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ABSTRACT

We consider the occurrence of warranty claims for automobiles when both age and mileage
accumulation may affect failure. The presence of both age and mileage limits on warranties
creates interesting problems for the analysis of failures. We propose a family of models that
relates failure to time and mileage accumulation. Methods for fitting the models based on
warranty data and supplementary information about mileage accumulation are presented and
illustrated on some real data. The general problem of modelling failures in equipment when both

time and usage are factors is discussed.
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1. INTRODUCTION

In modelling the reliability of systems on automobiles and other types of equipment, it is
often important to consider both thé age of the equipment (i.e. the length of time since it
was introduced into service) and its cumulative usage which, in the case of cars, is usually
represented by mileage. For automobiles, warranty coverages have both age and mileage
limits, and manufacturers want to model the occurrence of failures or other events as func-
tions of age and mileage. Such models are needed to predict reliability or to assess changes
to warranty plans, and when used in conjunction with explanatory variables can suggest
opportunities for reliability improvement.

Field tracking studies that follow specific cars over time and record usage along with
reliability events (hereafter termed “failures”, for convenience) are expensive to conduct and
as a result relatively little data is obtained in this way. It is therefore important to extract as
much information as possible from warranty claims data which record the age and mileage of
failures occurring while each car is under warranty. It is well known, however, that estimating
failure distributions or rates from warranty data is problematic: even assuming that failures
are correctly diagnosed, the fact that warranties have both age and mileage limits biases
the recording of failures. For example, if there are two year and 24,000 mile limits then
cars which accumulate mileage rapidly will not have all of their failures up to age two years
reported. Conversely, cars which accumulate mileage slowly will not have all of their failures
up to 24,000 miles reported. To address this problem we need to have information both
about the way that failures are related to age and mileage, and the variation in mileage
accumulation across the population of cars in service.

The objectives of this paper are to model the dependence of failures on age and mileage,
and to estimate failure distributions and rates from warranty claims data supplemented by
information about mileage accumulation. Section 2 describes notation, the general types of
models considered, and the kind of warranty data that we seek to utilize. Section 3 presents a

specific family of models and associated inference procedures that may be used with warranty



data. Section 4 illustrates the proposed methodology on data which motivated this research,
and Section 5 concludes with some comments.

Although this paper deals with automobile warranty data, the concepts and models
introduced apply more generally to equipment for which both age and some measure of
cumulative usage are related to reliability. There are also points of contact with recent
research on multiple time scales (e.g. Oakes 1995) and on time-dependent marker processes
(e.g. De Gruttola and Tu, 1992; Jewell and Kalbfleisch, 1992; Self and Pawitan, 1992) in
survival analysis. There are distinctive features about car warranty data, however, which
make the problems described in this paper rather different from the usual survival-marker

process applications.

2. MAIN CONCEPTS AND NOTATION

2.1 Mileage Accumulation (Useage) and Failure

We let t > 0 denote age (time since sale) and u;(t) denote the mileage at age ¢ for the i’th
car in some population. The mileage history U; = {ui(t),t > 0} gives the (non-decreasing)
mileage curve u;(t) over the lifetime of the car. We will consider both recurrent events and
times to specific single events (failures). For the case of single failures, let T; denote the age

of car i at failure and T the mileage; the two time variables are related by
T¥ = ui(T:) - (2.1)

The effect of the mileage accumulation process on failure will be modelled through the
distribution of T; given (i.e. conditional on) U;. This automatically specifies the joint
distribution of (T;, T*) given U;. Unconditional distributions of (T3, T*), T; or T} require
the additional specification of a model for the U;’s in the population.

A model for T; given U; may be specified in terms of the hazard function

h(tU:) = lim Pr{T: < t + AM|T, > t,U}/At . (2.2)

3



Recurrent events or multiple types of failures may be handled similarly, by considering event
intensity functions conditional on U;. A conditional Poisson process for recurrent events

would, for example, be specified by
A(|;) = E:Iﬁ) Pr{event in [t,t + At)|H,,U;}/At , (2.3)

where H, represents the history of events on the automobile up to age t. In fact, the models
(2.2) and (2.3) will be assumed to depend on U; only through {u;(s), s < t}, but the present
notation is convenient. |

The mileage curve has the status of an “external” time-dependent covariate in (2.2) or
(2.3) (e.g. Kalbfleisch and Prentice 1980, Section 5.3). In taking this approach we ignore
the possibility that the usage of equipment may depend on its prior history of failures and
treat mileage accumulation as something that is determined independently of the failure
processes. This is a reasonable assumption for cars during the early part of their lives and,
in particular, during warranty periods. Models for the U;’s are introduced in Section 3.

