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Abstract

Methodology is proposed for the design of sequential methods when data is
obtained by gauging articles into many intervals. While variables data are
more efficient than simple attribute data, the use of multiple categories
compensates for the loss in efficiency due to imprecise measurement. Exact
expressions are obtained for the operating characteristics and average
sampling number of Wald tests, and for the average run length properties of
Cumulative Sum (CUSUM) schemes based on parametric multinomial data.
The methods proposed are simple to implement, and are an economical
alternative to variables sequential sampling plans and CUSUM control
charts.
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1. Introduction

It is not always possible or practical to use variables measurement data in quality
control. The predominance of attributes type data in industry attests to the economic
advantages of collecting go no-go data over exact measurements. Gauging is often
preferred over measurement since it takes less skill to gauge properly, is faster, less costly,
and is a tradition in certain industries (Schilling, 1982). Ladany (1976) points out that the
statistical advantages of variables data may be outweighed by economic considerations
since the cost of inspection using a simple go no-go gauge is often much lower than the
cost of determining the exact value of a critical characteristic variable.

Work by Stevens (1948), Dudding and Jennett (1944), Mace (1952) and Ott and
Mundel (1954) attempts to bridge the gap between variables and attributes procedures by
proposing methodology that utilizes go no-go gauges set at artificial levels. The basic idea
behind this methodology is that the classification of units as defective or non-defective is
inefficient when the proportion of nonconforming units is small. For example, since the
sample size required for an attributes plan is inversely related to the size of the proportion
nonconforming it is required to detect, a gauge limit that classifies a higher proportion of
items as non-conforming (pseudo-nonconforming) will be statistically more efficient, and
offer more information about the characteristic of interest. The focus of much of this
research has been the testing or control of the mean of a normal distribution.

More recently, Lucas (1985) described design and implementation procedures for
counted data which are designed to detect increases and decreases in the count level of data.
Schneider and O'Cinneide (1987) proposed a CUSUM scheme for monitoring the mean of
a normal distribution with a single compressed limit gauge. They determine solutions
based on the normal approximation to the binomial. Geyer, Steiner and Wesolowsky
(1995) extended this CUSUM to the use of two compressed limit gauges placed

symmetrically about the midpoint between the target mean and the mean that the chart is



intended to detect. The Geyer et al. (1995) solutions are exact and are derived through the
theory of the random walk. Steiner, Geyer and Wesolowsky (1994, 1995) developed
methodology for one-sided and two-sided acceptance sampling plans, acceptance control
charts and Shewhart type control charts using multiple go no-go type gauges also called
step gauges. Step gauges typically consist of pins of various diameters that allow the
classification of units into one of many groups. These charts are based upon the ratio of
the parametric multinomial sample likelihoods under two simple hypothesis.

In this article we derive SPRTs and CUSUM Procedures based on grouped data.
Section 2 introduces the proposed scoring procedure. In Section 3 we consider the design
and implementation of Parametric Multinomial Sequential Probability Ratio Tests (PM-
SPRT) for testing simple hypotheses about a parameter of interest when data is gauged into
multiple intervals and the probability distribution of the quality characteristic is known. We
suggest approximating the log-likelihood of the resulting random walk with a simple
integer scoring system. The PM-SPRT based on gauging data into several groups bridges
the gap between the efficiency of attribute and compressed limit sequential procedures and
that of variables sequential sampling plans. Using the theory of sequential analysis, Wald
(1947), we derive exact expressions for the Operating Characteristics (OC) and the Average
Sampling Number (ASN) of sequential plans utilizing multiple gauges.

The design and implementation of Parametric Multinomial CUSUM quality control
schemes (PM-CUSUM) is discussed in Section 4. Following Page (1954), we consider
the proposed PM-CUSUM as a sequence of PM-SPRTs and derive the Average Run
Length (ARL) properties of the PM-CUSUM using the operating characteristics and
average sampling number properties of the individual PM-SPRTs. We also give
expressions which are appropriate when the Fast Initial Response (FIR) feature
recommended by Lucas and Crosier (1982) is used. A CUSUM plan that utilizes multiple
groups will be more efficient than a CUSUM plan utilizing a single compressed limit

gauge, and may be more economical than a CUSUM based on exact measurement.



Sections 5 and 6 turn to practical considerations that arise when applying this
methodology. Section 5 discusses various design issues, including the choice of group
limits, and the performance of these grouped data approaches relative to a variables based
approach. Section 6 presents a step by step design procedure and an example drawn from
application in a progressive die environment. For simplicity, the analysis in Sections 2-6
assumes a unit sequential implementation of the procedures. Section 7 shows that adapting

the procedure to samples of size n is relatively straightforward.

