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ABSTRACT

Most of the literature on robust parameter design is concerned with simple response or "static
characteristics" systems. A more recent trend in industrial practice is to consider more complex
systems which are called signal-response systems in this paper or alternatively "systems with
dynamic characteristics" in Taguchi's terminology. This potentially important tool in quality
engineering lacks a solid basis on which to build a rigorous body of theory and methodology.
The purpose of this paper is to provide a suitable basis. We argue that the problem has two
distinct types, measurement systems and multiple target systems, and that three issues are of
fundamental importance. First a proper performance measure needs to be chosen for system
optimization and this choice depends on the type of system. Second there are two modelling and
analysis strategies for such data: performance measure modelling and response function
modelling. Finally the proper design of such experiments should take into account the modelling
and analysis strategy. The proposed methodology is illustrated with a real experiment on

injection moulding.

Key Words: measurement systems, multiple target systems, robust parameter design,

performance measures, response function modelling.



1 Introduction

Taguchi (1987) introduced the robust parameter design (RPD) methodology as a
method of improving the quality of a process or product by making it less sensitive to
noise variation. There has been much discussion in the literature about his method-
ology and alternative procedures have been proposed. See Nair et al. (1992) and Box
(1988) for general discussions. Most of the statistical literature concerning robust pa-
rameter design involve situations where the characteristic of interest can be described
as a single quantity, Y, which has a specified optimal value. For example, Shoemaker,
Tsui, and Wu (1991) presented a case study involving the plating of silicon layers on
wafers. In this case, the response was the thickness of the silicon layer. A target value
of 14.5 micrometers had been identified and the goal of the experiment was to deter-
mine conditions which would result in the distribution of Y being as concentrated as
possible around this value. Another example, presented by Pignatiello and Ramberg
(1985), involves a heat treating process of leaf springs used on trucks. The objective
was to develop a process which would result in springs whose free height was as close
as possible to the target value of 8 inches. Taguchi used the somewhat confusing
term “static characteristic” to refer to this type of application. We call this type of

application a simple response system.

Taguchi also identified a second type of application for robust parameter design
methodology which he called “dynamic characteristics”. Simply stated, this refers
to situations where the response is required to assume different values as a result of
changes in a signal factor, M. For example a method for determining the amount
of calcium in a water sample is required to produce different responses for differ-
ent amounts of calcium. The performance of the system can only be evaluated by
considering the relationship between the response and the actual amount of calcium
present in samples (signal). As the term dynamic is somewhat misleading we will call
it a signal-response system because the interest focuses on the relationship between
the output response and the signal factor. Since many engineering systems can be
adequately described as signal-response systems, this methodology has become in-

creasingly important in engineering applications. See, for example, many case studies



in the American Supplier Institute Symposia on Taguchi Methods(Dearborn, Michi-
gan). In spite of the practical impact, signal-response systems have received little

attention in the research literature.

This article presents a broad view and systematic development of the RPD method-
ology as applied to signal-response systems. First we classify the signal response
systems into two distinct types: measurement systems and multiple target systems
(Section 2). This classification, which was not considered by Taguchi, plays an impor-
tant role in our methodological development. For example, the choice of performance
measure (for parameter design optimization) varies with the type of system. Taguchi’s
ubiquitous dynamic signal-to-noise (SN) ratio (see (2)) turns out to be appropriate for
the measurement system, but not for the multiple target system (see Section 3). With
the system identified and the performance measure chosen, two remaining issues are
modeling and analysis of data (Section 4), and strategies for designing experiments
(Section 5). Two modeling strategies are considered: performance measure modeling
and response function modeling. The former includes Taguchi’s SN ratio analysis as
a special case, while the latter is a more flexible approach and can be tailored for
each type of system. The analysis strategies are illustrated in Section 6 on a real

experiment on injection molding. Some concluding remarks are made in Section 7.

2 Classification of Signal-Response Systems

It is useful to classify signal-response systems into two broad types based on the
function of the system. We focus on two common types of signal response systems in

this article: measurement systems and multiple target systems.

A measurement system is the process used to obtain an estimate of some quantity
of interest for a given unit or sample. This may include sampling, sample preparation,
and calibration, as well as the actual measurement process. The true amount of the
quantity present can be considered as an input signal, M, which the system converts
into a measured value or response, Y. The precision with which M can be estimated

based on Y is determined by the characteristics of the relationship between M and Y.



As an example, Miller and Wu (1991) analyzed data from an experiment originally
described by Taguchi (1987), whose purpose was to identify levels of controllable
factors which produced the most precise measurements of drive shaft imbalance in

automotive manufacturing.

A multiple target system is a system whose function requires that the value of a
response quantity can be adjusted by changing the level of a signal factor. For exam-
ple, an injection molding machine may be used to produce a number of different parts
by attaching different molds to the main apparatus. The function of the system is to
inject material into the mold. Obviously, molds of different sizes would require the
system to inject different amounts of material. Therefore, some method of controlling
the amount of material delivered to the mold is required. DeMates (1990) described
an experiment involving an injection molding process. As the system was used to
produce a number of different parts, it was required to inject different amounts of
material for different applications. Therefore, a reliable method of controlling the

amount of material injected was needed.

