berk and Picard (1991)
Berk and Picard (1991) used the 60% smallest mean squares assuming that they corre-

spond to inert effects to test the remaining larger mean squares with the statistic:

My/S M. (14)

i=1
This is similar to Holms and Berrettoni (1969) except that m is fixed here rather than
being determined by the contrasts. The critical values given in their Table 1 were computed
under all inert effects and take account of the m smallest mean squares being the m smallest
order statistics in a sample of size k. Berk and Picard (1991) commented that this formalizes
Taguchi’s (1987) approach of pooling the smallest mean squares by accounting for their true
distribution. Voss (1988) considered the same method except that he based it on the 50%

13



smallest mean squares.

Loh (1992)

The motivation for Loh (1992) was to formally extend the graphical normal plot. Noting
that the arbitrariness of labels yields different normal plots, Loh (1992) chose the set of
contrasts with median closest to zero; in the case of ties, the one with largest correlation
coefficient of the regression line on the normal probability plot is chosen. (This is related
to the Shapiro-Wilk goodness-of-fit idea.) Like Benski (1989), it is a hybrid procedure. The
initial test determines the presence of active effects by comparing the slope of the least-
squares line through all contrasts versus the slope of line through a set of smaller contrasts
thought to be inert. The inert contrasts are those whose magnitude are less than twice
dp, the interqua.ftile range (see Seheult and Tukey, 1982 and Benski, 1989). The test is
rejected for large ratio values with the outliers then becoming potential active effects. For
identification, Loh (1992) proposed using the Scheffé prediction interval based on the fitted
line to the inliers in the previous test; i.e., those outliers falling outside the prediction interval
are identified as active.

Note that there is a computational drawback to finding the set of contrasts used in the
normal plot. Take for example, a Plackett-Burman 12-run design with 11 factors, which
would require 2!! sets of contrasts to be considered. Working with the unsigned contrasts
eliminates all this computation, however. This suggests using a half-normal version which

will be considered in Section 3.

Le and Zamar (1992)
Le and Zamar (1992) proposed using.an outlier test based on the ratio of two estimates of
scale, a non-robust estimate divided by a robust one. They suggested using two M-estimates

S; and S; of 7 which satisfy

14



(1/k) 3 pl(e: — T)/S] = E(p(2)), (15)

=1

where Z has a standard normal distribution, and whose p-functions are

ou(z) = { :c: if |z <a ' (16)
a® otherwise
and
pa(z) = p1 + B(z* — 62”). (17)
Using the statistic
Ryzam = S2/51, (18)

they proposed a sequential procedure by dropping the largest contrast and then recalculating
(18) with the remaining contrasts. Note the similarity with the first part of Loh’s (1992)

proposal which also uses a ratio of a robust and non-robust estimates of scale.
A practical problem with p,, however, is that it has two roots. To avoid this problem,

another non-robust estimator could be used such as one based on
p3(z) = =2, (19)

Juan and Pena (1992)

Juan and Pena (1992) proposed standardizing the contrasts by a different estimator for
7. It is similar to Lenth’s (1989) PSE except that the calculation is iterative as follows:
(a) Defining MAD, as the median of the k unsigned contrasts, recompﬁte the median of
those unsigned contrasts not exceeding wMAD, for some constant w > 2. Continue until

the median stops changing and denote this by IMAD,. (b) Then the estimator for 7 is:

7imap = IMADo/a., (20)

15



where a,, is a correction factor. (See their Table 1 for a,, for a range of w.) Juan and Pena
(1992) recommended w=3.5 and a,, = 0.6578 and showed that IMAD, has better mean
square error than PSE (11) when more than 25% of the effects are active. They also showed
that the estimator based on the interquartile range dr behaves poorly and that using the
trimmed median is generally better than the trimmed mean Wﬁen more than 20% of the
effects are active.

Their procedure for identifying active effects can then be put in terms of the statistics:
lels)/Tmap, (21)
whose distribution is approximated by a standard normal distribution.
Dong (1993)

Similar to Lenth (1989), Dong (1993) proposed an estimator for 7 but based it on the

trimmed mean of squared contrasts rather than the trimmed median of the unsigned con-

trasts: spong = \/m—l 2o {lejl<2.530} c2, where m is the number of terms being summed and
8o is defined earlier in (10). Dong (1993) showed that spong has smaller mean square error

than PSE which provided his motivation for using it to standardize the contrasts as

lel(;)/ sDONG - (22)
and suggested using %, as the critical value for suitable choice of 4. Dong (1993) also

proposed iteratively calculating spong until it stops changing when there are a large number

of active effects.

