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~ ABSTRACT

A supersaturated design investigates & factors in only n(< k + 1) experimental runs. The goal here
is to identify, presumably only a few, relatively dominant effects with a minimum cost. While the
construction of supersaturated designs has been widely explored, the data analysis aspect of such
designs remains primitive. Obviously, if a large number of the factors under investigation have
significant effects, their estimation will be masked, making it, in general, not possible to identify
any individual effects. We study the following problem: How many dominant effects are allowed
to assure a meaningful data analysis for a supersaturated design with the maximum correlation p?
The results obtained support the fundamental concern of the E(s®) criterion introduced by Booth
and Cox (1962). Furthermore, under normality assumption, we also obtained a lower bound of
the probability that the factor with the largest estimated effect has indeed the largest true effect.
This bound depends on the-relative size of the large effect and the-maximum correlation of the
underlying design. Under some mild assumptions, we show that this probability is satisfactorily
large. Consequently, by carefully constructing supersaturated designs, we not only save the cost

of the experiment, but also make reliable inferences.
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1 Introduction

Many preliminary industrial screening experiments typically contain a large number of po-
tentially relevant factors. Among them, only a few are believed to be active. The goal here
is to identify those (relatively) few dominant active factors with the least possible number
of experimental runs. A (two-level) supersaturated design is a matrix of +1’s with n rows
and typically, a large number of columns k which is much larger than n in general. Hence,
it studies a large number (k) factors with a few (n) runs.

First constructed systematically by Booth and Cox (1962), supersaturated designs have
received a great deal of attention in the recent literature (see, Lin, 1991, 1993, 1995; Wu,
1993; Nguyen, 1994; Deng, Lin and Wang, 1994; and Seewald, 1994). While the construction
of supersaturated designs has been widely explored, the data analysis aspect of such designs
remains primitive. This is the major interest of this paper.

Naturally, such a design will not allow us to estimate main effects of all k factors. This
is, however, not always needed if we believe that only a small number (p) of them are active.
The underlying assumption is that if there are only a few active factors, we should be able
to identify them. Once they are identified, the design can then be projected onto a lower
dimension space. The resulting design is then an under-saturated design, and the ordinary
data analysis can then be applied.

To assure that all active factors can be properly estimated after the projection, we must
carefully select the supersaturated design. Suppose, for example, it is known that there are
at most four active effects among all the factors. To assure identifiability, we need to select
a supersaturated design such that any four columns of the design are linearly independent
among others. We shall show that the correlations among the columns of the design are
crucial to guarantee linear independence. This is, in fact, the fundamental concern in Booth
and Cox (1962)’s E(s?) criterion.

Furthermore, in order to project the design into the set of active factors, it is necessary

to identify those active factors correctly. Due to random noises and the partial aliasing



structure of the design, we may not always get the correct set of active factors. However,
we shall show that if the effects of the active factors are reasonably large as compared with
inert factors and random noise, the probability of obtaining the correct set of active factors

is satisfactorily high.

2 Estimability and Correlation Structure

Consider a supersaturated design in n experimental runs to investigate £ (> n — 1) factors.

If X denotes the n X k design matrix (without intercept column), our model is
Y=pl+XB+e

where Y is the (n x 1) observable data vector; p is the intercept term and 1 is an n-vector
of 1’s; B is a (k x 1) fixed parameter vector for the unknown factor effects; and e is a vector
assumed to be distributed as N(0, o2I,). Because k is larger than n — 1, it is clear that the
X matrix cannot be of full rank and orthogonality is only possible for certain pairs of design
columns.

Note that once those active factors are identified, the whole design X is then projected
into a much lower dimension. Hence, the estimability of the effects of these factors depends
on whether or not the projected design has full rank. We will show that the largest number
of active factors, which can be identified from a supersaturated design, depends on the
correlations between columns of X. Let N = {i1,45,...,%} and A = {ip41,%p42,---,%k}
denote indexes of inert and active factors, respectively, so that NUA = {1,2,...,k}. Also,
denote the projective design matrix as X, and ¢; the columns of X, ¢ = 1,2,...,k. Defining

Corr(&;,&;) = €i€;/n for any 1 < 4,5 < k, we have:
THEOREM 1 If |Corr(:,é5)| < p = p%l for all i # j, then X, is of full rank.