Factor X=1 X=-1
A: Injection Speed 2.0 0.0
B: Clamp Time 44 g 49 s
C: High Injection Time 6.3 s 6.8 s
D: Low Injection Time 17 s 20 s
E: Clamp Pressure 1900 psi 1700 psi
F: Water Cooling 70F 80 F
G: Low Injection Pressure | 650 psi 550 psi

Table 1: Control Factors for Injection Molding Case Study

Part weight was adopted as the response and high injection pressure was chosen as
the signal factor due to its known ability to change the amount of material injected.
Eight levels of high injection pressure were used in the experiment (see column entries
in the Appendix). Seven control factors, each at two levels, were included in the
experiment (see Table 1). The term control factors designates factors which can

be readily adjusted to different levels by the process operator and once set remain
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Label Factor Levels
Melt Index 22
Xn =1 | Percent Re-grind 0%
Operator Experienced
Resin Moisture Low
Melt Index 18
Xn = —1 | Percent Re-grind 5%
Operator New
Resin Moisture High

Table 2: Compound Noise Factor for Injection Molding Case Study

constant during the operation of the system. These factors were chosen since they
were thought to have the potential of affecting variability. One compound noise factor
which represents the settings of four confounded noise factors was used (see Table 2).
A noise factoris a factor which may vary during the operation of the system (and thus
contribute to variability in the response) but can be held constant for the purposes of
an experiment. Noise factors are often included in RPD experiments to insure that
important sources of variability are investigated. In some experiments compound
noise factors are used to reduce the required number of runs (see Phadke, 1989). A

discussion of compound noise factors is given in Section 5.

Another example of a multiple target system can be found in Yano (1991, page
293). In this case, the quality characteristic of interest is the surface roughness of
parts after the surface has been machined using a lathe. Since different applications
require a different degree of surface roughness, some method of controlling the surface
roughness of machined parts is required. Experience indicated that the feed rate of
the tool bit could effectively be used to alter the roughness of the machined surface.
Therefore, it was chosen as the signal factor. It was thought that factors such as
lathe, cutting speed, depth of tool cut, type of tool cut, corner radius, cutting edge
angle, front escape angle, and side scoop angle may affect the relationship between
feed rate and surface roughness. An experiment was conducted to select settings for

these control factors which would allow surface roughness to be reliably controlled by



the feed rate of the tool bit.

3 Performance Measures

The logical first step in examining a signal-response system is to develop a perfor-
mance measure (PM) which evaluates the suitability of a given signal-response re-
lationship for the intended application. By optimizing the chosen measure, control

factor settings which achieve the desired engineering objectives can be identified.

One approach to identifying a suitable PM is to specify an ideal or target signal-
response relationship and penalize for deviations from this target function. (This
relationship is called an ideal function in Taguchi’s terminology.) Taguchi recom-
mends a PM for signal-response systems (see Phadke 1989, page 114) that can be
motivated in the following manner. Suppose the target (or ideal) function is of the

form

E(Y) = ﬂtMa

where f3; is the target slope and the actual signal-response relationship can be repre-

sented by
Y = f(M)+e¢, where E(e)=0, V(e)=o0>. (1)

A PM can then be generated by averaging the mean square error (MSE) over a

specified range for the signal factor, say (mq, ms),

PM = [ "MSE dm

Ma

[ Elf(m) = im+ " dm

Ma

/mb [(f(m) — B;m)* + 02] dm

Ma

I

Il

Taguchi’s dynamic SN ratio is based on the average MSE with one modification, i.e.
he assumed the existence of a special type of control factor called an adjustment
factor which affects the system in the same manner as a change of scale (see Leon,
Shoemaker, and Kacker 1987 for a discussion of adjustment factors). Suppose for a

fixed set of control factor levels we have the true signal-response relationship given
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in (1). Then by changing the adjustment factor we can obtain any signal-response
relationship of the form Y = ¢ [f(M) + €], where c is any positive constant. To see
how the adjustment factor is used in practice, suppose a set of observations are made
for a fixed set of control factor levels, and let y;; represent the jth observed response

at the ¢th signal level (M;). Now consider the least squares fit to the model
E(yi;) = BM;.

Let 3 represent the least squares estimate of 8 and s% = (n—1)"1 3 iy — ,3M,-)2,
where n is the total number of observations. So ,3 represents the estimated slope
for the best fitting linear model and s? represents the estimated MSE for this model
(averaged over the signal levels). If we assume the target function is ;M then we
would wish to use the adjustment factor to scale the signal response relationship by
a factor of ,Bt/ﬂA Given this adjustment, the projected MSE would be (ﬂt/ﬁ)232.

Minimizing this MSE is equivalent to maximizing

log(B2/82), (2)

which he called the dynamic SN ratio. Taguchi’s dynamic SN ratio is based on the

objectives that the ideal signal-response relationship should be:

1. linear,

2. robust to uncontrolled factors.