2. A Sequential Scoring Procedure for Grouped Data

Whenever data are grouped, the need arises to assign the grouped observations a
numerical value based on the group they are classified into. For go no/go gauges,
observations are usually treated singly as Bernoulli random variables, being either
conforming or nonconforming. When observations are grouped into multiple intervals, the
likelihood ratio suggests a scoring system. The likelihood ratio is utilized since it has great
prominence as a measure of statistical evidence in traditional hypothesis testing, sequential
sampling, and in the development of CUSUM control charts. For example, in the area of
traditional hypothesis testing, the Neyman-Pearson lemma implies that the likelihood ratio
test is the most powerful test for comparing simple hypotheses. Also, Wald (1947)
showed that a similar optimality property applies to the use of the likelihood ratio in
sequential sampling: the Sequential Probability Ratio Test (SPRT) minimizes the ASN

under H, and H, among all sequential tests for given error probabilities. More recently,

Moustakides (1986) proved that the CUSUM procedure based on the likelihood ratio
minimizes the Average Run Length (ARL) under H, for a given ARL under H,. This is
expected since a CUSUM control chart is a sequence of Wald tests (Page 1954, Johnson

1961, Kemp 1971).
In the case of the simple hypothesis test H:0 = 6, versus H,:0 = 0,, the likelihood

ratio is given by the ratio of the likelihood of the data under H, to the likelihood of the data



under H,. When observations are grouped into k intervals, the likelihood ratio is a ratio of

multinomial likelihoods, where the group probabilities depend upon the parameter
specifications in the underlying probability distributions under H, and H,. Specifically,
let the random variable X have probability distribution f(x;0) and cumulative distribution
function F(x;0), where 0 is a parameter of interest. Let 7, <t, < ... <t,_, denote the
k —1 endpoints of the k£ grouping intervals. We assume for the moment that the k-1
group intervals are given. In many applications the grouping criterion are predetermined
since it is based on some standard classification device or procedure. In Section 5 this
assumption is relaxed and the optimal placement of group limits for detecting shifts in a

normal mean is discussed. Defining f,=—c and f, =0, the probability that an

observation falls into the jth interval is denoted by
7, =F(t;0)- F(1,_;;0), j=12,...,k (2.1)

the dependence of 7; on 6 being understood. The contribution to the log-likelihood ratio

of an observation that falls into the jth interval is thus given by the weight
;= n{m(6,)/7,(6,)}, =12k (2.2)

We assume that for implementation group scores are obtained by first scaling and

then rounding off the exact likelihood ratio weights £,. This is necessary because the
properties of sequential procedures based on integer scores can be found exactly through
our analysis presented in Sections 3 and 4. To reflect this discretization, let w; denote the
group score applied to any observation in the jth group, i.e. w; = round(q£ j) where ¢q is
the chosen scaling factor, and j =1,2,...,k. Define w = (w,, w,,...,w,). We assume that
all w; scores are unique; if two or more groups lead to the same score either the scaling
factor should be increased or groups should be combined. Due to the rounding of log-

likelihood ratio weights, the resulting schemes are only approximately based upon the

optimal sequential probability ratio. Notice, however that the properties of the resulting



random walk can be made arbitrarily close to that implied by the exact likelihood ratio

scores by simply increasing the scale factor. In subsequent sections we utilize the fact that

so long as the number of groups is greater than or equal to two and 6, # 6, at least one
individual score is positive and at least one is negative. This implies max(w) > 0 and
min(w) < 0 and ensures that the SPRTs and CUSUM schemes are capable of concluding
either in favor of the null or the alternative hypothesis.

A tradeoff is involved in the appropriate choice of scaling factor g. The solution
approach requires integer scores, and is less computational intensive to design (and easier
to implement) when the scores are as close to zero as possible. However, on the other
hand, we wish to stay as close as possible to the optimal relative weights suggested by the
likelihood ratio. We have found that, in most cases, choosing a scaling factor so that the
spread in the sample scores ( max(w) — min(w)) is approximately 50 yields results that are
indistinguishable from simulation results using the exact weights, i.e. set
q = 50/[max(¢)— min(¢)]. Naturally, smaller scaling factors are also feasible, but may
yield slightly inferior results. However, in all cases, it is the relative size of the scores that
drives the solution. For this reason, if the resulting group scores have a common factor, all

the scores can be divided by this factor without affecting the efficiency of the solution.