Proof: Write X} X, = (z;;). It is easy to see that z;; = nCorr(;,¢;). Hence, (i) z;; = n and
(ii) |zi;| < pn, for all 4 # j. Therefore @;; > 3.; |2i;|. This implies that XX, is positively
definite. Hence, X, is nonsingular. Q.E.D.



Note that if X = (¢1,...,¢) is a supersaturated design, then X = (£rays - -y Er()
for any choice of & signs and the permutation function 7 is an equivalent design. We will
not distinguish equivalent designs in this paper.

When max [Corr(&;,€;)| = p(= p%l) for ¢ # 7, there is no definite answer to this problem.

A simple counter-example is the supersaturated design

1 -1
1 1|

Let p = 2, we have Corr(é1,8) =1=1/(p — 1). However, X, = X is singular.

X =

Despite this counter-example, X, of most useful supersaturated designs has full rank
when |Corr(&;,€;)| < 1/(p —1). For the 12-run supersaturated designs given by Lin (1991,
1993, 1995) and Wu(1993), it can be verified that any submatrice consisting of four columns
has full rank.

LEMMA 1 Let X = (é1,...,&k) of size n X k be a supersaturated design with entries +1. If
[Corr(&:,&)| < p=1/(p —1) for all i # 7 and a submatriz X, = (&1,...,&p,) is singular,
then there is an equivalent submatriz of X, such that X;X,/n = (1 + p)I — p11*.

Proof: If X, is singular and |Corr(¢;,&;)] < p=1/(p — 1) for all ¢ # j, we must be able to
find a &;, say &1, such that |Corr(&1,€;)| = p for all j # 1, else X, is not singular by using the
same proof of Theorem 1. Clearly, there is an equivalent design such that Corr(¢1,;) = —p

for all j # 1. So
1 —p1t
o I |

Now we make an induction assumption that X, is singular only if Corr(¢;,¢;) = £1/(p— 1)

1 —p1t

XX, /n = [pi] =
-pl Y

1 0
—pl Y — p*11t

for 1 < ¢ # 7 < p. This assumption is obviously true for p = 2. Let us assume that it is also
true for p — 1. Then, the above X, is singular if and only if Y — p?11¢ is singular. Note the
order of Y — p?11*is (p — 1) x (p — 1). By the induction assumption, we have, for i # 7,

(pij — P?)/(1—p*) = £1/(p - 2).
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Solving this equation, we get p;; = —1/(p — 1). Q.E.D.

So, for a 12-run supersaturated design with the maximum absolute correlation being 1/3,
if the submatrix X, = (¢1,...,&4) is singular, then 3°;_; & = 0 for an equivalent X,. Clearly,
designs in Lin (1991, 1993, 1995) and Wu (1993) do not contain such structures. Therefore,
the maximum estimable number of factors is at least four.

For a 20-run supersaturated design with maximum correlation 1/4, if the submatrix X5 =
(é1,...,¢s) is singular, then 37, & = 0 after choosing a proper equivalent design. However,
this is impossible since the summation of five +1’s cannot be zero. We can summarize this

example into the following theorem.
THEOREM 2 If |Corr(&;,&5)| < p= ;1—1 for all i # 3, then X,, is nonsingular when p is odd.

Theorems 1 and 2 ensure that if there are at most p active factors, when using a super-
saturated design with maximum correlation less than or equal to 1/(p — 1) for odd p, it is
always possible to estimate all of them. However, in doing so, we have to first identify these
active factors. Thus, an important question that needs to be addressed is: Assuming there
are only p active factors, what is the probability these p factors have the largest estimated
effects? The answer to this question depends on the relative size of their effects and also

partially on the estimation method. We will discuss this problem in the next section.

3 Identifiability

The conventional point estimation for 3;’s is
Bi= (5% —9p)/2 ==Y/n (1)

where y_(";) and 7; are the averages of responses y;’s for factor z; being high-(+) and low-(-)
level respectively. Consequently we have E (,31) = Bi+ 32,4 pijB;, where p;; is the correlation

between columns ¢; and ;. Suppose [,, is the maximal effect among all 8;’s. We are



interested in the probability that the estimate of 3;, ,@m, will remain the largest among all

estimates. To compute ¢m=Prob[Bm > MaX;tm ,C;’,-], the following two lemmas are needed.