Schneider, Kasperski and Weissfeld (1993)
Schneider, Kasperski and Weissfeld (1993) proposed standardizing the contrasts by an
estimator of 7 given in Wilk, Gnanadesikan and Freeny (1963). By treating a set of the

smallest unsigned contrasts all thought to be inert as a Type II right-censored sample,

16



can be estimated using the maximum likelihood estimator (MLE) 7cgn. The MLE does not
have a closed form, however. See details in Schneider et al. (1993). Their motivation for
treating the contrasts as a censored sample was to reduce the bias and suggests the following

standardized contrasts:

lel(s)/ToEn- (23)

3. Modifications and New Proposals

Some modifications and new proposals will be considered next.

Modified Loh (1992)

As suggested by Loh (1992), a formalization of the half-normal plot of the unsigned
contrasts can be done as follows: (a) the inliers are those not exceeding four times the median
of the unsigned contrasts; (b) fit the least-squares line through origin of all ordered unsigned
contrasts against their respective expected standard half-normal order statistics to obtain a
slope estimate f3;; (c) fit the least-squares line through origin of the ordered set of inliers
defined in (a) against their respective expected standard half-normal order statistics to obtain
a slope estimate f; (d) the test for presence of active effects is based on R = B / B, which
rejects for large values of R; (e) identify the active effects corresponding to those outliers
exceeding the prediction interval based on fitted line to the inliers in (c) above; i.e., ||c|q) —
,[§2|z|(1)k| > So(k' Firm—1,y)/%(1 + w)!/? where m is the number of inliers, &' = ceiling[k/4],

Sy is the root mean square error of the fitted line in (c), and w = |z|%,)k/ ey |z|(2i)k.

Modified Schneider et al. (1993) and Lenth (1989)
 Schneider et al. (1993) and Lenth (1989) estimate 7 based on censoring and trimming.
This could be done sequentially by dropping the largest contrast and applying the procedures

on the remaining contrasts whose sample size is one less.
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Probability Plot Correlation Coefficient
As a measure of linearity of a probability plot, Filliben (1975) proposed calculating the
correlation coefficient between the ordered contrasts c(;) and the median standard normal

order statistics Z)x.

k k k

Rcorr = Y _ (26 — 2)(c) — €)/ (\JE(E(,-),, - 2)2\| > (e — 6)2) . (24)
=1 =1 =1

Note the similarity with the modified Shapiro-Wilk statistic W' in (12) except that

medians are used instead of means. Again because of the arbitrariness of the labels, we

will consider a half-normal version which uses unsigned contrasts |c;| and expected standard

half-normal order statistics |z|(;, (instead of medians) in (24) above. Small values of Rcorr

suggest the presence of active effects.

Half-Normal Shapiro-Wilk Test

While Shapiro-Wilk (1965) suggested a half-normal version, it has apparently not been
discussed further in the literature. In the present context, it is natural to consider this version
since working with the unsigned contrasts |c;| removes the arbitrariness of the labels. Using
the means, variances and covariances of the standard half-normal order statistics tabulated
by Govindarajulu and Eisenstat (1965), the Best Linear Unbiased Estimator (BLUE) of 7
based on the m smallest order statistics is given by (see Balakrishnan and Cohen, 1991, p.

74)

feLus = 57| ¢ |()/(T 7" 1), (25)
where | ¢ |() denotes the vector of m smallest |c;|, # is the vector of the means of the m
smallest standard half-normal order statistics in a sample of size k and Y is the variance-

covariance matrix of these order statistics. See Tables A1 and A2 in the Appendix for the
coefficients used to compute (25) for n=8 and n=16, respectively. Since the MLE of 7 based

18



on the |¢;| values is

1 k
TMLE = EZIQP,
=1

we consider a Shapiro-Wilk type goodness-of-fit test given by

HSW = 7gLug/™MLE, (26)

which suggests the presence of active effects for small values of HSW. This statistic can
be used sequentially by removing the largest unsigned contrast and so forth. Analogous to
the Shapiro-Wilk test, the critical region was taken to be small values of HSW which was

confirmed by empirical analysis.