3. Sequential Tests with Grouped Data

Consider the sequential test for grouped data which prescribes computing the

sample score s =w; if the sampled unit is classified into group j. Choosing absorbing
barriers at logB and logA, and denoting the ith sample score as s;, the sampling terminates

on the Nth trial where N is the smallest integer for which either

S=s+s,+...+sy 21logA

or S=s+s,+...+5, <logB



where 0 < B<1 <A <oo. If S>logA we conclude 6,, whereas if S <logB decide in
favor of 6,. Since the observations are all independent and identically distributed, the

sequence S=s,+ ... +s, can be viewed as a random walk with steps w between

absorbing barriers at logB and logA. Since the steps can take on only a finite number k of
integer values, we may use the theory of Sequential Analysis (Wald, 1947) to derive the
exact operating characteristics and average sampling number of the above decision
procedure.

A derivation of the operating characteristics and average sampling number of this

SPRT is possible if we first derive the probability distribution for all possible terminating
values of the SPRT. See the Appendix for a derivation of &£, = Pr(S = cj) where the

vector ¢ = (c;,C,,...,¢,) denotes all the possible terminating values of the SPRT including
overshoots of the absorbing barriers. Since all w; are integer, there are a finite number of
possible terminating values where the number is based on the range in the weights and the
scale of the absorbing barriers. Let [a] be the smallest integer > logA and [b] the largest
integer < logB. Then the probability that the random walk terminates with S < [b], and

thus accepts the null hypothesis is given by

P,...(6:[al[b])= D ¢ (3.1)

jee”

where the sum is over all j for which we conclude in favor of the null hypothesis, i.e. all j
such that ¢; < [b]. This expression allows the determination of the operating characteristic
curve of the sequential test.

Using the probability distribution of S, and Wald's equations, we may derive the
exact average ‘sampling number of the sequential test. By Wald's first equation (Wald,

1947 (A:69)) if E(N) < and E(s)# 0, then

255

Blalablb) = E(S) B0 = SH

3.2)



Wald (1947) also showed that if E(s)=0 and E(s*) < e, then

d 2
_ 2,’:1 5J'CJ'

E(N; [a],[b]) = E(SZ)/E(SZ) - Zk T.w.?

(3.3)

where d represents the number of possible terminating values of the SPRT. The above
formulas are valid for an SPRT with initial value zero and absorbing barriers at [b] < 0 and
[a] > 0. Through a translation this is equivalent to an SPRT with initial value v, 0 <v <A,
and absorbing barriers at zero and A. This translation is of interest since the traditional
(0,h) CUSUM chart can be modeled as a geometric series of (0,4) SPRTs. For any given
values of v and h setting [a] = h— v and [b] =-v in Equations (3.1)-(3.3) yields the
desired results. Define E(N;v) and P,(v) as the expected sampling number and
probability of concluding in favor of the null hypothesis respectively for a (0,#) SPRT
with initial score v, 0< v<h. Then E(N;v) = E(N;[a]=h-v,[b]=-V) and P,(v) =
P,...(0;[a]l=h—v,[b]=-V) as given by Equations (3.1) and (3.2) or (3.3).

accept

4. CUSUM Control Charts with Grouped Data
CUSUM control charts exhibit better run length properties than Shewhart Control
Charts for the detection of small changes in a parameter, since they accumulate evidence

that may not be adequately reflected in a single sample. CUSUM charts consist of plotting

;0 . .
Y, = max(o, Y, + ln(ﬂf—’)n, where Y, = 0. The process is deemed to be in state H,

f(x:6,)
as long as Y,< h, and is deemed to be in state H, as soon as ¥; 2 h. The CUSUM may be

seen to be a sequence of Wald tests with initial score zero, and absorbing barriers at zero

and h (Page, 1954). It is easy to show that the ARL of a CUSUM chart is given by

E(N; v=0)

ARL )
1-P,(v=0)

4.1



where E(N; v=0) and P,(v=0) are the average sampling number and probability of
acceptance of the component (0,4) Wald tests with starting value zero (Page, 1954).
Unfortunately, E(N; v=0) and P,(v=0) are not directly obtainable from (3.1)-(3.3)
since those expressions are derived assuming the SPRT starting value is not equal to lower
barrier values, i.e. v>0. However, expressions for E(N; v=0) and P,(v=0) can be
derived by conditioning on the value of the first sample score. Notice also that the ARL of
a CUSUM given by (4.1) is implicitly dependent on the true parameter value 6 since
changes in the parameter value will change the group probabilities.