We remark that for some car systems and, more generally, for certain systems in other
types of equipment, failures may depend primarily on only one of usage or age. In this
case either T or T;, respectively, would be independent of U; for the case of single failures,
with an analogous condition for multiple or recurrent events. Much previous work on the
estimation of failure distributions as functions of usage have implicitly assumed that T} is
independent of U; (e.g. Suzuki 1993, Suzuki and Kashashima 1993). To avoid systematic
bias it is important that we be able to check such assumptions; the methods of Section 3

allow us to do this.

2.2 Warranty and Mileage Accumulation Data

For cars there is typically a record of when each vehicle entered service (was sold) and then
subsequent records of the age and mileage at each failure occurring while the car is under

warranty. Three typical mileage accumulation curves are shown in Figure 1, along with
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the location of a failure for each. Age and mileage limits T° and u°® are also shown: if the
warranty plan has these limits then a failure is observed (i.e. recorded in the warranty data)
only if ¢; < T° and u;(¢;) < u°. Thus in Figure 1 the failure on the middle curve would be
recorded, but not those on the lower or higher curves. Since we know the number of cars
entering service we would only know in these cases that no failure occurred inside the region
{t < T°, ui(t) < v°}. This unusual type of censoring and the fact that usage is recorded

only at failure times leads to interesting estimation problems.
Milcage

Unit 1
Unit 2

Failure

Uo

Unit 3

Failure Failure

Figure 1: Mileage accumulation and failure



Let us, in particular, consider the case of single failure times. The probability density for

a failure at age T, = t and mileage T = t* inside the warranty observation region is

/ FU)dP(U;), t< Tt <u® (2.4)

i |
where f(t|U:;) = h(t|U:)ezp{— J¢ h(s|U;)ds} is the density function of T; given U; corre-
sponding to (2.2), and we use dP(U;) to represent the distribution of mileage accumulation
curves. The probability that car ¢ does not experience the failure in the warranty region is,

conversely,
Pr {T; > min(T", u,-'l(u°))}

= [ s@wyarwy+ [ S@IWNPT),  (25)
“(Tgwo (T9)>wo
where S(t|U;) = exp{— j h(s|U;)ds} is the survivor function corresponding to (2.2).

To evaluate (2.4) 01(') (2.5) we require both a model for T; given U; and a model for
U;. The information about the distribution of mileage accumulation curves in the warranty
data is limited, and confounded with failure information. It is important that dP(U;) be
estimable from other sources and fortunately data to do this are typically available from
customer surveys and field tracking studies. We discuss this further in Section 3, where
specific models are introduced. The example in Section 4 describes some actual mileage

accumulation information.

3. A FAMILY OF MODELS AND ESTIMATION METHODS

3.1 Models

There are various ways one might model usage processes and their relationship to failure.

We require models that will be tractable and estimable from the type of data described



in Section 2.2 and so introduce here a somewhat over-simplified family of models which,
however, capture the essential features of age-mileage failures for automobiles.
We assume that the mileage accumulation curve U; for a car can be represented as a

function of age t and a vector of parameters o,
'u.,-(t) = m(t;a,-) t Z 0. (31)

The a;’s are assumed to vary from car to car, and we suppose that the parameters ay,...,an
for a population of M cars are generated as independent random variables with common
distribution function G(a) = Pr(a; < a). To connect the mileage curve and failure, we note
that for single failures (2.2) may be expressed as h(t|U;) = h(t|a;) and that for recurrent
events following a Poisson process, (2.3) becomes A(t|a;).

