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ABSTRACT

Often experiments using designs with complex aliasing patterns are performed, e.g., two-level
non-geometric Plackett-Burman designs, multi-level and mixed-level fractional factorial designs, two-
level fractional factorial designs with hard-to-control factors and supersaturated designs. Hamada and
Wu (1992) proposed an iterative guided stepwise regression strategy for analyzing the data from such
designs that allowed the entertainment of interactions. Their strategy provides a restricted search in a
rather large model space, however. This paper provides an efficient methodology for searching the model
space more thoroughly and is based on a Bayesian variable selection algorithm. It is shown how the use
of hierarchical priors provides a flexible and powerful way to focus the search on a reasonable class of
models in the model space. The proposed methodology is demonstrated with four examples, three of

which come from actual industrial experiments.
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1 Introduction

Non-geometric (i.e., whose run sizes are not a power of two) Plackett-Burman (1946) (PB) designs
such as those with 12, 20 and 24 runs are popular for screening a large number of two-level factors
because of their run size economy. Traditionally, the analysis of these PB designs has been confined
to main effects only under the assumption that the interactions are negligible. This focus on main
effects is due to the complex aliasing patterns of these designs. Consider the 12-run PB design
with 11 factors in Table 1: for each factor, say X, its main effect is partially aliased with the 45
two-factor interactions not involving X. Because of such complex aliasing patterns, Daniel (1976,
page 294) had reservations about using PB designs even for screening and referred to their complex
aliasing patterns as “hazards.”

Hamada and Wu (1992) went beyond the traditional approach by showing that interactions
could be identified and estimated with reasonable precision from such designs with complex alias-
ing. They proposed an iterative analysis strategy based on the precepts of effect sparsity (i.e.,
experimental variation is attributed to only a few effects) and effect heredity (i.e., a significant
two-factor interaction occurs with at least one of the corresponding main effects being significant)
which exploited the designs’ complex aliasing patterns. Recognizing the potential for entertaining
interactions, the “hazards” of the non-geometric PB designs could now be viewed as “advantages.”
For example, in geometric PB designs (i.e., 2¥~P fractional factorials), a main effect is either or-
thogonal to or completely aliased with an interaction so that if main effect A is completely aliased
with interaction BC, the geometric PB design would provide no information about their separate
effects; in contrast, for a non-geometric PB design, the two effects are partially aliased and can be
decoupled under certain assumptions.

Designs and data with complex aliasing patterns arise in a number of situations and are listed

below:

e two-level factors
In addition to the non-geometric 12, 20, 24 and 28 PB designs (Plackett and Burman 1946),
Hall (1966) gave four non-geometric 16 run designs.

¢ multi-level and mixed level fractional factorials



3%-? fractional factorials are examples of multi-level designs in which complex aliasing arises
if each main effect is decomposed into the linear and quadratic contrasts and each 2-factor
interaction into linear X linear, linear X quadratic, quadratic X linear, and quadratic X
quadratic contrasts. L;g(2 X 37) and L3g(2!! x 31%) are examples of mixed level designs
which accommodate both two-level and three-level factors. See Wang and Wu (1991) for a
large number of classes of mixed-level designs. Wang and Wu (1992) also considered “nearly
orthogonal” designs whose main effects are either orthogonal or nearly orthogonal and which

also have complex aliasing patterns.

¢ hard-to-control factors
There may be some difficulty in controlling the experimental factors exactly so that the
experimental design is not carried out as planned. Consequently, even a 2*¥—? fractional
factorial design will no longer be orthogonal when improperly implemented and therefore
have complex aliasing patterns. Also, a mistake may be made in setting the factors levels for

a particular run which will have the same adverse effect.

e supersaturated designs
Supersaturated designs allow the study of more factors than runs. See some recent work
by Lin (1993) and Wu (1993) which presented designs that have complex aliasing. In fact
those given in Wu (1993) use the partially aliased interaction columns of the PB designs to

accommodate the additional factors.

The analysis strategy in Hamada and Wu (1992) was motivated by the potential infeasibility of

performing all-subsets regression with main effects and all two-factor interactions; namely,
(i) more effects than runs (or observations)

(ii) computationally infeasible, say with 66 effects for a 12-run PB design

(iii) potential unreasonable models with two-factor interactions and no main effects.

The Hamada and Wu (1992) analysis strategy used an iterative stepwise regression approach which

addressed (i) and (ii) and was guided by the principle of effect heredity which addressed (iii). Note



that their strategy did not explicitly impose effect heredity, so models with two-factor interactions
without corresponding main effects may still be obtained.