Define w" and w™ as the set of all the possible sample scores that are positive and

non-positive respectively. Then, remembering from (2.1) that 7, = Pr(s =w j) , we get

E(N;v=0) = 1+ Y 7,E(N;v=w)) (4.2)
jew*
and P(v=0) = Y&+ ymP(v=w) (4.3)

jew™ jew*
where E(N; v=x)=0and P,(v=x) =0if x>h. Thus, the ARL of the grouped data
CUSUM is given by

1+2,~ew+ T, E(N; v=w,)
ZW (1= P,(v= w)))

ARL = (4.4)

If a Fast Initial Response (FIR) feature is used (Crosier and Lucas, 1982), then the
average run length is determined by conditioning on the outcome of the first Wald test in

the sequence. Only the initial Wald test is unique, if the initial test does not signal then all

subsequent Wald tests start at zero. Denote ARL(®) as the average run length of a FIR

CUSUM with initial value @. Then, with ARL given by (4.4),

ARL(w) = E(N;v=0)+P,(v=wn)ARL. (4.5)



5. Gauge Limit Placement and Relative Efficiency

In practice the placement of group or gauge limits is often predetermined through
the use of standard gauges. However, in some circumstances design of the step gauge is
possible and thus we may wish to determine the optimal grouping criterion. In any event,
it is of interest to compare the efficiency of utilizing various grouping criterion relative to
the traditional variables based approaches. Clearly, the efficiency of a grouped data
approach will be less than that of standard variables based methods since some information
is lost due to the grouping. However, as will be shown, this loss of information is small
for well chosen group limits, and, as a result, may be more than compensated by lower
data collection costs. The methodology presented thus far in Sections 2-4 is applicable for
any distribution and parameter of interest, however efficiencies and optimal limits depend
on the distributional assumptions. In this section, we derive optimal gauge limits for
sequential tests and analyze the relative efficiency of grouped data CUSUM Procedures
when detecting mean shifts for a normal distribution. In the optimization problems

considered we assume, without the loss of generality, that in-control the process has mean

U, = 0 and standard deviation o = 1.

The goal of our SPRT is to distinguish between f, and 4,. As a result, we may

maximize the SPRT’s ability to differentiate between the two parameter values by setting

gauge limits so as to maximize the difference between the expected weight under 1, and

under 4,. With this goal in mind we solve the following maximization problem:
maximize E(£|u = ,ul) - E(£|,u = /.to)

where /¢ the log-likelihood ratio is given by Equation (2.2). In words, we maximize the
difference in the expected log-likelihood ratio under y, and u,. We use £ rather than w to
ensure that the optimal gauge limits do not depend on scaling factor used. Strictly speaking

the above optimization problem is appropriate only if we are equally interested the

parameter values 11, and u,. If not we should consider a weight difference of the expected

10



log-likelihood ratio. However, the solution to the above problem will provide guidance as
to the best group limits choices in any event. This maximization problem can be solved
through Nelder-Mead simplex algorithm (Press et al., 1988), and results are given in Table
1 for various g, values. Optimal solution are all symmetric about (i, +4,)/2. To save
space the optimal solutions in Table 1 are given in terms of Az, where At is the deviation
from (/,t0 + U, ) /2. The results in Table 1 can be translated into optimal gauge limits by

adding (1, + 14,)/2 to all values. For example, when 1, = 1.5 and the number of groups

equals four we get gauge limits (-.3703 (=-1.1203+.75), .75, 1,8703), and for five
groups we get (-.6701, .3042, .75, 1.11958, 2.1701). Notice that the effect of u, on the
optimal gauge limits written in terms of At is small. Thus, from Table 1, close to optimal

gauge limits can be easily determined for a wide variety of u, values.

Table 1: Optimal SPRT Gauge Limits
assume [, =0and 0 =1

add (u, + 4, )/2 to get optimal gauge limits

U, =0.5 u =1 U, =15
# groups At At At
2 0 0 0
3 +.6209 +.6487 +.6976
4 0, £.9972 0, 1.0439 0, £1.1203
5 +.3893, +1.2652 +.4104, £1.3259 +.4458, +£1.4201
6 0, £.6716, £1.4721 0, £.7091, +1.5437 0, £.7696, £1.6503
7 +.2861, £.8918, £1.6397 +.3032, +£.9423, £1.7201 =+.3313, +1.0211, *+1.836

CUSUMs are typically evaluated in terms of their ARL at the alternate mean value
when the CUSUM is designed to achieve a given ARL at the null mean. However, for a
PM-CUSUM this comparison is difficult to make due to the discreteness inherent in the
problem. For any given gauge limit design £ it is usually impossible to set the (integer)

absorbing barrier 4 in such a manner to achieve precisely the ARL(uO) value desired.