LEMMA 2 Assume Yy,...,Y, are independent and normally distributed with the same vari-
ance and the design satisfies condition p < 1/3. Let B;,3 = 1,...,k be defined as in (1),
Orma = Prob[Bm > Ba], and ¢mp = Prob[By > By |, then

Prob[,ém > maz(,éa,éb)] > Pma * Pmb-

Proof. Note that

Prob[B, > maw(,@a,,éb)] = Prob[8,, > Ba|,[§m > Bb]Prob[Bm > B).

Hence, we need only to show

Prob[Bm > BalBm > Bs) > Prob|Bm > Bal.

Let Z, = Bm — Ba and Z, = Bm — Bb- By the conditions of the lemma, the correlation between

two estimates is no larger than 1/3, and we have Cov(Z;, Z;) > 0. So,
Prob[Bn > BalBm > o] = Prob[Z; > 0|Z, > 0] > Prob[Z; > 0]

as required. Q.E.D.

~ a

Following Lemma 2, by induction we have ¢,, = #m ;=1 Pmi where ¢,; = Prob[S3,, > £i].

LEMMA 3 Given m and 1, ¢p; > P (, /m . 5,m~>, where §,,; = (E,@m — EBi)/a and ®

is the standard normal cumulative distribution function.
Proof: First note that B, — B; ~ N(E(Bm — i), X=emi) p"“ o). Thus,

Prob[ﬁm — Bi > 0] — P[(ﬂm %) _ (ﬂm t) E(ﬁm ) ]

Vel =pmi)o /21— pmi)o

o | VREBn - z)]_@( n )
V21 = pmi) 20 = pmi) )"
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Q.E.D.

Note that whether ,ém is larger than ,5’, depends on several factors. One important factor
is the value of p,;. A positive p,,; makes n/[2(1— pm;)] larger and hence improves the chance
to identify B,,. On the other hand, a positive p,,; also brings EB; closer to Ef,, which makes
8m; smaller and hence reduces the chance to identify S,,.

It is straightforward then from lemmas 2 and 3, that:

THEOREM 3 The probability that the ,ém 1s the largest estimated effect is

k n
Pm 2 i;enl:,[iﬂq> ( 2(1 — pmi) '5mi) '

The lower bounds given in Theorem 3 can be calculated directly for any specific design.
Table 1 shows some simulation results based on the supersaturated designs constructed by
Lin (1991, 1993 and 1995) and Wu (1993). For each case, given the design and the number
of factors, the simulations were conducted in the following way:

(a) Randomly select a number m from 1 to k. Let all 8; = 0 when j # m, and B,=1 or
2 separately.

(b) Generate n of ¢’s from N(0,1) to construct the responses y; = Sk B + €,
1=1,2,...,n.

(c) Obtain Bj by Equation (1) for all 7; and record whether B, is indeed the maximum.

(d) Repeat (a) to (c) 5000 times.

Note that the supersaturated designs constructed by half-fraction Hadamard matrices
(Lin, 1993) can only examine k = N — 2 factors in n = N/2 runs, while the 12-run super-
saturated design using interaction columns (Lin, 1991 and 1995; Wu, 1993) can study as
many as 66 factors. The case k=10 is not supersaturated, but is a reference benchmark to
be compared with the performance of supersaturated designs. It is clear that in all the cases,

the lower bounds are satisfactorily large.

Table 1 about here



Supersaturated designs with |p;;| < 1/3 were recommended by Lin (1995). In fact, all
designs discussed in Table 1 have such a property. In this case, we can extend Theorem 3

to:

COROLLARY 1 If |pi;| < 1/3, then ¢, > [IF ® ( 3n , 6,,”-).

i#m,i=1

Table 2 shows lower bound probabilities as given in Corollary 1 for various combinations of
(n,k, 6m;). Note that these probabilities do not depend on the design. Also, the probabilities
given here are smaller than the probabilities given in Table 1, as expected. In general, if
dmi > 2, the largest effect can always be correctly identified, a similar observation made by
Lin (1995).