While providing a feasible alternative to an all-subsets regression, the Hamada and Wu (1992,
p- 132) strategy limits the search in a rather large model space. In fact, Hamada and Wu (1992,
p. 136) modified their original strategy to identify an additional class of models missed by the
original strategy. Moreover, with more effects than runs, there is the possibility of several models
explaining the data equally well which the investigator would want to know. The stepwise strategy
tends to identify a single model, however. Consequently, there is a need for a feasible all-subsets
strategy which addresses (i)-(iii). This is the thrust of the present paper which considers a more
thorough search of the model space in a stochastic fashion and is based on the recent methodology
reported in Chipman (1994). The stochastic search is accomplished using Bayesian variable selection
methods. A suitable class of hierarchical prior distributions focuses the search in the model space
on a reasonable class of models as suggested by (iii) above (i.e., that obey effect heredity). The
stochastic nature of the search means that all models have positive probability of being visited.
The fact that this stochastic search is data guided means two things for this procedure. First, if
there is more than one model suggested by the data, the stochastic search will not get stuck at
one model, because the data will guide the stochastic walk to both models. Second, since the data
will typically suggest that a small subset of the model space is most likely, reasonable estimates of
the probability of these models are available based on many fewer posterior samples than the total
number of models.

The paper is organized as follows. In Section 2, four experiments (three with real data) are given
which illustrate the situations in which complex aliasing arises. In Section 3, a Bayesian variable
selection algorithm which incorporates the hierarchical model requirements, i.e., Bayesian hierar-
chical model selection, is presented. The experiments given in the previous section are analyzed in
Section 4 using the Bayesian hierarchical model selection methodology. The paper concludes with

a discussion in Section 5.



2 Examples

In this section, examples of four experiments illustrating situations in which complex aliasing arises
are given. These include a screening experiment using a Plackett-Burman 12-run design, a mixed-

level design, an experiment with hard-to-control factors and a supersaturated design.

2.1 Screening Experiment

Table 1 presents a 12-run PB design and illustrates its use in a screening context which can ac-
commodate up to 11 factors labeled A-K. The data were originally constructed in Hamada and Wu
(1992) based on the true model Y = A + 2AB + 2AC + € with € ~ N(0,0 = 0.25); i.e., factors
A, B and C are active with the remaining factors D — K inactive. For an actual experiment, see
Hamada and Wu (1992), which reanalyzed a 12-run PB design to improve the reliability of weld
repaired casts, originally due to Hunter, Hodi and Eager (1982)

Table 1: Screening experiment with Plackett-Burman 12-run design and response data

design
A B C D E F G H I J K|response
+ + - + + - - - + - 1.058
+ -+ + + - - - 4+ - + 1.004
-+ + + - - - 4+ - + + -5.200
+ + + - - - 4+ - + + - 5.320
+ + - - -4+ - + 4+ - + 1.022
+ - - -4+ - + + - + + -2.471
- - -+ - + + - + + + 2.809
- -+ -+ + - 4+ + + - -1.272
-+ -+ + - + + + - - -0.955
+ -+ + - + + + - - - 0.644
-+ + -+ + + - - - + -5.025
- - - = - = - - - - - 3.060




Table 2: Blood glucose experiment with mixed-level design and response data

design mean
A G B C D E F H|reading
1 1 1 1 1 1 1 1 97.94
1 1 2 2 2 2 2 2 83.40
1 1 3 3 3 3 3 3 95.88
1 2 1 1 2 2 3 3 88.86
1 2 2 2 3 3 1 1| 106.58
1 2 3 3 1 1 2 2 89.57
1 3 1.2 1 3 2 3 91.98
1 3 2 3 2 1 3 1 98.41
13 3 1 3 2 1 2 87.56
2 1 1 3 3 2 2 1 88.11
21 2 1 1 3 3 2 83.81
2 1 3 2 2 1 1 3 98.27
2 21 2 3 1 3 2 115.52
2 2 2 3 1 2 1 3 94.89
2 2 3 1 2 3 2 1 94.70
2 3 1 3 2 3 1 2 121.62
2 3 2 1 3 1 2 3 93.86
2 3 3 2 1 2 3 1 96.10

2.2 Blood Glucose Experiment Using Mixed-Level Design

Henkin (1986) used an 18-run mixed-level design to study the effect of one two-level factor and
seven three-level factors on blood glucose readings made by a clinical laboratory testing device.
Note that all the factors were quantitative. Here we consider only one aspect of the study which
was to identify factors that affect the mean reading. The design and response data are given in

Table 2.