Figure 1 illustrates the difference between what Taguchi would consider a good signal-
response system (a) and poor signal response systems (b and c). Each line represents
an observed signal response curve for a given set of noise factor conditions. The first
system is linear and relatively insensitive to noise factors whereas the second system

is sensitive to noise and the third system is non-linear.

Two major criticisms can be made of Taguchi’s dynamic SN ratio. First the
assumption that an “ideal” signal response relationship can always be identified seems
too restrictive. For example, we might ask whether is it necessary for a measurement

system to be based on a linear signal-response relationship? Consider a situation
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Figure 1: Examples of Signal-Response Relationships

where the relationship is not linear in the original metrics of the response and signal
factor but can be made linear by a suitable transformation of the signal factor. In this
case, a PM based on a linear ideal function may well yield different values depending
on whether the original or transformed metric is used for the signal factor. Second,
the assumption that an adjustment factor which acts like a scaling factor exists does
not hold in many practical situations. An adjustment factor, if available, is usually

identified based on physical knowledge.

Rather than developing a performance measure by identifying an ideal signal re-
sponse relationship and then penalizing departures from this ideal, we prefer to base
performance measures directly on the ability of a system to perform its designated
function. In the following subsections these performance measures will be developed
separately for two types of systems: measurement systems and multiple target sys-

tems.

3.1 Measurement Systems

As the purpose of a measurement system is to obtain an estimate of some quantity

of interest, it is reasonable that the system should be evaluated with respect to the



precision of estimates obtained.

Mandel (1964, page 366) developed a “criterion for technical merit”, as a method
of comparing the relative merits of measurement systems. Mandel only considered
systems where the variation of the response was constant across signal levels. Let
E(Y) = g(M) and V(Y) = o2, where g is an invertible function with inverse g7*. In
this case, assuming g(M) is known, the variance of M =g (yobs) can be approxi-
mated by o2/ [¢'(M)]*> . Mandel defined o/|g'(M)| as his criterion. Although Mandel
only considered the comparison of different systems, his criterion could also be used

to optimize a particular system.

Taguchi (1987, page 629) specifically considered the optimization of measurement
systems which are based on linear calibration curves. Suppose E(Y) = Bo + 1M
and V(Y) = o2, Taguchi, in essence, adopted w = f3}/0? as a performance measure
(SN ratio) which he justified on the basis that it is the reciprocal of the estimation
variance for M = (Yobs — Bo)/ B1, provided By, B1, and o? are assumed known. Clearly,

Taguchi’s SN ratio is a special case of Mandel’s criterion.

The measures developed by Taguchi and Mandel assume that the error variance
is constant over the levels of the signal factor. There are applications which require
this assumption to be relaxed. For example, Bocek and Novak (1970) discussed
the use of gas chromatography for quantitative analysis and indicated that under
certain circumstances this involves non-constant variance. Suppose the system can be
meaningfully represented by a model consisting of a location function and a variance

function as follows:
E(Y) = g(M), 3)
V(Y) = h(M),

where ¢ is a monotonic function of M. Then for an observed value of Y = y,s, the

classical estimator of M is

~

M(yobs) = g_l (yobs) 3

where g1 is the inverse function of g. The variance of M is approximately
V(Mlyas) ~ V(Y|M =mg)/[g'(me)]
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= h(m,)/[g(m)],
where ¢'(M) = dg(M)/dM and m; is the true value of M for the unit being tested.

As the variance of the estimate depends on the true signal level, a performance
measure can be obtained by integrating V(M) over the required range of signal values,

(mgq, mp), for the application being considered. A general form for a performance

M = /m""’ m) (4)

o lg'(m)

The above development of performance measures for measurement systems was

measure would be

based on the assumption that the location function, g(M), can be estimated with
sufficient precision that it is reasonable to treat it as being known. For many practical
situations this is not true and therefore the validity of the developed measures m‘ay
be questioned. An alternative and more rigorous justification for the SN ratio in (2)
is based on the length of Fieller intervals for the true value of M. Consider a linear

calibration system described by the model
Y = a+ BM + oe, (5)
e ~ N(0,1).
Let y; represent the measured values of ¥ and m; represent the known values of
M for the standards (j = 1, ..., p). The classical estimates for «, 8, and o? are
B = Sym[Smm, & = g"ﬁm’ and s? = (P‘2)—I(Syy“[§5’ym)7 where Sy, = Y1(y; —9)?,
Spm = Y1(m;—m)?, and Sy = ¥ 5(y; —)(m;—m). For a specific value of M = m,,
the 100(1 — 4)% prediction interval for Y is given by

(mo —m)?