Table 2 about here
If there is a set of factors which are active, a bound can be found as follows. Recall that

for any two events E; and E,,
PI‘Ob(El.Ez) _>_ Pl.'Ob(.E]_) + PI‘Ob(Eg) - 1.

Let A be the set of active factors. For any m € A, define 1, = Prob(3,, > B;,for i ¢ A).
Then, the probability that Bm: and the ,émr: are the largest estimated effects is ¥, + 1pn — 1.
If both 1,,» and ,,» are larger than 99%, this bound is 98%. Obviously, we have 1, > ¢,
for any m € A. Hence, a lower bound of %,, can be obtained from the last theorem.

More generally, we have

THEOREM 4 Let A = 1,2,...,p correspond to p active factors in the design. Assume the
conditions in Theorem 1 are satisfied. Then, the probability that ,[;’,-,i =1,...,p are the p

largest estimated factors is no less than

1+t —(p—1).

For example, if p = 4 and each of ¥;,7 = 1,...,p is larger than 99%, this bound becomes

96%— a very satisfactorily large lower-bound probability. However, the bound decreases
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rapidly when p increases or the 1;’s become smaller. Of course, for such cases, a supersatu-

rated design is not recommended.

Note that the results given above can be straightforwardly extended to the reverse case

to find Prob[Bw < ,31] where f3,, is the minimal effect among all 8;’s.

4 Remarks

Another possible point estimate for B is via the least squares method. Namely, B¢ =
(X'X)~X'y. Because of the singularity of X'X in a supersaturated design setting, the least
squares estimate BG = (X'X)~X'y is not unique. However, one can show that the B defined

in (1) is not one of the least square estimates. They are intrinsically different from Bg.

LEMMA 4 The conventional estimator 3 is not a least squares estimator.

A

Proof. Note that E(8) = X'XB/n and Var(8) = (X'X)o?/n?; while E(Bg) =
(X'X)"X'XS and Var(8g) = (X'X)~ o2 Hence, if 3 is one of the least squares estimate
of (3, there must be a (X'X)~, such that X'X/n = (X'X)"X'X and (X'X)/n? = (X'X)".
However, these two identities imply % is idempotent. On the other hand, the trace (sum
of diagonal elements) of X'TX is obviously k from the structure of the supersaturated designs,
hence it too has full rank. A k X k matrix which is :dempotent and of full rank at the same

time, has to be the identity matrix. This is impossible for a supersaturated design since

k> n. Q.ED.

Note that we have implicitly assumed that all columns of X have half +1’s and half —1’s.
This is necessary for ignoring the intercept term in the model.

We prefer to use ,3 here, because: (1) BG is not unique, and more important, (2) the
screening process typically has only a vague idea of the model, in this case, the criterion

of minimizing the overall residual sum squares (as in obtaining Bg) does not seem very



appropriate.
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Table 1: Successful identification probabilities in 5000 simulations

Design Run g

Number of factors(k)

size 10 20 30 40 50 60
HFHM 12 1 0.9462 0.9062
2 1 1
18 1 0.9888 0.9794 0.9694
2 1 1 1
24 1 0.9950 0.9934 0.9912
2 1 1 1
IntCol 12 1 0.9560 0.9026 0.8556 0.8092 0.7842 0.7530
2 0.9999 1.0000 1.0000 1.0000 0.9999 0.9999

HFHM=Supersaturated designs using half Fraction Hadamard matrices (Lin, 1993)

IntCol=Supersaturated designs using interaction columns (Lin, 1991 and Wu, 1993)
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Table 2: Lower bound probabilities given by Corollary 1

Run 6, Number of factors(k)
size 10 20 30 40 50
12 0.8574 0.7237 0.6092 0.5134 0.4327

0.9999 0.9998 0.9997 0.9996 0.9995

16 0.9374 0.8725 0.8121 0.7558 0.7034
20 0.9726 0.9430 0.9143 0.8865 0.8595

1.000 1.000 1.000 1.000 1.000
24 0.9879 0.9747 0.9616 0.9487 0.9360

1
2
1
2 1.000 1.000 1.000 1.000 1.000
1
2
1
2

1.000 1.000 1.000 1.000 1.000
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