2.3 Experiment with Hard-to-Control Factors

The design given in Table 3 was used in a real experiment on a wood pulp production process which
studied 11 factors. Quality characteristics such as yield, burst index and opacity were observed.
The process consisted of chemical and mechanical treatments; factors 1-7 involve the chemical

treatment, while factors 8-11 involve the mechanical treatment. The planned experiment was a



Plackett-Burman 20-run design with a center point replicated twice (i.e. the total run size was 22)
. Data from only 19 runs were available since difficulties were encountered in performing three of
the runs from the Plackett-Burman design portion. Also, notice that several of the factors were
hard to control, notably, factors 5, 9 and 11 (wood to liquid ratio, slurry concentrations at two
stages); the planned levels were £1 in runs 1-17 and 0 in runs 18-19. The actual factor levels and

the observed quality characteristic, burst index, are given in Table 3.

Table 3: Experiment with hard-to-control factors, design and response data

design

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 | response
1 -100 1 1 -033 -1 1 0.74 1 -0.89 1.61
-1 -1.00 1 1 163 1 -1 -1.02 1 -0.76 1.97
-1 099 -1 -1 -104 -1 1 -0.55 1 1.85 1.48
1 100 -1 1 182 -1 -1 0.35 1 1.03 0.55
1 117 -1 -1 031 1 1 -0.67 1 -1.08 0.55
-1 -1.00 -1 -1 100 1 -1 1 075 -1 -0.87 1.59
1 1.00 -1 1 -057 1 -1 -1 -119 -1 2.26 1.64
-1 -100 -1 -1 -032 -1 -1 -1 -116 -1 -0.79 1.50
1 100 1 -1 169 -1 1 -1 -1.20 -1 -0.87 1.97

e e e

-1 100 -1 1 132 -1 1 1 -117 -1 2.17 1.67
1 -098 1 -1 157 -1 -1 -1 -141 1 1.12 1.52
-1 100 1 1 161 -1 1 -1 -077 -1 -040 4.37
-1 100 1 -1 -106 1 1 1 045 -1 2.32 2.38
1 100 1 1 076 1 -1 1 -062 -1 -0.83 2.04
-1 100 1 1 -033 1 1 -1 -1.69 1 -1.38 2.24
1 -100 -1 1 136 1 1 -1 335 -1 0.66 1.76
-1 100 -1 1 -023 -1 -1 -1 145 1 -0.65 1.73
0 6060 0 o0 -020 0 O O -0.09 0 0.39 1.74
0O 000 0 O 005 0 0 O 0.58 0 0.16 1.76

2.4 Experiment with Supersaturated Design

Lin (1993) showed that a half-fraction of a Plackett-Burman design could be used as a supersat-
urated design. He illustrated this with a 28-run Plackett-Burman design with 24 factors from an

experiment used to develop an epoxide adhesive system as reported by Williams (1968). The half



fraction (based on an unused orthogonal column, yielding runs 1, 3, 4, 6, 8-10, 13, 17, 22-25, 28)
of the original design along with the corresponding strip adhesion response data are displayed in
Table 4. This illustrates the use of a 14-run design to study 23 factors; note that in the half fraction

factors 13 and 16 were assigned to the same column so that only factor 13 is reported here.

Table 4: Experiment with supersaturated design and response data

design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 |response
11 1-1-1-1 1 1 1 1 1 -1 -1 -1 1-1-1 1-1 -1 -1 1 133
1 -1-1-1-1-1 1 1 1-1 -1 -1 1 1-1 1-1-1 1 1-1 -1 62
1 1-1 1 1-1-1-1-1 1-1 1 11 1-1-1-1-1 1 1 -1 45
1 1-11-1 1-1-1-1 1 1-1 -1 1-1 1 1 1-1 -1 -1 -1 52
-1 -1 111 1-1 1 1-1 -1 -1 -111-1-1 1-1 1 1 1 56
1 -1 1 1 11 1-1 1 1 1-1 - 11 1 1 1 1 1 1 -1 -1 47
-1 -1-1-11-1-11-11-211T11-21 1111 1-1-11 88
-111-1-11-111-11-1-1+-1+-1=-1=-1+-11-1 1 1 1 -1 193
1 -1-1-1-1111-1-1-111+-1-1111-1-1-1-1191 32
111 1-1111-1-1-11-1 11 1-1 11 -1 -1 1 53
1
1

e b e et

1
1
-1 1-111-1-1117-11-1-11-1-111-1-1-1 1 1f 27
1 -1 -1 -1 1 1 -1 11 111-1-1-1-11-1 1 1 1 1} 145
1 1111-11-11-1-11+-1+-1+-19-<21H1"1H-1"19:"1S-1 1 -1 130
1