&+Bmo:i:ts\/1+%+—-—§;m——, (6)
where ¢t = /3 p—2.~Suppose-that y, is the measured value of W for a sample which
has an unknown value of M. A 100(1 — )% confidence interval, called a Fieller
interval, for m, can be obtained by using the set of values of M for which y, is in the
100(1 — )% prediction interval of m. Therefore, the interval will contain all values
of m that satisfy:

(o — & — Bm)? < 257 <1+%+£%:L)2)- (7)

9



These values can form: (i) a finite interval, (ii) a semi-infinite interval, (iii) two semi-
infinite intervals, or (iv) the entire real line. Cases (ii), (iii) and (iv) would imply
no clear evidence of a relationship between Y and M (see Miller and Wu, 1991, for
details). So only case (i) is of practical interest. It is shown in Miller and Wu (1991)

that for a finite interval, (mp,my), its length is

1\ /. ¢ (me—m)2]M? (. 2\
S (V0 AR GRS, L S

which depends on @ = Bz/sz, Smm, and m, — m. This is equivalent to a result shown
by Hoadley(1970) that the width of the Fieller interval depends on the magnitude of
the F statistic, f = Spnmw, for testing H:5 = 0. '

The length of the Fieller interval decreases as & increases for & > t2/S,,,,. This

can easily be seen by rewriting (8) as

- _ 2112 -1/2
1 /. 2 ! (mo — )2 . 2
1+E+”(w‘smm> S (“’_Smm> - )

The result is evident since both (& —2/Spm) ™! and (& —t2/Spm)~1/? are decreasing

mU—mL=2t

functions for @ > t2/Smm.-

Since the observed length of the Fieller interval is a random variable, the goal
of the experiment can be thought of as making the distribution of this variable as
favorable as possible. Noting that S,,,w has a non-central I distribution with 1 and
v = p — 2 degrees of freedom, E(&) = v(v — 2)71(S;}, + w), which means that the
expected length of the Fieller interval will decrease as w decreases. This justifies the

maximization of the dynamic SN ratio log& as described in (2).

3.2 Multiple Target Systems

For multiple target systems the signal factor is used to adjust the function of the
system to accommodate different target values for the response. The shape of the
signal-response function is not of direct concern for these applications as long as all

the desired target values can be realized. Let M = (m,, m;) represent the useful
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range of signal which in practice can be applied to the system, and 7 represent the
required target values. 7 may either be a set of discrete values or an interval. In this
section only results for discrete 7 will be presented as the extensions to continuous

T are straightforward.

" As was the case for measurement systems, assume that the signal-response rela-
tionship can be modelled by (3). An obvious way to obtain a performance measure
in this situation is to take an average (possibly weighted) of performance for the
individual elements of 7. Assume that V(Y) given E(Y) = y: is a suitable perfor-
mance measure, as would be the case if a quadratic loss function is applicable. Then
a suitable performance measure can be defined by

PM= 3 V(YIM = m)w(y) (10)
wel

for discrete 7, where m; = ¢~ (y;) and w(y:) is a weighting function based on the
relative importance of the various targets. In some cases it may not be possible to
set M so that E(Y) = y; for all y; in 7. In these cases, the PM can be modified by

replacing V(Y) by the minimum obtainable mean square error.

The PM in (10) is suitable for multiple target systems which are used for a single
purpose. Occasionally, one may encounter a multi-purpose system. For example,
an injection molding machine may be used to inject a number of different molding
materials. As the physical properties of these materials may be quite diverse, the
signal-response relationship may vary substantially with respect to the materials.
One approach would be to identify compromise settings of the control factors such
that the system performs reasonably well over the range of materials. In this case,
a weighted average of the performance for individual materials could be used as
an overall performance measure. Alternatively, the control factor settings could be
optimized for each material individually. This approach may not be practical for
control factors which are very difficult to set. In practice, compromise settings can be
obtained for those control factors which are difficult to set and, customized settings

be obtained for the rest.

In view of Taguchi’s recommendation of the dynamic SN ratio (2) and its prevalent

use in some industrial sectors, it is important to point out why it is not appropriate
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for multiple target systems. Roughly speaking, maximizing log@ has the effect of
minimizing s? and maximizing 2. The former is always desirable, while the latter
can lead to undesirable results. For fixed M = (m,, m;), a larger |[§| value can give
a wider range of the Y values, which may be outside the specification limits of the
target. Furthermore, if there is error in the setting of M (as will be case in the
example of Section 6), this error will be propagated through a larger slope |3|, again

resulting in a bigger variation in Y.

4 Modeling and Analysis

The purpose of a RPD experiment is to identify the manner in which control factors
affect the performance of the system. Therefore, the goal is to model the chosen PM
as a function of the control factors. However, there are two distinct approaches to
developing such a model which we refer to as performance measure modeling (PMM)

and response function modeling (RFM).

PMM requires a two-stage modeling procedure. The first stage is to obtain an
estimate of the PM for each combination of control factors used in the experiment.
For a fixed combination of control factor levels, the response is measured for various
combinations of signal and noise factor levels and these observations are used to
estimate the PM. The second stage involves using these estimates to model the PM
as a function of the control factors. The preferred settings of the control factors are

determined directly from this fitted model.