Mileage accumulation tends to be roughly linear over the first few years of a car’s life, so

we will work with the special case of (3.1),
w(t)=ait t>0 (3.2)

with the o;’s having distribution function G(a) and density g(a). This model has been used
by others such as Suzuki (1993) and Suzuki and Kashashima (1993) and alfhough it ignores
seasonal effects or other short-term fluctuations in mileage accumulation rates, it provides
reasonable results in most situations. The effect of departures from (3.2) will be briefly
considered later in this section.

We choose to employ parametric models relating failure and ;. This allows us to extrap-
olate failure probability calculations to age and mileage values beyond the warranty limits
T° and u° and thus to estimate longer term reliability and assess the effect of increasing
the warranty’s age or mileage limits. Non- or semi-parametric models are more difficult to
handle with the type of data considered in this paper, but we do present simple nonpara-
metric estimates in Section 4 that may be used in special situations. The types of models

described here are similar to ones used in biostatistics to relate marker processes and failures



for subjects in longitudinal studies (e.g. De Gruttola and Tu, 1992). The type of data and
the objectives in those situations are, hovever, different from ours.

There are two rather obvious approaches to modelling the dependence of failure on «; in
(3.2): proportional hazards and accelerated failure time models (e.g. Lawless 1982, Chapter
6). For single failure times, the former would assume h(t|;) to be of the form ho(t)é(cs)
and the latter would assume it to be of the form ho[té(a;)]@(a;), where in each case ¢(a;)
is a positive-valued function and ho(.) is a baseline hazard function. We will employ an
accelerated failure time approach here; as we show below it has the advantage of providing
simple special cases in which either of T; or T} is independent of U;.

We will describe the single failure time model first. The survivor function of T; given o;

is assumed to be of the specific form
S(t;05) = Pr(T; > tlay) = So(tdf) (3.3)

where /3 is an unknown parameter and So(t) = So(t; 6) is a baseline survivor function specified

up to a vector of parameters §. Note that the survivor function of T given ¢ is, from (3.2)
Pr(T¥ > t¥|a;) = So(t*ef ™) . | (3.4)

Thus, when 3 = 0 we have T; independent of a;, and when 8 = 1, T} is independent of a;.
Accelerated failure time models for recurrent events are defined in a similar way. We
consider a Poisson process model only; in this case, given «;, recurrent events are assumed

to follow a Poisson process with intensity function of the form
Altlas) = afa(taf) , (35)

where \o(t) is a baseline intensity function specified up to a parameter vector §. As with
single failure times, the cases 8 = 0 and B = 1 imply that the recurrent event process in
terms of age and mileage, respectively, is independent of a;.

We comment on two features of the assumed models. As noted, (3.2) is an oversimplifi-

cation. We could if desired replace (3.2) with a stochastic process for u;(t) which had mean
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function a;t, conditional on a;. A convenient approach would then be to assume that given
a;, failure times are independent of U;. In this case, however, the likelihood contributions
(3.6) and (3.7) are replaced by much more complicated calculations. Since car-to-car varia-
tion in a; values tends to dominate within-car variation around the trend curves at, (3.2)
should provide reasonably adequate inferences in the current situation. A second point is
that we have assumed G(a) in (3.8) and (3.9) to be known when, in practice, it is estimated
from some data source. It is possible to allow for the fact that G is estimated in the calcula-
tion of standard errors for estimates 8, 3, obtained by maximizing (3.8) or (3.9) below. We
discuss this in the example of Section 4.

We will consider and illustrate specific models in Section 4, but first we briefly discuss V

parameter estimation.

3.2 Estimation

We assume that the distribution G() is either known or estimated from information external
to the warranty failures, and use the warranty data to estimate the parameters  and § in
(3.3) or (3v.5) via maximum likelihood. There are two types of observations, described in
Section 2.2, which give two types of likelihood contributions.

For single failure times the likelihood contributions are based on (2.4) or (2.5), depending
on whether car ¢ had an observed failure under warranty or not. For the model (3.2) these

become, respectively,
f(tilos) g() (3.6)
/ Pr {T, > min (T°, u°/a,-) Ia,} dG(os) , (8.7
where in (3.6) a; = t}'/t;. We will r.ﬁake a small adjustment to (3.7) that is useful when some
of the cars in the warranty data set have been sold recently. If, when the data are assembled,
car i has reached age a;, then T in (3.7) should be replaced with min (T, a;). Since the
dates of sale for all M cars in the data set are known, the a;’s can be computed for every

car.