-1 -1 1-1-1-1-1-1-1-11T1-11-1-1-1 - 1 -1 1 -1 -1} 127

3 Stochastic Variable Selection

This section reviews one algorithm for variable selection, based on the Gibbs sampler (see Smith
and Roberts (1993) and references therein for an overview). The criterion of interest is taken
to be the posterior probability of a model conditional on the data which can be obtained using
the stochastic search variable selection (SSVS) algorithm of George and McCulloch (1993). The

approach can be outlined as follows for the simplest case of linear regression with normal errors,

Y = X'B + oe, e~ N(0,1). (1)



The central concept is to introduce an unobserved vector § of zeros and ones of length p, the
same length as 3. The components of this vector represent the importance of the corresponding
predictor variables. That is, if §; = 0, then the magnitude of §; is small, and the corresponding
predictor is “inactive”. If §; = 1, then the magnitude of j; is large, and the predictor is “active”.

Mathematically, this is accomplished by defining a normal mixture prior for the coefficients 3:

s@e) = { NGOy oot (2)
When 6; = 0, 3; is tightly centered around 0, and will not have a large effect. The much larger
variance (¢; >> 1) when §; = 1 allows the possibility of a variable having a large influence. Thus,
the parameters 7; and ¢; must be chosen to represent respectively a “small” effect, and how many
times larger a “large” effect should be.

Since é is unknown, a prior distribution is placed on it. The commonly used independence prior
for é§ implies that the importance of any variable is independent of the importance of any other
variable. This will not be the case here, since the importance of interactions can be assumed to
depend on the importance of their corresponding main effects. Hierarchical priors for interactions
and polynomial terms, developed by Chipman (1994) are used to formally express these relations
in a flexible fashion. These priors are described in Section 3.1.

A prior must also be specified for o; following George and McCulloch (1993), we take
o? ~IG(v/2,v)/2),

where IG denotes an inverted gamma distribution. This is equivalent to vA/0? ~ x2.

This specific parameterization is chosen so that a Gibbs sampling approach may be used to
obtain the posterior for §. The Gibbs sampler utilizes conditional distributions to produce a
sequence of samples from the posterior distribution. Such a technique is useful when the posteriors
are not available in closed form, which is the case here. Discussion of this technique in general is
given in Smith and Roberts (1993); George and McCulloch (1993) and Chipman (1994) discussed its
application to variable selection. Here, as in George and McCulloch (1993), the algorithm consists

of a multivariate normal draw for 3|8, 0, an inverse gamma draw for ¢|3,8 and p Bernoulli draws

for 6|8, 0, {6;} -

10



3.1 Hierarchical Priors for Variable Selection

The idea behind the dependence relation is that the importance of a higher order term depends on
those lower order terms from which it was formed. Consider a simple example in which there are
three main effects A, B, C and three two-factor interactions AB, AC, and BC. The importance of,
say, AB will depend on whether the main effects A and B are included in the model. If neither
are, then the interaction seems less plausible, as well as being more difficult to explain. This belief

can be expressed in the prior for § = (84,...,0Bc) as follows:
Pr(6) = Pr(64) Pr(65) Pr(8¢c) Pr(64B[64,6B) Pr(6ac|éa,éc) Pr(épcl|éB, 6c). (3)

In (3), two principles are used to obtain the simplified form. First, the conditional independence
principle assumes that conditional on first order terms, the second order terms (645,684¢,0Bc) are
independent. Independence is also assumed for main effects. The inheritance principle assumes
that the importance of a term depends only on those terms from which it was formed, implying
Pr(84B|64,0B,6c) = Pr(64B|64,0B).