Dispersion Test
Since the |c;| have a half-normal distribution (under all inert effects), the ordered |c|(;
on average should be close to 7|z|;)x. Consequently, we propose a dispersion test procedure

based on the m smallest |c,| values, using the statistic

1 m Icl(z) | )2
D, =— E —_— 1] . 27
(PSE |z|(.-)1. (27)

m iz
Note that since PSE is a “robust” estimator of 7, a significant departure of |c|(;)/PSE from
its expected value |z|(;)x (under all inert effects) suggests an active contrast so that the test

rejects for large values of D,, in (27). This statistic can also be used sequentially.

4. A Comparison Study

Limited studies comparing only some of the existing methods listed above have been
done: Zahn (1975b), Voss (1988), Berk and Picard (1991), Loh (1992), Dong (1993) and
Haaland and O’Connell (1993). Because the off-the-shelf performance of these methods is
not the same when all effects are inert, it is difficult to compare the power of the various

methods directly. Table 1 gives' the off-the-shelf performance of the existing methods when all
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effects are inert: DANG59 for Daniel (1959), HB69 for Holms and Berretoni (1969), ZAHNT75
for Zahn (1975a, version S), STUKS82 for Seheult and Tukey (1982), BMS386 for Box and
Meyer (1986), JTUKS87 for Johnson and Tukey (1987), LEN89 for Lenth (1989), BEN89 for
Benski (1989), BIS89 for Bissell (1989), BP91 for Berk and Picard (1991), HLOH92 for the
half-normal version motivated by Loh (1992) and presented in Section 3, JP92 for Juan and
Pena (1992), SKW93 for Schneider et al. (1993) and DONG93 for Dong (1993). Based on
10,000 simulations for a 16 run experimént (k=15), Table 1 gives the observed proportioﬁ of
simulations that zero to eight effects were declared active when all effects were inert. Note
that no two procedures have exactly the same performé.nce.

Two summary measures which will be useful for reference are the experimentwise error
rate (EER) and the individual error rate (IER). Let p; denote the proportion of simulations
for i effects declared active. Then EER is proportion of the simulations when one or more
effects is declared active, 1—po. The IER is the average proportion of inactive effects declared
active, Y (¢/k)p;. This definition of IER when all effects are inactive can be extended to the
case when some effects are active by suitably changing k to the number of inactive effects.
Note that the EER and IER given in Table 1 vary across the different methods. »

The different off-the-shelf performance of these methods depend in part on how they were
designed which often use the IER or EER criteria. DAN59 (critical values from Zahn 1975a)
and ZAHN75 attempt to control IER at 0.05. Note that DAN59 can detect at most four
effects. Also, ZAHNT75 was used to detect at most four effects here. HB69 was started by
pooling the nine smallest effects and used apoor= 0.25 and @ina=0.05 so that IER at 0.05 is
implied. LEN89, BIS89, SKW93 and DONG93 as reported here attempt to control IER at
0.05. Differences for these tests arise from approximate distributions used in calculating the
critical values. Also, an attempt to control EER can be done using a suitable choice of IER
based on simultaneously testing k contrasts per experiment. This is the basis for JP92 which
attempts to control EER at 0.05 (but still turns out to be as large as 0.201). BM86 uses
(tactive, K) = (0.2,10) and a marginal posterior probability threshold of 0.5. There were no
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Table 1: Off-the-Shelf Performance of Existing Methods
p; = observed proportion of simulations detecting i effects

under all inert effects for 16 run design
(* indicates > 8 declared effects)