PMM can be illustrated using Taguchi’s dynamic SN ratio approach. Consider
a full factorial experiment involving three 2-level control factors (C;, Cs, Cs), two
2-level noise factors (N1, N;) and a 4-level signal factor (M). For each of the eight
distinct control factor combinations there are sixteen observations corresponding to
the noise and signal factor combinations. These sixteen observations are used to fit
a linear model, E(Y) = M, and the parameter estimates are then used to estimate
the PM, in this case PM = 32/s?. Now the eight PMs are treated as the set of

observations for a 23 experiment where C;, C3, and C3 are the experimental factors
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and standard analysis techniques can be applied to them. A typical analysis would
be to use a normal plot to identify active effects and thus identify a suitable model

for PM as a function of the control factors.

RFM uses the experimental data to model the signal-response relationship as a
function of the control and noise factors. The specified performance measure is then
evaluated with respect to the fitted models in order to select preferred levels of the
control factors. This approach in essence treats the signal-response relationship as the
response and models this relationship as a function of the control and noise factors.
This is an extension of the response modeling approach recommended by Welch, Yu,
Kang, and Sacks (1990) and Shoemaker, Tsui, and Wu (1991) for simple response

applications.

To illustrate the RFM approach consider the previous example. The experiment
contains 32 combinations of control and noise factor levels. For each of these combi-
nations there are 4 observations corresponding to the levels of the signal factor. These
4 observations are used to fit a parametric model for the signal-response relationship.

Suppose in our case a model of the form
Y =B8M +¢ e~ N(0,0%)

is suitable. Then B and o? are estimated for each of the 32 control/noise factor
combinations, and models for 8 and o? as functions of the control and noise factors
~are produced. The chosen PM is then evaluated for different combinations of the
control factors using these models. A systematic development of RFM is given in

Miller and Wu (1991).

We do not, in general, recommend the PMM procedure since it can often obscure
useful information present in the data. Box (1988) illustrates for simple response sys-
tems how very different data sets can give the same estimated values of performance
measures. Therefore, modeling the PM directly can result in the loss of valuable infor-
mation regarding the problem. Clearly, the same argument applies to signal-response
applications. The PPM approach only provides information on how control factors
affect the overall performance of the system. Any information in the data on how

specific control factors affect the shape of the signal response system or interact with
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specific noise factors is lost. It is this type of information which can be most valuable
in suggesting directions for future research. The response based approaches do not
suffer from this deficiency. The initial modeling of the response will often provide use-
ful insight into the system and may suggest directions for future research. The PM is
then applied to this model to identify preferred settings of control factors. In many
cases, it will not be necessary to formally do this step since it will be straightforward
to deduce the preferred settings directly from the response model. The advantages
of the RFM approach will be clearly demonstrated in Section 6 using the injection

molding experiment.

5 Designing Experiments

In traditional experiments the expectation of the response is of primary importance
and the variability is mainly considered with respect to inference on the expectation
(Box, Hunter, and Hunter 1978). For RPD experiments the variability of the response

is of as much interest as the expectation.

An initial step in any experiment is to select the experimental factors. For signal-
response RPD experiments this means identifying the signal, noise, and control fac-
tors. In almost all cases, the choice of the signal factor is clear and is a factor which
has been traditionally used to control the response. The selection of appropriate
noise factors, which represent major sources of variability in the system, is extremely
important. The traditional approach of using replicate observations to assess vari-
ability is ineffective. In order for estimation of variability based on replications to be
valid, it must be assumed that the observations reflect the variability in the entire
population of interest. This is seldom reasonable in practice since real systems tend
to change over time. For example, key parts wear over time, operators change from
shift to shift, batches of raw materials vary, machine settings may drift, and climatic
conditions vary over days as well as over weeks. Even supposing the sample is rep-
resentative of the population, the number of replicates required to get a sufficiently

precise estimate of variability for most applications will be too large to be economi-
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cally feasible (see Gunter 1988). The solution to this problem is to use noise factors
which represent major causes of variability in the experiment. Available knowledge of
the system, observational studies, and screening experiments can be used to identify
the important noise factors. Finally, the selection of control factors should be done
keeping in mind that factors which either affect the system directly or influence the

way noise factors affect the system are of interest.

Once the experimental factors have been selected, the design matrix can be con-
sidered. For simplicity of discussion, consider a system whose signal-response rela-
tionship is linear. There are two ways in which a factor (control or noise) can affect
this relationship: (1) it may cause a uniform shift in the relationship or (2) it may
cause the slope of the relationship to change. Clearly, if an additive model is used,
influences of type (1) are represented by a main effect for the factor and influences of
type (2) are represented by an interaction between the factor and the signal factor.
For control factors these effects indicate the ability to adjust the average response or
to adjust the sensitivity of the response to changes in the signal factor. Noise factor
main effects indicate that the factor is inducing variability by shifting the average re-
sponse and signal xnoise interactions indicate variability is being induced by causing
the sensitivity of the response to the signal factor to change. To make the system
robust (insensitive) to a noise factor we need to identify control factors which inter-
act with the noise factor in the first case and which interact with the noise xsignal
interaction in the second case. As a result, the ability to detect interactions is of
critical importance for an RPD experiment. This is especially true for interactions

which involve the signal factor or those which involve both control and noise factors.