Thus, in order to make such a comparison we utilize the fact that as A varies a plot of

ln(ARL(uo)) and ARL(u,) forms approximately a straight line. Using interpolation

11



between the two values of & that yield ARL(l,) values closest to that desired we can

determine a theoretical ARL(,ul | ARL(p,)= ARLO). We find optimal limits that minimize
this theoretical ARL by utilizing the Nelder-Mead simplex algorithm. Table 2 shows the
results of this optimization problem for the case: g, =1, ARL(l,) = ARL, = 1000. For
different values of ARL, these results differ little, and for different values of u, scaling the
results in Table 2 by u, yields near optimal gauge limits. Not surprisingly the optimal
gauge limits for CUSUM charts is quite different from the optimal limits for SPRTs. This
difference is due to the different goals of SPRTs and CUSUMs.

Table 2: Optimal CUSUM Gauge Limits
assume [, =0, 4, =1, 0 =1and ARL(y,) = 1000

_#groups 4 t) t t fs
2 .8861
3 .3958 1.5637
4 .0252 9947 1.9090
5 -.2945 5720 1.3013  2.1194
6 -.5591 1787 .8415 1.5017 2.2019

Given a gauge limit design, it is of interest to evaluate the loss in efficiency that
must be expected when articles are gauged into groups rather than measured precisely. A
direct comparison of the PM-CUSUM with various number of groups and the traditional
variables based approach is difficult due to the discreteness inherent in any scheme that
utilizes categorical data. However, using interpolation, as discussed above, a comparison
of multi-group PM-CUSUM Procedures and the variables based approach can be made.
Using the solution approach suggested by Brook and Evans (1972) for a variables
CUSUM when H,: g, =0, H;: t, =1, with c=1and h=5 (k=1,/2 =1/2) we obtain
average run lengths of 904.81 and 10.39 at the null and alternate mean values. We
consider the two to six group cases. The log-likelihood ratios presented in Table 3 are

derived using the optimal gauge limits suggested in Table 2. The group scores were

12
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obtained from the likelihood ratio weights by multiplying by ¢ = 50/[max(¢)— min(¢)]

and rounding off the weights to the nearest integer.

Table 3: Optimal Log-likelihood Ratio and Scores for PM-CUSUM

assigned group scores w

# groups log-likelihood ratio (2.2)
2 -.5802, 1.0661
3 —.8740, .4282, 1.5811
4 -1.1296, .0092, .8883, 1.8653
5 -1.3688, —.3393, 4177, 1.1455, 2.0440
6 —-1.5774, —.6596, .0097, .6477, 1.2983, 2.1150

-18, 32
-18, 9, 32
-19, 0, 15, 31
-20, -5, 6, 17, 30
-21,-9, 0,9, 18, 29

To conduct our comparison we would like to determine ARL(f1,) when ARL(u,)

=904.81. For completeness we also determine ARL((,) that correspond to ARL(p,) =

10.39. In order to compare the efficiency of PM-CUSUMs with the variables CUSUM we

use the methodology presented in Section 4 to determine the two values of A and their

corresponding ARLs that yield ARL(,) values closest to 10.39 and the two h values that

yield ARL(,uO) values closest to 904.81. Based on those two points, we interpolate to

determine approximations for the ARLs that match the variables based chart at one ARL.

Table 4: Comparison of the Efficiency of Variables based
CUSUM versus Grouped Data CUSUM

match ARL(i,) = 904.81

match ARL(y,) = 10.39
# Groups ARL(/J]) estimate  Efficiency ARL(,UO) estimate  Efficiency

2 14.37 72.3 240.0 26.5
3 12.04 86.3 458.0 50.4
4 11.28 92.1 592.6 65.5
5 10.96 94.9 694.0 76.7
6 10.78 96.4 756.0 825
variables 10.39 100 904.81 100

Table 4 presents the results where percent efficiency is derived by comparing the

ARL estimates obtained for each number of groups with that obtained in the variables case.



Table 4 shows that the gain in efficiency going from the dichotomous case to 3 or more

groups in significant.