number of declared effects

method 0 1 2 3 4 5 6 7 8 IER | EER
DANS59 598 .193 .093 .050 .065 0527 | .402
HB69 .629 .157 .067 .045 .033 .029 .042 0634 | .371
ZAHNT5 | .618 .190 .089 .048 .055 .0487 | .382
STUKS82 | .742 .129 .054 .026 .017 .012 .008 .005 .005* | .0387 | .258
BMS86 748 .176 .044 .016 .007 .004 .003 .002 .000 |.0262 [ .252
JTUKS87 | .950 .034 .010 .003 .002 .001 .001 .000 .000 | .0054 | .050
LENS89 .755 144 .054 .024 .013 .007 .003 .001 .0290 | .245
BEN89 952 .037 .008 .002 .001 .001 .000 0037 | .048
BIS89 .834 .118 .032 .011 .004 .001 .000 .0157 | .166
BP91 .555 .259 .119 .050 .017 .004 .000 0492 | .445
HLOH92 | .951 .017 .018 .010 .004 .001 .000 .0070 | .049
JP92 799 .104 .039 .021 .014 .010 .006 .004 .003* | .0294 | .201
SKW93 |.590 .254 .105 .038 .011 .002 .000 0421 | .410
'DONG93 | .569 .302 .085 .029 .011 .004 .001 .000 .0418 | .431
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parameters to set for STUK82. BEN89 used 0.05 levels for the normality test (for presence
of active effects) and the pooled normality-outlier test .(for identification of active effects).
Thus, the initial test controls the EER at 0.05. BP91 controls IER exactly at 0.05. HLOH92
used a 0.05 level test for the presence of active effects and a 95% simultaneous prediction
interval for identifying the active effects. Consequently, EER is controlled at 0.05. JTUKS87
attempts to control IER at 0.05 (values for 11-14 are not given in Johnson and Tukey (1987)
and were simulated based on 10,000 samples). -

The challenge is then to compare these methods on an equal basis. Note that the essence
of most of these methods except the hybrid ones (Benski 1989, Loh 1992) is a single statis-
tic that can be used for deciding whether the effect corresponding to the largest unsigned
contrast is active or not. This statistic can then be used sequentially to consider the next
largest unsigned contrast and so forth. The resulting sequential procedures using the various
statistics can then be calibrated so that all have the same performance when all effects are
inert, i.e., the same p;. Thus, the main objective of our comparative study is to identify
which statistics inherently perform better when there are active effects. The study will focus
on designs with n=8 and n=16 runs (i.e., k=7 and k=15). |

DANS59 (1), ZAHN75 (4), JTUKS87 (7), LEN89 (11), JP92 (21), SKW93 (23) and DONG93
(22) which compute standardized contrasts already have the form of a single statistic.
STUKS82 can be adapted to have the same form using (5) based on the interquartile range,
- dr. Recall that this is related to the second test of Benski (1989) and the first test of Loh
(1992). Note that DAN59, LEN89, JP92 and DONGY3 use a fixed denominator. The de-
nominator for ZAHN75(m) is based on the m smallest unsigned contrasts but the coefficients
|z|(se» depend on k', the current number of contrasts being considered. For k=15, DAN59(9)
which standardizes the contrasts by |c|) will be used since DAN59(11) can only detect at
most four effects; consequently, the performance of DAN59(11) with all inert effects will
not be comparable. ZAHN75(11) can detect more than four effects although its power is
expected to be significantly diminished. Similarly, DAN59(4) is used for k=7. Modified

22



versions of SKW93 and LEN89 will also be studied which account for ', the current number
of contrasts being considered, so that their denominators are variable. MDONG refers to
the procedure which uses the iterative estimate of 7 based on (22) proposed by Dong (1993).
Note that the denominator for MDONG is fixed.

HB69 (2) and BP91 (14) compute standardized mean squares so that they also have this -
form of a single statistic. Recall that HB69 starts out by pooling the m=4(=9) smallest
mean squares when n==8(=16) and possibly pools addiﬁona.l mean squares. In contrast,
BP91 pools the m=4(=9) smallest mean squares when n=8(=16) in a fixed manner.

BMS86 can be adapted using the marginal posterior probability of the largest unsigned
contrast as the single statistic.

All the methods discussed thus far focus on the largest contrast directly which will be
referred to as directed tests in the following. Contrast this with BIS89 which is designed to
detect the presence of one or more active effects and which we refer to as a composite test. It
is not specifically directed at the largest contrast but nevertheless can be used sequentially
as proposed. The new composite test statistics DISP (27), CORR (24) and HSW (26)
presented in Section 3 can also be used sequentially. For HSW, m=k is used. Finally, a
modified method based on Le and Zamar (1992) and denoted by MLZAM uses (19) in place
of (17). MLZAM is also a composite test.

BEN89 and HLOH92 will not be considered further because they are hybrid tests and
cannot be put in this form.