Full factorial designs are certainly suitable for RPD experiments as they allow
the detection of all interactions involving the experimental factors. A problem which
occurs in many situations is that they require too many runs to be economically
feasible. A viable alternative is a fractional factorial design which is selected to ensure
that all interactions deemed potentially important can be detected. Typically these
will include controlxsignal, control xnoise, noise xsignal, and control xnoise xsignal
interactions. The modeling procedure (PMM or RFM) also becomes a consideration

in selecting a fractional factorial design.
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Suppose RFM is to be used to analyze the data. This procedure requires that
a fitted model of the signal-response relationship be obtained for each combination
of control and noise factors used in the experiment. The overall experiment can be
thought of as being composed of two parts. The first part consists of a “primary
experiment” where the experimental factors are the control and noise factors and
the response is the estimated signal-response relationship. The design array for the
primary experiment represents combinations of control and noise factors. For each
of these combinations, a secondary experiment is run which simply involves taking
observations of the response variable for specified signal levels and using these to
fit a model for the signal-response relationship. The design array for the secondary
experiment consists simply of the signal levels. The number of signal levels usually
should not exceed five and can be as low as three. The same set of signal levels should
be used for each combination in the primary array, since the set of signal levels can
influence the fitted model for the signal-response relationship. For example, a linear
model may be suitable for a set of levels which are restricted to a particular range
of the signal factor, while a more complicated model will be required over a different

range of levels.

The overall design array consists of replicating the secondary design array for each
run in the primary experiment. Shoemaker et al. (1991) referred to this type of design
as a product array design. The number of runs required for the experiment will be
the number of rows in the primary array times the number of runs in the secondary
array. To reduce the size of the experiment, the size of one of these arrays must be
reduced. The secondary array can only be reduced by decreasing the number of signal
levels and this will be limited by the complexity of the signal-response relationship.
The primary array can be reduced by adopting a fractional factorial design. Consider
the example used in the modeling section which involved factors Cy, Cy, C3, N1, N,
and M. A 2°! design with defining relation I = C;C3;C3N; N, could be used which
would reduce the size of the experiment from 32 x 4 = 128 runs to 16 x 4 = 64 runs.
This design would allow all main effects and 2 factor interactions involving the control
and noise factors to be estimated provided that 3 factor and higher order interactions

involving only control and noise factors are negligible. It also would allow all 2 and
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3 factor interactions which involve the signal factor to be estimated provided that
4 factor and higher order interactions involving the signal factor are negligible. In
general, a good design for the primary array can be chosen by using standard criteria

such as maximum resolution or minimum aberration (see Chen, Sun and Wu, 1993).

Now suppose PMM is to be used to analyze the data. This requires that an
estimate of the PM be obtained for each combination of control factors used in the
experiment. Again the overall experiment is composed of two parts, but in this case
only the control factors are included in the primary experiment. The noise and signal
factors are varied in the secondary experiments which are used to estimate the PM for
each control factor combination of the primary experiment. The same design array
should be used for each of the secondary experiments since the results may be quite
misleading otherwise. This can be readily demonstrated by considering the design in
Table 3 (the combinations of factors used are denoted by e) which has the defining
relation I = C;Cy N1 Ns.

1 111 1 1 1 1-1 -1 -1 -1 -1 -1 -1 -1|M
1 111 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1|N,
G ¢, C31-3 113 -3 -1 1 38 -3 -1 1 3 -3 -1 1 3| M
1 1 1 1| ¢ o o o o o o o
2 1] o o o o e o o oo
3 1 -1 1 e o o o o o o o
4 -1 -1 ¢ o o o o o o o
5( -1 1 1 e o o o o o o o
6| -1 -1 o o o o o o o o
71 -1 -1 1| ¢ o o o o o o o
8| -1 -1 -1| e o o o e o o o

Table 3: Design for I = C1C2 N1 N,

Assume we are investigating a linear measurement system and therefore adopt
PM = f?/o?. For each control factor combination we fit a model of the form Y =

Bo + P1M + € where € ~ N(0,0?%). Then for the ¢th run, PM; = ﬂAfl/s,2 where fy; and

2

s? are the least squares estimates of slope and variance. Notice what happens if the

17



true relationship is of the form
Y =50+5M + 1.0N; + 1.ON; + ¢, (11)

with V(€) = o2 where o2 represents the residual variation after the components due to
N, and N, have been removed. In this model, the control factors have no effect on the
system and therefore the estimated PM should be about the same for all 8 rows of the
primary array. However, for rows 1, 2, 7, and 8, all the observations have the effects
of the noise factors reinforcing each other (either Ny =1 & Ny =1or Ny = -1 &
N, = —1) whereas for rows 3, 4, 5, and 6, the effects cancel each other (either N; =1
& N; = =1 or N; = =1 & N, = 1). It is easy to show that for rows 1, 2, 7, 8
E(f) = 5 and E(s?) = 02+ 32/6 whereas for rows 3, 4, 5, 6 E(8) = 5 and E(s?) = o2.
Clearly, the estimated PM for combinations 3, 4, 5, and 6 will be larger than those
for 1, 2, 7, and 8. As a result, the analysis will indicate a C;C> interaction since the
C1C; contrast has a level of 1 for rows 1, 2, 7, and 8, and a level of -1 for rows 3, 4, 5,
and 6. This is strictly an artifact of different combinations of noise factors being used
for the different combinations of control factors. Therefore, it is necessary to require
that the same secondary design array be used for each combination of control factors

if a PMM procedure is to be used.