The exact nature of this dependence on “parent” terms is defined by the components of the
joint probability in (3). For example, the probability that the term AB is active Pr(64p = 1|64, 65)
takes on four different values:

poo if (64,68) = (0,0)
P(b64p = 1/|6,,65) = por if (64,68) = (0,1) . (4)

Pio lf (6A,6B) = (1,0)
pu if (64,68) = (1,1)

Here, we will choose pgo small (e.g., 0.01), po; and pyo larger (e.g., 0.10) and py; largest (e.g., 0.25).
This represents the belief that a two-factor interaction without parents is quite unlikely, one with
a single parent is more likely, and one with both parents is most likely. The term relazed weak
heredity will refer to this prior, and setting pgo = 0 yields strict weak heredity

The prior developed for two-factor interactions may be generalized to polynomials and interac-
tions involving polynomials. Since the concepts are similar, we simply summarize the results here
and refer the reader to Chipman (1994) for more details. Consider a simple example, with fourth
order term A%2B?, third order terms AB?, A%2B, second order terms A2, AB, B? and first order terms

A and B. We consider the parents of a term to be those terms of the next smallest order which can

11



form the original term when multiplied by a main effect. We will assume that the importance of
a term depends only on these parents, an assumption called the immediate inheritance principle.
Here, A2B? has parents A?B (since multiplication by B produces A2B%) and AB%. Some terms
(such as A?) will have only one parent (e.g., A). The principles of conditional independence (which
now says that terms of a given order are independent given all lower order terms) and inheritance
are again applied, with the immediate inheritance principle. Other forms of hierarchical dependence
are possible; this specific definition was chosen for the examples in this paper.

Another interesting class of predictors is qualitative predictors such as treatment, supplier, or
location. Although not present in the examples of this paper, such variables arise in screening
experiments, often in the form of three-level factors. Dummy variables are commonly used in such
a situation, but typically one wants either all or none of the variables to be included in the model.
The prior introduced by Chipman (1994) for this situation maps a single element §; € § to all of
the dummy variables associated with a single factor, forcing them to either all be in or out of the

model. Extensions to interactions involving qualitative factors are straightforward.

3.2 Choice of Prior Parameters

Before analyzing the data, some prior parameters must be chosen. The normal mixture prior on
B has parameters T and ¢, and the inverse gamma prior for o has parameters » and A. Since this
methodology is used as a tool rather than strictly for Bayesian reasons, we view these parameters
as tuning constants as well as representations of prior information.

As in Box and Meyer (1986), we use ¢ = 10, which indicates that an important effect is an
order of magnitude larger than an unimportant one. For the choice of 7, we take, as in George and
McCulloch (1993),

T; = AY/[3AX;, (5)

where AY represents a “small” change in Y, and AX; represents a “large” change in X;. This
implies that if §; = 0, even a large change in X is unlikely to produce any more than a small

change in Y. A value of AY still must be chosen. When expert opinions are not available,
AY = 4/Var(Y)/5,

12



where Var(Y) is the sample variance of the response without any regression, is found to work well
in practice. This choice corresponds to the belief that after a model is fit to the data, o will be
roughly 20% of the unadjusted standard deviation.

An improper prior (i.e., v = 0) for o is not appropriate, since this allows unreasonably large
o values, which can lead to considerable mass on the null model, i.e., the model with only aﬁ
intercept. For o2, we will work with priors on the root scale. Choosing a prior for ¢ which makes
large values implausible corrects this problem. The assumption that o ~ \/Var(Y)/5 suggests that
a prior on o with a mean equal to \/Var(Y)/5 be used. Among these priors, the desirable spread
may be attained by selecting a prior with an upper quantile (say 99%) that is near Var(Y'). This
approach often yields a value of v near 2, which corresponds to a reasonably uninformative prior.
The value of A changes from experiment to experiment, since it depends on the scale of the response

measurement.

4 Analysis

The Bayesian hierarchical model selection methodology presented in the previous section will be

illustrated using the four examples given in Section 2.

4.1 Screening Design Experiment

The data were originally constructed in Hamada and Wu (1992) to illustrate that their stepwise
strategy for variable selection could have difficulties identifying interactions if the corresponding
main effects were smaller. The stepwise nature of their procedure caused it to miss all three active
terms, which suggests the proposed approach might be more effective.

Since the true model is known, we used several different priors to assess the influence of different
parameters. Prior means for o of (0.1,0.63,1.0) were used with a (v, ) pair chosen to give good
coverage. The first and third priors are intended to represents “extreme” situations, while the
middle value was chosen using the \/Var(Y) rule. It was found that conclusions were quite similar,

so only those for a prior mean of 0.63 of o are reported.
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Table 5: Screening experiment posterior model probabilities
model /2 ™ 2
A, AB, AC | 0.103 0.325 0.094
A,C,AB,AC | 0.016 0.039 0.009
AB,AB,AC | 0.018 0.022 0.008
IL,DF — — 0.013
K,GJ — — 0.009

We also need to specify the probabilities that factors are active. A relaxed weak heredity prior
will be used (see Section 3.1), with
Pr(64 = 1) = 0.25

0.01 ifép=6=0
Pr(6ap=1)=¢ 0.10 if 64 # éB
0.25 ifdg=6g=1

This prior allows interactions to be active if only one parent term is active, and even if both parents
are inactive, there is a small probability that the interaction will be active.