Some details of the calibration for n=8(=16) will be discussed next. For each of the
methods listed above, critical values were chosen to ensure that p=(0.6,0.24,0.096,0.064)
for n=8 and p=(0.6,0.24,0.096,0.038,0.015,0.006,0.004) for n=16, where p denotes the vec-
tor of p;, the probability of declaring i effects active when all effects are inert. The sum-
mary measures EER = 0.40 and IER=0.088 for n=8 (=0.044 for n=16). Note that each
method as implemented can detect at most three and six active effects, respectiw}ely. The

critical values for the ith largest unsigned contrast were obtained by simulation and were
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based on 10,000 samples whose statistics for all larger unsigned contrasts had exceeded their
corresponding critical values. The critical value is then found by identifying the 0.60 per-
centile of the 10,000 statistics. For n=8, the empirical 0.50 and 0.60 percentiles of JTUKS87
test statistic for the largest unsigned contrast were the same because of its discreteness,
so that it could not be calibrated. Consequently, JTUK87 was not included in the stu&y
for n=8. Also, for n=16, BM86 could not be calibrated exactly because the simulation
time required to calculate the critical values as discussed above is prohibitive. Instead,
those effects whose marginal posterior probability exceeded 0.357073 were declared active;
0.357073 is the 0.60 percentile of the maximum marginal posterior probability of 15 con-
trasts under all inert effects so that EER is controlled at 0.40 like the rest of the proce-
dures. Using the same threshold for testing the next largest unsigned contrast and so forth
gave a p=(0.602,0.258,0.081,0.030,0.012,0.007,0.005,0.004,0.001) which is surprisingly close
to p=(0.6,0.24,0.096,0.038,0.015,0.006,0.004) for the calibrated procedures.

Since the various methods are calibrated, their power can be investigated under various
scenarios. This was also done by simulation based on 10,000 samples. For n=8, one to three
active effects all having the same magnitude were studied whose sizes were from 0.50 to
30. Recall that o denotes the error standard deviation not the contrast standard error. For
n=16, one; two, four and six active effects all having the same magnitude from 0.50 to 3o
were studied. Figures la-c for n=8 and Figures 2a-d for n=16 display the power or average
proportion of active effects that were declared active.

Some conclusions from the simulation study follow in which #AE denotes the number of

active effects:

e All the methods are comparable for small size eﬂ'ects; say 0.50, which exhibit little
power and depend little on the #AE and the run size n.

e Except for BIS89 (n=16, #AE=6), the power increases as the size of the active effects

increases. Note that the effects need to be rather large relative to the error standard
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deviation o. For example, the power is around 0.7(0.45) for a single 1.5¢0 effect for

n=16(=8).
The power decreases as the number of active effects increases.
Even in terms of equal proportions #AE /n, the power is larger for n=16.

The directed methods which focus on the current largest unsigned contrast tend to
perform better than the composite methods, BIS89, MLZAM, DISP, CORR and HSW.
HSW is a goodness-of-fit procedure which tests for any violation of half-normality and
is not directed specifically for detecting extreme values; this explains why its power is
not as high as those which are so directed. MLZAM is an exception which performs
surprisingly well, however. CORR is clearly the worst of all the composite tests.

BIS89, a composite procedure appears promising say for 25% #AE but then its per-
formance seriously degrades at 40% #AE. This can be explained since the variance of
the mean squares will tend to decrease when there are too many active effects (i.e.,
the roles of the inert and active contrasts are switched) while their mean increases

resulting in small values for (13). This is clearly an undesirable property.

Most of the directed methods are similar. ZAHN75(4 and 9 for n=8 and 16, respec-
tively), HB69, and BP91 have the best performance for #AE=3 and n=8 (#AE=6
and n=16) but recall that theée methods assume at most three and six active effects
when n=8 and 16, respectively. Note ZAHN75(11) for n=16 performs poorly when
#AE = 6 so that ZAHN75(9) is preferable in this situation; ZAHN75(9)’s power for
small #AE is reduced, but its loss of power is negligible.