6. Design of Grouped Data SPRTs and CUSUM Procedures
To assist the practitioner implement grouped data SPRTs or CUSUMs we present

the following two iterative design procedures. A PM-SPRT with starting value 0 and

absorbing barriers at [a] > 0 and [P] <0 can be designed following steps S1-S8. Notice
that an SPRT with starting value v and absorbing barriers at 0 and 4 can be determined
using these steps by applying the transformations 4 =[a]—-[b] and v=-[b]. The key

problem in the design is determining appropriate values for [a] and [b].

S1.  Determine, based on application, the null and alternate mean values (1, and p,, and
the maximum desired type I and II error rates o and f3 respectively.

S2.  Set group limits (#,'s) either at optimal values as discussed in Section 5, or at
predetermined values that are based on the application.

S3.  Use Equation (2.2) to calculate the likelihood ratio for each group.

S4.  Scale the weights and round to integer values. Aim for max(w)— min(w) =50
unless for ease of implementation the weights must be very close to zero. Note that
common factors in the resultant scores can be removed without affecting the
efficiency of the procedure.

S5.  Choose initial values for the absorbing barriers [a] and [b]. For the continuous
variable problem, Wald (1947) suggests choosing A=(1-f)/oc and
B=p/(1-@). This choice of absorbing barriers is derived by ignoring the
possibility of overshooting the barriers, but is useful as a guide. We have found
good initial -values- are the Wald-approximations appropriately scaled, i.e. let [b]
equal the largest integer smaller than g*In[f/(1- ¢t)] and [a] equals the smallest

integer larger than g*In[(1- f8)/r], where g is the scaling factor used to scale the

log-likelihood ratios as discussed in Section 2.

14



S6.

S7T.

S8.

Using the current [a] and [b], and the methodology in the appendix derive the
probability function &; = Pr(S =c j) for S the terminating value of the SPRT.

Using & ; and Equation (3.1) calculate P, at 4=, and 4 = [1,. Denote the

ccept

actual error rates obtained by @, = 1- P, (1,) and B, = P, (1,).

accept

Consider the four possible cases:

e If @,>« and B, > f decrement [b] and increment [a] by one unit.
e If o, < and B, > f decrement [b] by one unit.
e If a, > and B, < increment [a] by one unit.
e If ¢, < and B, <f increment [b] and decrement [a] by one unit.

Repeat Steps S6-S8 until we obtain the values of [a] and [b] closest to zero that

satisfy both error constraints 1- P, (i,)> & and P, (11,)>B.

accept

The design approach for the PM-CUSUM Procedure is similar to the design of a

PM-SPRT. However, typically CUSUM Procedures are evaluated based on their ARL at

the null and alternate mean values. Also, the design of a CUSUM is easier since, once the

group limits and null and alternate mean values are given, the only design parameter is 4.

This means, however, that generally we can not match both ARL criteria closely, since one

ARL constraint will be more difficult to satisfy. Steps C1-CS5 can be followed to design a

PM-CUSUM.

Cl.

C2.
C3.

Determine, based on application, the null and alternate mean values 1, and u,, and

specify the desired minimum ARL at the null and maximum ARL at the alternate.

Denote the minimum and maximum as ARL, and ARL, respectively.

Perform Steps S2-S4.

Choose an initial value for the absorbing barrier #. For typical CUSUM
Procedures h=g* ln(ARLO / ARLI) is a good choice for the initial guess, where g is

the scaling factor discussed in Section 2.

15



C4. Use Equations (4.1), (4.2) and (4.3) and subsequently (3.1) and (3.2) to determine
ARL(p,) and ARL(p,).

C5.  Adjust & as necessary to satisfy the given ARL constraints.
o Ifeither ARL(,uO) > ARL, or ARL(u,) < ARL, increase h by one unit.
» Otherwise decrease & by one unit.
If the initial guess is not close to the correct value the adjustment of /4 can be made
larger. For example, we may adjust A by five units at a time. Repeat steps C4 and

C5 until the smallest % that satisfies both constraints is found.

Consider the following simple example to illustrate the solution procedure. We first
design an appropriate SPRT. In control the process of interest is normal with mean
U, =74.3 and standard deviation ¢ =1.3 and we wish to detect mean shifts to i, =75.6
(i.e. mean shifts of one standard deviation unit). Using a standardized gauge the group

limits are t = (74, 75, 76). We assume the shift in the mean does not effect the normality

or standard deviation of the process. This implies group probabilities p(,u = ,uo) =
(0.4087, 0.2961, 0.1997, 0.0955) and p(u =p,) = (0.1092, 0.2130, 0.2986, 0.3792).
The log-likelihood ratios (2.2) are thus (-1.3200, —0.3294, 0.4096, 1.3791). Based on
the application we determine that the error rates ¢ and  should both be less than 0.1.