Using the family of models (3.3), we obtain the following likelihood function for 6 and f:

L,8)= 11 {offoltcf;6)} 1 / So{ePmin (T°,a;,u°/a);6} dG(e) , - (3.8)

. i=m+1
where fo(t) = —Sg(t) is the baseline failure density function, the cars experiencing failures
are labelled i = 1,...,m, and a; = t¢/t;(: = 1,...,m). The likelihood (3.8) is relatively easy
to maximize with respect to § and 8. The lognormal and Weibull distributions frequently
fit the failure time data well, and we illustrate the implementation of (3.8) with a Weibull
model in Section 4.
For recurrent events we assume that car i(: = 1,...,m) has n; > 0 claims at times

t;;(j = 1,...,n;). Based on the model (3.5), this produces the likelihood function

L(G,ﬂ) — ﬁ {aﬁAo(t” 9)} - Ao(riaf';6) IMI / - Ao(ria? 'o)dG(a,) , (3.9)

=1 ,1._1 i=m+1

where Ao(t) = f; do(u)du and 7; = min(T°, a;, v°/a;).

4. EXAMPLE

We consider for illustration some real warranty data for a specific system on a car. The
warranty in question was for one year or 12,000 miles and the data we consider here included
warranty claims for M = 8394 cars manufactured in one plant during a two month period.
Warranty claims were recorded up to 18 months after the first car was sold, but there were
nevertheless, some cars that had been in service less than one year when the final data update
was made. Among the M cars, m = 823 had at least one warranty claim; the car’s age and
mileage at the time of each claim are available. The dates of sale for all M cars are also
known.

Information about the distribution of mileage accumulation rates a; in (3.2) in the pop-
ulation of cars under warranty is available from a customer survey. A survey of 607 cars of

the same type and approximate usage location as those in the warranty data base was taken,
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and the data included the mileage at age one year for each car. This allows us to estimate
the distribution G(a) in Section 3. We show two estimates in Figure 2: the empirical c.d.f.
based on the sample of 607, denoted as Gy(a), and a lognormal distribution fitted to the
data, denoted as G2(a) . The units used for ; are thousands of miles per year. In the latter

case the mean and standard deviation of log o; are 2.37 and .58. In the calculations below

we used Gy(a).

1.0

o8

0.6

estimated distribution
0.4

0.2

0.0
1

usage rate (1,000 miles/year)

Figure 2: Estimated usage rate distributions

For failure time data it is convenient to re-express (3.8) in terms of the distribution of

log failure times and to consider models for which the baseline distributions of log failure

time are of location-scale form (Lawless 1982, Chapter 1). Define

Y;=logT;,, X;=loga;, y;= mjn(T"’,log a;), z; =logu’ -y,
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-and assume that the distribution of Y; given X; = z has survivor function
Pr(Y;2ylXi=2)=5 (Qi'?—_—"-) : (4.1)

where — 00 < g < 0o and & > 0 are location and scale parameters, 8 has precisely the same
meaning as in Section 3, and S;(-) is a survivor function defined on (— 00, 0). The explicit
relationship between So(-) in (3.3) or (3.8) and S;(-) is given by So(t) = Si[(logt — p)/o].
Under (4.1), the log likelihood arising from (3.8) is
- i + Bzi — d ’
Lp,B,0) = Z {— log o + log f1 (y——%—ﬁ )} + Z log P;(p,8,0) , (4.2)
=1 i=m+1

where f1(z) = — Sj(z) and

Py, B,0) = / 5, (2-%‘—”) de(z)+7 5 [l°g LA “] iGx(z), (43)

where Gx(z) is the c.d.f. of X; = log ;.

We may maximize (4.2) and obtain variance estimates using Newton’s method and the
observed information matrix. The required derivatives of {(u,8,0) are straightforward but
algebraically tedious to write down. Alternatively, (4.2) may be maximized with a general
purpose optimizer that returns an estimate of the Hessian matrix at the maximum (2, 8, ).