Continuing with our example to select a suitable half fraction design for a PMM
procedure, it is necessary to adopt a half fraction for either the primary array or the
secondary array. For the primary array, the maximum resolution (III) design would
be obtained by using I = C;C;C5 as the defining relation. This choice necessitates
the assumption that there are no control factor interactions with respect to the PM. If
this assumption (which seems rather severe in this situation) is not tenable, we need
to consider reducing the size of the secondary array. The secondary array consists
of noise factors N; and N, each with two levels and the signal factor M with 4
levels. It is useful to consider M as being composed of pseudo-factors M,, M, and
M,y(= M, X My) each having two levels. The levels of M are represented by the four
combinations of levels for M, and M,. The maximum resolution designs are obtained
by using I = Ny N, M,, as the defining relation (see Wu and Zhang 1993 for results on

4127 and 4?2” designs with maximum resolution or minimum aberration). However for
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PMM it is not necessary to estimate the individual noise factor effects and therefore
resolution is not the most suitable criterion for the secondary array. What is necessary
is that the secondary experiment provide a reliable indication of the performance of
the system. For this to occur, we need to ensure: (1) signal effects are not confounded
with active interactions, and (2) if active effects involving noise factors are confounded
with each other, these effects reinforce rather than cancel. Consider the maximum
resolution design defined by I = N; N, M, which confounds Ny = NoM,, N, = N1 M,,
and Ny N, = M,. For this design to be suitable, it is necessary to assume N;V; is not
active, N; reinforces NoM,, and N, reinforces Ny M,. A more appealing alternative
would be to use the design defined by I = +N; N, which is equivalent to what Taguchi
refers to as a compound noise factor. The defining relation (I = NyN; or I = —N1N;)
is chosen so that the effects of N; and N, reinforce rather than cancel. That is, if
both N; and N, have positive (or negative) effects then I = N;N; should be used
but if one has a positive effect and the other has a negative effect then I = —N; N,
should be used. Note that this only requires knowledge about the signs of the noise

factors.

The above discussion focuses on reducing the size of the experiment. However, in
some situations cost is not directly proportional to run size since some factors (e.g.
furnace temperature) are more difficult or expensive to set than others. In these cases,
cost is determined by the number of level changes of the “difficult-to-change” factors.
Designs which involve restricted randomization such as split-plot or strip-plot designs
may be useful in reducing cost. Difficult-to-change factors are assigned to main-units
which reduces the number of times these factors are reset. Further discussion can be

found in Box and Jones (1992).

For most signal-response applications the signal factor is relatively easy to change
compared to control and noise factors. For measurement systems, signal levels often
represent different standards and, in most cases, once a measurement system has been
set up the increase in cost to make additional measurements is minimal compared with
the cost of reconfiguring the system. For multiple target systems, the signal factor
has been specifically chosen because it proVides a convenient way of controlling the

response. Therefore, from an economic standpoint it usually makes sense to assign the
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signal factor to sub-units of a split-plot design. The situation is not as clear-cut with
respect to noise factors. Noise factors are often, but not always, easier to change than
control factors. For example, the noise factors in the injection molding experiment
are not easy to change, which explains why a compound noise factor (see Table 2)
was chosen to reduce the length and cost of the experiment. Therefore the individual
application will determine whether noise factors should be assigned to sub-units or

whole units.

In considering fractional factorial design matrices which are suitable for split plot
designs, the key characteristic is the number of distinct combinations of the difficult-
to-change factors in the design matrix. This number can be reduced by having as
many generators as possible in the defining relation made entirely from the difficult-
to-change factors. Consider combining this requirement with the restrictions imposed
by the modeling procedures. For RFM all control and noise factors are included in
the primary array and therefore in selecting the primary array as many generators as
possible should be made from difficult-to-change factors. For PMM the control and
noise factors are split between the primary and secondary arrays and so the difficult-
to-change factors may also be split. This can severely restrict the ability to select

generators made entirely from difficult-to-change factors.

6 Analysis

In this section, data from the injection molding experiment is used to demonstrate
the PMM and RFM approaches. The Appendix contains the data from the original
experiment (DeMates, 1990).

First, we must identify a suitable PM for the system. As an example, suppose
it is required that the system be able to produce target values from 650 to 700 for
the response. Since this range of target values is obtainable for all combinations
of control and noise factors used in the experiment, a reasonable PM would be the

average variation of the response over this range.