This completes Steps S1-S3. Scaling the weights as recommended in Step S4 yields

scores (—24, -6,8, 26). These scores have a common factor of two, thus without any loss

in efficiency, we use w=(-12,-3,4,13). Since the scaling factor needed to yield w is g

= 9.26 the recommended initial estimates for the absorbing barriers are —21 and 21. Table
5 shows the results of the iteration S6-S8. The best solution found occurred at iteration 8.
Based on [a] =18 and [b] = —16,.from Equation (3.2) we get average.sampling numbers

of 47767 and 4.7616 when u = 1, and p = 11, respectively.

16



Table 5: Design Iterations for SPRT Example

iteration ___[b] [a] o, B.
1 21 21 .0710 .0561
2 =20 20 .0743 .0624
3 -19 19 .0787 .0662
4 -18 18 .0876 .0758
5 -17 17 .1088 .0792
6 -17 18 .0869 0811
7 -16 17 .1082 .0835
8* -16 18 .0864 .0856
9 -15 17 .1050 1112

To illustrate the design of a CUSUM, consider the example given in Steiner et al.
(1994). That example concerned the manufacture of metal fasteners in a progressive die
environment. In control the process mean is 74 thousands of an inch with a standard
deviation of 1.3. Using a 6-step gauge with group intervals defined by: 73, 73.75, 74.35,
74.94, 75.55, and 76.3 a fixed sample size control chart to detect a mean shift to 75.3
thousands of an inch with type I and II errors rates of 0.005 required a sample size of 27
units. Thus, the average run length of this fixed sample size chart, in terms of average
number of units examined before a signal are 27/.005 = 5400 and 27.1 units when the
process is “in control” and “out of control” respectively. Since this example involves
detection of a fairly small mean shift, i.e. a shift of only one standard deviation unit, a
CUSUM chart would be expected to outperform a Shewhart type control chart.

Now consider a PM-CUSUM chart for the same example. The group weights
given by (2.2) are (-1.7492, —-0.9553, —0.4503, 0, 0.4503, 0.9553, 1.7492). Assuming
we wish to do at least as well as the fixed sample size approach set ARL; = 5400 and ARL,
= 27.1. Scaling the weights as recommended in S4 gives scores w = (=25, —14, -6, 0, 6,

14, 25). Based on our iteration approach C3-CS5, shown in Table 6, we obtain the solution
h =98 with ARL(l1,) = 5646 and ARL(j,) = 14.6.
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Table 6: Design Iterations for CUSUM Example

iteration h ARL(p,) ARL(u,)

1 76 1200.4 11.45
2 81 1692.1 12.17
3 86 2470.3 12.97
4 91 3576.4 13.76
5 96 5026.3 14.49
6 97 5336.9 14.49
T* 98 5646.5 14.62

Clearly it is desirable for a control chart to have a long ARL when the process “in
control” and a short ARL when the process is “out of control.” The given PM-CUSUM
chart has approximately the same performance as the Shewhart approach at the null, but is

dramatically better when the mean is at the alternate value.

7. Extension to Samples of Size n
In this article we have focused on the unit sequential implementation of PM-SPRTs

and PM-CUSUMs. However, the same methodology is appropriate when using samples

of size n. For a sample of size n, where n; observations fall into the jth interval, the

sample weight, defined as the sum of the individual log-likelihood ratios, is

zk n, log{ﬂ'j(é?1 )/7;(6, )} Scaling the group weights to get scores as in Section 2 we

j:l J

may defining our sample score as y = 2;;] nw;. Thus, increasing the sample size simply
increases the number and spread of the possible sample scores. By the multinomial

k k
e n! . )
distribution we have Pr(y=2njwj}=——————k Hﬂ:;" However, different
j=1

15
H]:ln] ) 'I_]

combinations of 7, values may lead to the same sum, thus we define z = (20,235 2,,) @S

the m possible values of the sample scores. Define

Pr(y=z) = p, 7.1)
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where the probability Pr(y=z,) equals the sum of the all the above multinomial

probabilities where the n;'s are such that the sample score is z;. The number of possible

sample score values m grows exponential with the number of groups and polynomially
with the sample size. Fortunately, in our application, we need only consider moderate
sample sizes and number of groups. If the sample size is large, a normal approximation
solution is appropriate, and if the number of groups is very large, the problem can be

accurately modeled assuming variables data. To derive solutions for samples of size n,

make the following substitutions in the analysis of the previous Sections: k=m, w, =z,
and x, = p,. Notice that if the desired sample size is large then the scaling factor g may

need to be reduced since the spread in the sample scores is now n[max(w)— min(w)].