We will describe the results of fitting a Weibull model to the times of first failure in the
warranty data described above. In this case So(t) of (3.3) and S;(z) of (4.1) are of the forms

So(t) = exp{—(t/ﬂl)"’} t>0

S1(z) = exp{—exp(z)} —o0<z<o©

where in (4.1), (4.2) and (4.3), p = log ¥4, and o = 6; !, The maximum likelihood estimates
and their standard errors, as estimated from the inverse of the observed information matrix

(Lawless 1982, p. 523) are

f, = 60.45 (s.e. 12.52) 6§, = 1.128(.0382) S = .928(.0715),
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with age ¢ in years and mileage rate a; in thousands of miles per year. The estimated survivor

function for the distribution of time to first failure is then (see (3.3))

Pr(Ts > tjas) = exp {— (taf/él)iz} (4.4)

It is possible to compute standard errors taking into account that G(a) is not known
exactly, but is estimated from a survey of 607 cars. When working with a parametric model
for G(a), such as the lognormal distribution fitted above and shown in Figure 2, results of
Gong and Samaniego (1981) and Parke (1986) show how to make the necessary adjustments.
When a nonparametric estimate of G(a) is used, as here, results of Hu and Lawless (1995)
on pseudo likelihood estimation with supplementary information may be applied. When this
is done the standard errors for 6;,8, and B increase to 16.73, .0389, and .1027, respectively.

We carried out diagnostic checks on the fitted mbdel in two ways. One was to examine
plots of truncated residuals, defined as follows. Let 7; = min (To, ai,u°/a;) represent the
effective censoring time for car ¢; then T; = ¢; is observed if and only if ¢; < 7;. Conditional
on a;,a;, and the event T; < 7;, the quantity

_ F(Ti|w)

= Flrla)’ (4.5)

€

where F (t|a;) = Pr (T; < t|a;), is uniformly distributed on (0,1). We thus define residuals
é; for cars with observed failures by replacing 7} with ¢; and F(t|a) with its estimate in (4.5).
Figures 3a and 3b show an index plot (&; vs. i) and a uniform probability plot (é(,-) vs. 1/ 824)
of the é;’s for the 823 cars with failures. No lack of fit is suggested.
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Figure 3: Index and probability plots of residuals

A second check was to estimate the probability of failures under warranty and the proba-
bility of failure before ¢ = 1 year, for various usage (mileage) rates a. The former is estimated
via (3.7); we obtain the value .10, which is very close to the fraction 823/8394 of the cars
observed to have failures. The latter probabilities increase with the mileage rate. The mean

rate for these cars is about 14 (thousand miles per year), and gives a probability of failure
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by 1 year of about .14, consistent with the observed data.

Let us further examine the fitted model and also consider nonparametric estimation. It is
noted that there is not strong evidence against the value 8 = 1 which, by (3.4), implies that
the mileage T?* at failure is more or less independent of the mileage accumulation rate. If T}
is independent of o; then we may obtain a simple nonparametric estimate of the distribution

of T, as follows. For each car, define §;(s) = 1 if the car is observed at mileage s. That is,
8;(s)=1 iff s <min [u; (a;) ,u; (T°) ,u°] ,

where T° = 1 year and u® = 12 thousand miles. We do not know the §;(s)’s for each of the

M = 8394 cars, but we can estimate

pi(s) = Pr{i(s) =1}

by using the known distribution G(a) of mileage rates and the dates of sale. It follows that
if the &;(s)’s are independent of the T;*’s, then the c.d.f. of T} is estimated by
M
. . ns Z: dN,(S)
R =Prarse)= [ S—,
0
Z pi(s)
where dN;(s) is the observed number of failures on car ¢ at mileage s. This estimate may be

rewritten as

dN. (s3)
ise b (s5)
where the s}’s are the distinct mileages at which failures were observed across all cars,
dN. (s;) is the total number of failures reported at s7, and p. (s;) = f}i pi (s;).

It is easily seen that (4.6) is unbiased, and its variance may be estimated by
. M (% IN:(s) — p: i 2
Vit) =Y { /0 dNi(e) pz;()s )dF“(s)} : (4.7)
In Figure 4 we show pointwise approximate .95 confidence limits for Pr (T} > s) computed

two ways: (i) using the Weibull model derived from (4.4) with the estimates 6,,6,,3 and

(4.6)

=1
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usage rate @ = 12 (since B is close to 1, the usage rate has relatively little effect) and ii)
using the nonparametric estimate (4.6). In each case confidence limits were obtained as
Pr(T; > s)+ 1.96 standard errors. The estimates are seen to be in good agreement, thus
lending further credence to the Weibull model. Note that the estimates are shown only up
to s = 12 thousand miles, since no failures are observed beyond that point. Figure 4 also

include confidence limits based solely on the observed failures, as described in Section 5.