The parameter 7 was also studied. The estimate based on the rule of thumb (5) is 7* = 0.103.
To examine the robustness of conclusions to 7, we performed analyses with 7*/2,7*, and 27*.

The Gibbs algorithm was run 10,000 times, and every second sample used. Examination of
autocorrelations and output from several independent runs confirmed that convergence and mixing
occurred quickly, and that the suggested sample size is adequate. Table 5 and Figure 1 give joint
and marginal posteriors for three different values of 7. Although the correct model has the most
mass in all three cases, there is considerable dependence on 7. When a small value is used (7*/2),
too many effects are considered “large”, leading to less model certainty. As 7 increases to 7*, there
is less model uncertainty, and the correct model receives the most mass. As 7 increases further to
27*, there is again less model certainty. The behavior of the algorithm for large 7 values is better
understood by looking at the marginal distributions. From them, it is clear that no term appears
to be important, as one would expect when 7 is too large. The correlations between the many
candidate terms result in many models receiving some posterior mass, many of them nonsensical.

In this case, the method works quite well, and clearly identifies the correct model. It succeeds
because it searches the entire model space, in a non-stepwise fashion. The prior for § serves to

focus attention on certain elements of the model space, while not totally excluding others. This
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Figure 1: Screening experiment marginal posterior probabilities. The large bars are for factors A,

AB, and AC.

class of likely models is much larger than the one used by Hamada and Wu (1992).

4.2 Blood Glucose Experiment

Recall that the blood glucose experiment (also analyzed in Hamada and Wu 1992) counsists of
continuous factors in either two (factor A) or three levels. The three-level factors are quantitative
which allow entertainment of polynomial terms and interactions. In this case there are more
variables to consider, thus a more challenging problem. There are 15 degrees of freedom for the
main effects, and an additional 98 two-factors interactions to be considered. None are totally
correlated, so that all 113 candidate variables will be considered simultaneously. Thus, linear and
quadratic terms will be used throughout, with interactions having four components: linear by
linear, linear by quadratic, quadratic by linear, and quadratic by quadratic. Choice of v, A is based

on the automatic procedure of Section 3.2. The hierarchical priors used are:

Pr(é4 = 1) = 0.25

0.01 iféd4=0
Pr(5A2 = 1|6A) = { 0.95 if 6: -1

15



Table 6: Blood glucose experiment posterior model probabilities, relaxed weak heredity prior

model prob R
BH* ,B*H* 0.183 0.7696
B,BH? B%*H? 0.080 0.8548
B,BH,BH? B2H? | 0.015 0.8601
F,BH? B?H? 0.014 0.7943

GE,BH?* B?H? 0.013 0.8771
AH? BH? B*H? |0.009 0.8528
G?’D,BH?* B*H? |0.009 0.8517

A,BH? B?H? 0.008 0.7938
B,B?, BH?,B2H? | 0.008 0.8864
H,BH? B?H? 0.008 0.7855

0.01 if 64 =652=0

Pr(é4p2 = 1|04B,052) = { 0.10 if 4B # 0p2
0.25 if é4p=6g2=1

This is a challenging problem, since there are only 18 observations and 113 terms from which to
choose. Since there are so many variables, there will likely be many models that fit the data well,
and probably quite a few parsimonious ones. The hierarchical priors will be useful here because
they will focus attention on good models that also make sense.

The complexity of the problem is apparent in the simulation, which takes much longer to mix
sufficiently (i.e., 50,000 runs). When relaxed weak heredity priors are used, the most probable model
contains two terms — BH? and B2H?. The ten most probable models are given in Table 6. This
model clearly violates even weak heredity, so there must be a good reason for its large mass. Re-
running the algorithm with strict weak heredity (0 replacing probabilities of 0.01) gives the results
in Table 7. We see that the best model is a superset of the previous best, with the appropriate terms
for weak heredity added (namely B and BH). Other models involving E'F also appear possible
but less likely.