Most of the directed methods only differ in the estimator for 7. Various proposals

were motivated by better mean square error properties of the estimators. For example,
Szann outperforms |c|(11)15 (Zahn 1975b). Juan and Pena (1992) showed that IMAD,
performed better than Lenth’s (1989) PSE and the estimator based on the dp used
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by STUKS82 performed much worse than both IMAD, and PSE. SKW93 was moti-
vated similarly with censoring being used to reduce the bias of the estimator. Finally,
DONG93 used trimmed means instead of the trimmed medians used by PSE because
of improved efficiency. Yet, the gains in estimator performance appear to have little
impact on the test performance. For example, JP92 (IMAD,) does not outperform
LEN89 (PSE). DONG93, in fact does worse for large #AE; the threshold for active
contrasts 2.5s¢ has a greater impact on the mean square error of DONG93 (inflating

it) than on the mean square error of PSE.

MLEN and MSKW do not outperform LEN89 and SKW93, respectively. It appears

that calculation using the current number of contrasts offers little if any improvement.

MDONG has almost the same power as DONG93 for small #AE, and actually performs
worse as #AE increases. Thus, there is no real benefit offered by the iteration in

estimating 7.

BMS89 is competitive with the non-Bayesian directed procedures. It does somewhat
worse for larger #AE, but recall that apeior was set at 0.2, i.e., it was designed for 20%
H#AE. |

Besides power, the IER or average proportion of inactive effects that were declared active

as displayed in Figures 3a-c for n=8 and Figures 4a-d for n=16 needs to be studied. (Under
all inert effects, the IER is .088 and .044 for n=8 and 16, respectively.) Note that only the

three (six) largest effects are tested for n=8 (=16) so that caution is needed when comparing

the results for different number of inactive effects. For example, Figures 3a and 3b show

that IER does not decrease significantly as the size of the active effects increases; in fact,

the IER of some of the procedures do not even behave monotonically. Contrast this with

the behavior of the IER in Figure 3c which is clearly monotonic as the size of the active

effects increases; here there are three active effects but only the three largest contrasts are

being tested. Similar patterns may be seen in Figures 4a-d which display the IER results for
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n=16. Note that among the methods with non-monotonic IER behavior, the performance of
DONG and MDONG are clearly the worst. It is interesting that these methods are similar in
principle to Lenth’s (1989) method, which also suffers from the same non-monotonic behavior
but to a much lesser degree.

Some other comments are:

o The results for HSW suggest that BEN89 will not be superior since it uses the Shapiro-
Wilk test. Also, BEN89 works with the contrasts rather than the unsigned contrasts

so that the arbitrariness of the factor level labels is not a.ccounted for.

o BMS86 requires a considerable amount of computation, but its performance is only com-
parable to the ZAHN75, HB69 and BP91, of which ZAHN75 and BP91 are especially

simple to implement.

5. Discussion
Recently, several papers have proposed methods but only compared their performance
with some existing methods using some data sets. Based on this paper, some recommenda-

tions for evaluating new procedures are:

e A simulation study to evaluate its performance is needed to compare the new method
with existing ones. The calibration problem needs to be dealt with to provide a fair

comparison. At a minimum, it should report the p; values under all inert effects.

e In addition to examining the power of the proposed procedure, its IER behavior should
also be studied. In particular, a nearly monotonic decreasing IER as the size of the

active effects increases is desirable.

e One should check to see if the method is exploiting the following properties of the

contrasts: (1) The contrasts have equal variances and are normally distributed. (2)
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Contrasts for inert effects have zero means while those for estimating active effects

have non-zero means.

o The method should not depend on the arbitrariness of the factor level labels. For

example, methods that work with unsigned or squared contrasts avoids this problem.

In the course of this research, several issues and possibility of connections with other

areas in statistics arose which warrant more study.

o What are desirable EER, IER and p; when all effects are inert? For example, an EER
of 0.40 was used in the simulation study which some might consider large, but yet the
IER was 0.044 for n=16. Note that in the industrial setting there is a particular interest
in not missing active effects which represent lost opportunities for improving quality.
Also, this level of EER is conservative in light of the “fire-fighting” methods commonly
employed in industry; i.e., a process change is made and if the quality characteristic
is better than before the change (using no measure of variability), it is concluded that

the process change has successfully improved quality.

e Should other measures of performance be used such as an overall performance mea-
sure that accounts for both a procedure’s ability to detect active effects as well as its

tendency to identify inactive effects as active?

e Should other non-null scenarios be considered such as different sized active effects? If

so, what would be appropriate choices for the sizes of the active effects?

o Are there non-sequential procedures which have better performance or are sequential

directed tests preferable?