95% approximate Cl of survival function

[
S
T N ———  nonparametric estimate
\ NN ———  parametric estimate
RN
° \ Tee
\\ N\\
\
8
o
3
[=]
N
o
[=]
8 4
(=]
-]
Q -
[~}
1 1 1 ) | 1 1
0 2 4 6 8 10 12
mileage ( 1,000 miles )
usage rate = 12

Figure 4: Confidence limits for Pr(T¥ > s)

We remark that the nonparametric procedure outlined here may be applied to estimate
failure time distributions or recurrent event mean functions whenever the censoring times
7; for units are independent of the failure times for the units. In the current example this
condition is not met when we consider age T; at failure, because the mileage accumulation
rates o; affect both T; and 7;. However, for mileage T at failure, the censoring mileage

¥ = min [u;(a;), u; (T°),u°] is more or less independent of T}".
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We conclude this example with some remarks on the use of the fitted model (4.4) to
assess the effect of changes to warranty coverage. If, for example, we wish to estimate the
probability or expected number of claims if the plan had 2 year, 24 thousand mile limits then
(4.4) and the assumed distribution G(a) of mileage rates allow us to do this. In particular,
with a T year, u° mile warranty the probability of no claim for a car is obtained from (3.7).
With T° = 2,u® = 24 we estimate the probability of a claim to be .20, using the failure model
(4.4). An obvious warning is of course that in making this estimate we are extrapolating the
Weibull model well beyond the range of the current data. Similarly, extrapolations to very

low or very high mileage accumulation rates should be treated with caution.

5. CONCLUDING REMARKS

Our objective has been to consider the rather interesting problems that arise with failure
data obtained under a warranty scheme for automobiles. The fact that failure may depend
on both age and mileage accumulation and the presence of both age and mileage limits in
warranty coverage creates difficulties for modelling and analysis. A secondary objective has
been to discuss models for failure when both time and usage of a product may be factors.
The latter topic is closely related to work on time-dependent marker processes and multiple
time scales (e.g. De Gruttola and Tu, 1992; Jewell and Kalbfleisch, 1992; Self and Pawitan,
1992; Oakes, 1995), where the difficulty of formulating tractable joint models for failure and
marker processes has been noted. In this paper we have adopted a simple model based on
linear mileage accumulation: this model seems adequate for the current application and, in
any event, the type of censoring created by the warranty plan makes it difficult to fit or
assess more complex models. '

Murthy and Wilson (1991) consider models similar to those in Section 3.1, and also discuss
models where (T, T;*) are assumed to have some specific family of bivariate distributions.
Their objective is to study costs associated with different types of warranties, and they do not

consider any inference procedures. The second type of model does not make assumptions
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about variation in usage and is less flexible in utilizing usage information obtained from
sources external to the warranty data. It is also not easily extended to deal with recurrent
events. However, it would be interesting to compare the distributions for (T;, T*) generated
by models like those in Section 3.1 with some of the common bivariate failure time models.

We have noted earlier that it is important to have external information about the mileage
accumulation processes. Because the warranty plan severely censors failure times, it is not
possible to estimate G(a) from the warranty data alone. We can fit the model (3.3) using
only the warranty data by considering the distribution of observed failure times ¢;, condi-
tional on mileage rates a;, censoring times 7;, and the fact that ¢; < 7;. Hu and Lawless
(1995a,b) consider such types of truncated data and demonstrate that they are relatively
uniformative about the parameters § and 8 in models like (3.3). For precise estimation it
is important to utilize additional information about mileage accumulation and the number
of cars experiencing no failure under warranty. By way of illustration, we show in Figure
4 confidence limits for Pr (T > s) based only on the truncated data for the 823 cars with

failures; they are extremely wide relative to those based on the methods of Section 4.
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