The fit of this model, indicated by an R? of 0.86 is quite good. In fact, both models fit the data
better than the R? of 0.68 Hamada and Wu (1992) reported for the model with E%, F? and EF,
a model that does not obey the current definition of weak heredity. The additional information
gained from comparing posteriors originating from weak and strict forms of the prior tells us that
it is the higher order interactions between B and H that really drive the model, and may indicate

that caution be exercised in identifying a single “best” model.
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Table 7: Blood glucose experiment posterior model probabilities, strict weak heredity prior

model prob R*
B,BH,BH*,B*H* 0.146 0.8601
B,BH,B*H,BH? B?*H? | 0.034 0.8828
H,H?, BH?,B*H? 0.033 0.7903
H,BH,BH? B?H? 0.031 0.7908
F,F?,DF,D*F,EF 0.024 0.8835

H,H? AH?, BH?, B’H? | 0.017 0.8735
B,B?,BH,BH? B*H? | 0.013 0.8917
B,H,BH,BH? B*H? 0.013 0.8760
B,H,H? BH? BH? 0.008 0.8756
E,E*CE,EF 0.008 0.6979

One of these models was also identified by Jan and Wang (1994). They identified a model
with B, BH? and B?H? terms, similar to the one identified by our procedure. In fact the same
model can be identified using a modified strategy recommended by Hamada and Wu (1992, p. 136).
Both the Hamada-Wu and Jan-Wang procedures find only one optimal model, rather than a set of

plausible ones.

4.3 Hard-to-Control Factors Experiment

As discussed in Section 2.3, not all the predictors could be controlled during the experiment, re-
sulting in complex aliasing. In this experiment, the variables 1-7 and 8-11 are considered to be
non-interacting groups, so that interactions between them are not entertained. All other interac-
tions are considered. While all the predictors are continuous, only a single quadratic term may be
considered because of the structure of the center run (the —1, +1 levels all map to 1, resulting in
very high correlations between all quadratic terms).

The prior parameters (v, ) are chosen to be (2,0.00458), giving a mean of 0.12 for o, and an
upper 99% quantile of 0.66, slightly larger than the unadjusted standard deviation of Y, calculated
to be 0.60. The ranges of X;’s will not be used to determine AX; here because of the large outliers
in some of the uncontrolled predictors. Instead we shall assume that the original settings of (—1,+1)
represent large changes, and take AX; = 2 for all main effects and interactions except X2, which
will have a value of 1. Then the AY/3AX; rule is used as a starting point for 7. It turns out that

for this example, the posteriors have an average of ten active terms with this automatic choice of
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Table 8: Hard-to-control factors experiment posterior model probabilities
V)

model prob R

x1 x3 x1x6 x3x6 0.0425 0.7973
x1 x3 x4 x1x6 x3x6 0.0194 0.8488
x1 x3 x4 x10 x1x6 x3x6 | 0.0133 0.9034
x1 x3 x6 x1x6 x3x6 0.0114 0.7986

x1 x3 x10 x1x6 x3x6 0.0102 0.8425
x1 x3 x1x3 x1x6 x3x6 0.0081 0.8209
x1 x2 x3 x4 x10 x47 0.0065 0.8886
x1 x3 x4 x10 x1x2 0.0056 0.8206
x1 x3 x4 x7 x10 x2x4 0.0053 0.8854
x1 x3 x4 x6 x1x6 x3x6 | 0.0052 0.8518

7. Since more parsimonious models are desired, the procedure was re-run after doubling the value
of 7.

Posterior probabilities for the model are displayed in Table 8, and marginal posteriors are given
in Figure 2. Although no model has a decisive amount of mass, it appears that the terms 1, 3,
1 x 6, 3 X 6 are important, since they appear in almost all of the most probable models, and have

high marginal probabilities of being active.

4.4 Supersaturated Design Experiment

When analyzing the 14-run supersaturated design, we restricted our attention to main effect only
models because there are already more effects than observations. Because the supersaturated design
is a screening design, this seems to be a reasonable approach. The automatic procedures were used
to choose the regression coefficient priors and the hierarchical priors of Section 4.1 were used in the
variable selection. The values used were A = 67,v = 2,7 = 2.31,¢ = 10, which appear to produce
reasonable results with no modifications. The joint posteriors are given in Table 9.