Note that N refers to the number of samples until absorption whereas # is the sample size.

8. Conclusions

The prevalence of step gauges in applied quality control work attests to their
convenience and economic advantages relative to exact measurement. Despite this
prevalence, few statistical quality control techniques explicitly take into account the inherent
grouping of the data which occurs. We propose using a simple integer scoring procedure
for sequential tests with grouped data. The scoring procedure is an integer approximation
of the parametric multinomial likelihood ratio. The resulting procedures are convenient to
implement on the shop floor. We show how to derive the probabilities of errors of the first
and second kind and the average sampling number of unit-sequential and batch sequential
procedures based upon the integer scoring system. For repeated tests of hypothesis,
CUSUM procedures based upon the integer scoring system may be used. The average run
length properties of the parametric multinomial CUSUM procedure may be derived using
the operating characteristics and average sampling properties of the component parametric

sequential tests.
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Appendix: Derivation of the Probability Distribution of S
We shall derive the exact probability distribution of the cumulative sum S at the

termination of the random walk. Based on (2.2), the moment generating function of the

roup score s is given by E(e") = k ru'= ¢(t), say, where u=e'. Thus, the
group y =1 s

moment generating function of S = 2?;1 s; is given by ¢4(¢)= [(bs(t)]N. Consider
k w;
0,() =3, mu" = (A.1)

This is a polynomial in u, which has degree d = max(w)—min(w). Let u,...,u, denote

the d roots of (A.1), and assume that u; # u; fori# j. The roots are unique so long as
E(w)# 0. When the underlying process parameter 6 is such that E(w)=0 thenu=1isa

double root. Now consider Wald's Fundamental Identity (Wald 1947, A:16) for a random

walk between two absorbing barriers: -
t -N
B{e>[o,(0)] "} =1

which holds for any ¢ in the complex plane such that the moment generating function of s

exists. Since, by definition ¢ (1) = 1, substituting u, for e’ in the fundamental identity

gives the d equations

E(u®)=1 fori=1,..,4d. (A.2)

We may obtain the exact probability distribution of S by conditioning each of the d left

hand sides of the fundamental identity on the terminating value of the process. Let [a] be

the smallest integer > logA and [b] the largest integer < logB. Then, since all w; are

integer, the possible terminating values of the random walk are ([b]+ min(w)+1),
([b]- min(w)+2), ..., [b] for acceptance of 0 =6, and [al,[a +1],...,([a] + max(w)—1)
for acceptance of 6 =0,. Let c,,...,c, denote these d terminating values of the random

walk. Then, the d equations of the fundamental identity (A.1) may be written as
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2;':1 Siu =1 fori=1,..,d (A.3)

where £ =Pr(S=c,) forj=1,..,d (A.4)
The d equations in (A.2) are linear in ;. Using a method to solve a system of linear

equations such as LU decomposition (Press, et al., 1988) we can determine all the &, ‘s

that give the exact probability distribution of S.

To illustrate all the calculations required to determine exact probability distribution
of S consider a simpler version of the SPRT example introduced in Section 6. Rescaling
the ratios through multiplication by 1.75 followed by rounding to the nearest integer results
in the most compact distinct group scores, namely w =(-2,—1,1,2). Solving equation
(A.1) for the four roots yields u = (—4.516, -0.494, 1, 1.9188) when p=u,, and u = (—
2.1239, -0.2367, 0.5729, 1) when p = u1,. If the absorbing barriers are chosen at 4 ([a])
and —4 ([b]) the only possible terminating values of this SPRT, i.e. possible values for S,
are ¢ =(-5,-4,4,5). Subsequently solving the system of 4 equations in 4 unknowns given
by equation (A.3) for the probabilities of the SPRT terminating at each of these values
gives & = (0.2912, 0.6489, 0.0494, 0.0104) when u=pu, and & = (0.016, 0.0706,
0.6367, 0.2767) when u = p,. Based on equations (3.1) and (3.2) this SPRT thus has a

probability of acceptance and average sampling number respectively of 0.9402 and 5.26

when y = u,, and 0.0866 and 5.70 when = y,.
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