e Can gains be made by combining methods, i.e., the hybrid methods? For example, Loh
(1992) indicated that the use of the prediction intervals for identifying active effects
outperformed the use of outlier test based on the interquartile range which was used

by Benski (1989).
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e Can information on how many active effects there are likely to be present in the ex-

periment be exploited?

o There are connections with other areas of statistics. For example, the work of Le
and Zamar (1992) drew on the robust statistics literature. Seheult and Tukey (1982)
and Benski (1989) viewed the active effects as outliers which has an extensive literature
(Barnett and Lewis 1994). The ranking and selection (Gupta and Panchapakesan 1979)
and multiple comparison (Hochberg and Tamhane 1987) literatures are also likely to
be relevant. It will interesting to explore how these varied works may help to suggest

new and possibly optimal tests and alternative ways to evaluate such methods.

6. Specific Recommendations

To conclude, we briefly summarize the results of our simulation study in terms of specific
recommendations for the practitioner. Bear in mind that the study investigated a sequential
version of most existing tests as well as the new ones proposed in Section 3. The recommen-

dations are:

e Most of the directed methods perform similarly. Of these, the statistics for BP91 and
LENS89 are particularly simple to calculate.

e The power for BIS89 seriously degrades when there are many active effects so that this

method is not recommended.

e For the methods DONG and MDONG, the percentage of inactive effects identified as
active depends non-monotonically on the size of the active effects. Because this is

clearly an undesirable property, these two methods are not recommended.

e Especially for n=8, the substantial variability exhibited in the probability plots when
all effects are inert makes it difficult to both identify active effects and not misidentify

inert effects when some effects are active. Consequently, objective methods, which
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directly account for this variability, are preferable. Also for n=8, the real effects need

to be rather large relative to the error standard deviation in order to be detected.
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Appendix
Tables used to implement HSW (26) are given in this appendix.

Half-Normal Shapiro-Wilk Test
The statistic 7sLug (25) can be written as a linear combination of the k'(m=k') order

statistics whose coefficients are given in Table Al for n=8 and Table A2 for n=16.

Table Al: Half-Normal Shapiro-Wilk Test Coefficients for n=8
(order i corresponds to |c|x)wr)

kl

order 4 5 6 7

1 .262082 .215692 .183441 .159674

2 .553365 .447641 .376949  .326047

3 911363 .711950 .589027 .504204
4 1.464728 1.044305 .834874 .702123
5
6
7

.0 1.569834 1.149021 .934437
.0 .0 1.653996 1.234854
.0 .0 .0 1.723853
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Table A2: Half-Normal Shapiro-Wilk Test Coeflicients for n=16

(order i corresponds to |c|(iykr)

kl
order 4 5 6 7 8 9 10 11 12 13 14 15
1 .0939 .0636 .0461 .0353 .0279 .0224 .0186 .0156 - .0137 .0116 .0100 .0089
2 .1599 .1048 .0747 .0559 .0437 .0354 .0289 .0246 .0205 .0180 .0158 .0139
3 .2496 .1557 .1079 .0798 .0615 .0491 .0402 .0331 .0282 .0240 .0214 .0184
4 4502 .2242 .1485 .1073 .0816 .0643 .0522 .0434 .0367 .0312 .0265 .0237
5 .0 .3786 .2031 .1406 .1047 .0817 .0657 .0542 .0453 .0390 .0338 .0292
6 .0 .0 3279 .1857 .1330 .1015 .0805 .0658 .0549 .0466 .0398 .0348
7 .0 .0 .0 2899 .1711 .1258 .0980 .0790 .0656 .0548 .0474 .0408
8 .0 .0 .0 .0 - .2603 .1587 .1192 .0944 .0770 .0648 .0548 .0476
9 .0 .0 .0 .0 .0 2366 .1481 .1132 .0908 .0750 .0634 .0543
10 .0 .0 .0 .0 .0 .0 2170 .1388 .1077 .0876 .0733 .0625
1 .0 .0 .0 .0 .0 .0 .0 .2006 .1307 .1027 .0842 .0709
12 .0 .0 .0 .0 .0 .0 .0 .0 .1867 .1236 .0982 .0814
13 .0 .0 .0 .0 .0 .0 .0 .0 .0 1746  .1173  .0940
14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 1641 .1115
15 .0 .0 .0 .0 .0 .0 .0 0 .0 .0 .0 .1549
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