The results suggest that factors 4, 12, 15, 20 (and perhaps 10) are active, as Lin (1993) found
from his analysis. Although the proposed Bayesian methodology did not find any different results,
its more thorough search and flexible priors will work to its advantage in larger experiments which

have more candidate models.
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Figure 2: Hard-to-control factors experiment marginal posterior probabilities
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Table 9: Supersaturated design experiment posterior model probabilities

Model prob R?
4121520 0.0390 0.9548
410121520 0.0295 0.9730
41011121520 0.0195 0.9867
412152021 0.0175 0.9688
411121520 0.0110 0.9661
14121520 0.0105 0.9697
41012152021 0.0095 0.9826
412131520 0.0080 0.9640
471011121520 | 0.0070 0.9982
4121517 20 0.0070 0.9578

5 Discussion

Data with complex aliasing arise in numerous situations: experiments using two-level nongeometric
screening designs, multi-level and mixed-level fractional factorial designs and nearly orthogonal
designs, experiments with hard-to-control factors and with mistakes in setting the factor levels
and experiments using supersaturated designs. Moreover, observational data will typically have
complex aliasing. Because data with complex aliasing arise often, an efficient analysis methodology
is desirable. Hamada and Wu (1992) showed that information about interactions could be obtained
in such situations and proposed an iterative guided stepwise regression strategy.

The current paper presents a more efficient methodology because it searches the model space
more thoroughly, much like an all-subsets regression, except that a plausible class of models (i.e.,
avoiding models with only interactions) are considered. Moreover, the proposed methodology re-
quires much less computation because the search is done stochastically rather than fitting all pos-
sible models. A Bayesian approach combined with the recent advances in Bayesian computing
provides a quick and easy implementation of this strategy. The flexible hierarchical priors of Sec-
tion 3.2 provide a powerful way to concentrate the search on a reasonable class of models. Note
that previous work on Bayesian model selection (Mitchell and Beauchamp 1988) could not handle
interactions. An advantage of the Bayesian approach is that models that the data strongly suggest
but fall outside the reasonable class of models defined by the hierarchical priors can be identi-
fied. Moreover, the proposed methodology can identify several (perhaps incompatible) models that
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explain the data equally well. We used the proposed methodology on Hamada and Wu’s (1992)
constructed Example 5, a 12-run PB design with true model Y = 24+4C +2BC —2C D + ¢, where
€ is normally distributed with mean zero and standard deviation 0.5. The proposed methodology
quickly found several incompatible but equally plausible models (i.e., that obey effect heredity).
This illustrates a limitation of the PB designs which may require additional experimentation to
resolve. Nevertheless, it is important that the experimenter know that there are several models
that fit the data well. Finally, the posterior probability of a model provides a calibrated measure
of a model’s goodness, but does not require adjustment for the number of effects in the model.
In fact, the posterior probability provides better discrimination of various models as seen in Ta-
bles 6-9. Note that the best model in the examples not only had a larger posterior probability but
interestingly enough, also had a smaller number of effects than the next best model.

Our paper adopted the SSVS algorithm of George and McCulloch (1993) to obtain the model
posterior probabilities. Other algorithms such as the Markov Chain Monte Carlo model composition
(MC3) of Raftery, Madigan and Hoeting (1993) could be used in combination with the hierarchical
priors of Section 3.2. We feel that the choice of algorithm will not influence the conclusions reached,
since both approaches are quite similar in spirit. Both adopt a Bayesian stochastic search algorithm
that calculates posterior probability of models based on the samples produced by the algorithm.
The main difference is that SSVS defines a “small” effect as near zero, while MC3defines it as being
exactly zero. However, the two crucial elements of our approach may be used with either algorithm:
a stochastic search, and a prior on the model space that relates interactions to main effects.

Box and Meyer (1993) proposed an an alternative Bayesian approach focused on factors rather
than specific effects. Their proposal can be summarized as follows. Suppose there are k factors.
Using an independence prior on the “factors”, each factor has prior probability 7 of being active.
Then for each of the 2¥ subsets of the k factors, a posterior model probability given the data
(for a specific model) is calculated. Say, there are i factors in a particular subset. Then the
corresponding model has all the main effects, two-factor and three-factor interactions (provided
that ¢ is at least two and three, respectively). Note that the number of effects in some of the
models will exceed the number of observations. Box and Meyer (1993) used an independence

prior for all the effects, i.e., regression coefficients 3, which does not differentiate between main
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effects and interactions. The posterior model probabilities are calculated directly which can be
computationally intensive. Active factors are identified using marginal posterior probabilities, i.e.,
the sum of posterior probabilities for all the models given above containing a particular factor.
In contrast, our proposed methodology focuses on effects rather than factors, and in addition to
marginal posteriors, considers joint posterior probabilities, namely posterior probabilities of models.
Our methodology requires less computation than an all-subsets approach or exhaustive search (such
as that used by Box and Meyer) because the search through the model space is done stochastically.
Moreover, the search is focused on, though not restricted to, a class of reasonable models through

the specification of flexible hierarchical priors.
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