The original experiment used a product array design. The primary array was used
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Control Factors
Row|A B C D E F G
1 1 1 1 1 1 1 1
2 11 1 -1 -1 -1 -1
3 1 -1 -1 1 1 -1 -1
4 1 -1 -1 -1 -1 1 1
5 -1 -1 1 -1 -1
6 -1 -1 -1 1 -1
7 -1 -1 1 1 -1 -1 1
8 |-1 -1 1 -1 1 1 -1

Table 4: Inner Array for Injection Molding Case Study

to vary the levels of the control factors and the secondary array was used to vary the
signal and noise factors. The primary array was a 2°~* fractional factorial design (see
Table 4). The secondary array consisted of all 16 combinations of the eight signal
factor levels and the two levels of the compound noise factor. This layout is more
suited to a PMM approach than a RFM approach. The experiment was run over
two days using a split-plot randomization procedure. On the first day, the compound
noise factor was set to its low level. The control factors were then varied according to
the rows of the primary array. For each control factor combination, the signal factor
was varied over its eight levels and four observations were taken at each level. On the
second day, the procedure was repeated using the high level of the compound noise

factor.

Figure 2 contains scatter plots of the data (Y, M) and the fitted quadratic models
for several runs, where the response Y is the part weight and the signal factor M is
the high injection pressure (see Section 2). Figure 3 contains the residual plots (after
the quadratic model fit) against M. Although the quadratic model appears reasonably
satisfactory, there appears to be a systematic pattern in the residual plots. In order
to investigate this further, the total sum of squares for each control/noise factor
combination was divided into contrasts using orthogonal polynomials of M. Then a

forward selection procedure was used to sequentially test the addition of higher order

21



terms (at the 0.05 significance level) to the models.

Signal Factor Levels
650 700 750 800 850 900 950 1000

P(M)|-7 -5 -3 -1 1 3 5 7T
P2M)| 7 1 3 5 5 3 1 1

Table 5: Levels for Orthogonal Polynomials

In twelve of the sixteen cases, the selection procedure indicated that a quadratic
polynomial was adequate. In the other four cases, the cubic term was also added.
An interesting aspect of this analysis was that in over half the runs there was an
unusually large sum of squares attributed to the 6th degree term (it was typically
more than a factor of 10 larger than the 4th or 5th degree terms). As it is unlikely
that the 6th degree term is important this suggests that at least part of the systematic
pattern in the residuals (after quadratic fit) seen in Figure 3 may not be due to model
inadequacy. One possible explanation is that systematic difference exists between the
settings of the signal factor and the actual high injection pressure delivered by the
system. For example, in most of the residual plots, the residuals corresponding to
M =900 are negative. This could be explained if the system consistently delivered a
high injection pressure of less than 900 at a nominal setting of 900, as this would cause
the observed part weights to be lower than expected. Whatever the real explanation
for this phenomenon, it is clear it will not be corrected by using a more complicated

model.

Figure 2 indicates that the quadratic model adequately captures the essential
features of the signal-response relationship. Although for certain runs, the above
analysis indicated that the cubic term was significant, from a practical point of view it
does not appear necessary. Therefore, a quadratic location model based on orthogonal

polynomials was used,
E(Y) = Bo+ frPi(M) + B Po(M) , (12)
where the values Pi(M) and P,(M) for the various signal levels are given in Table 5.
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This type of model was adopted as it makes the interpretation of results easier with
B representing the linear component of the signal-response relationship and 3, the

quadratic departure from linearity.

6.1 PMM Analysis

The first step is to estimate the PM for each combination of control factors. From
the residual plots it seems reasonable to assume variation is constant across levels of
the signal factor. For each row in the control factor array, the standard least squares
estimate of variance, s?, for the fitted quadratic model (12) was used as the estimated
PM. The next step is to treat s? as the response for the control factor design array.
Actually, log(s?) will be used in order to stabilize the variation of these estimates.
Figure 4 gives the half normal plot of factor effects for log(s?). This plot does not
clearly indicate that any control factors have an effect on the PM. However, it does

appear that A, B, and D warrant further consideration.

~ ~

Row fo f1 P s

665.8 5.00 1.25 8.39
662.2 4.91 1.46 19.70
666.8 4.93 1.25 9.06
666.4 4.66 1.40 10.40
665.3 4.56 1.38 4.34
674.3 4.33 1.34 9.75
666.4 4.92 1.31 1.54
664.3 4.96 1.27 3.27

0 N O O s W N

Table 6: Estimated Parameters for PMM

6.2 RFM Analysis

For RFM, we first fit location and dispersion models for each combination of control

and noise factors used in the experiment. For the location model, we use the quadratic
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Figure 4: Half Normal Plot for log(s?)

model in (12). Since replicate observations were made at each signal level, it is
possible to separate variation into a lack-of-fit component and a replicate component.
The replicate component, &Z, will reflect part-to-part variation for observations taken
over a short time interval. The lack-of-fit component, 67, will represent longer term
variation and as was noted previously, contains a systematic component which may
be due to systematic errors in the recorded values for the signal factor. Therefore,
we will analyze these two components of variation sepa}ately. The estimated values
for each of the location parameters and the two components of variation are given in

Table 7.

Next, the effects of the control and noise factors on these parameters are evaluated.
Figure 5 contains half-normal plots for the location model parameters and Figure 6
contains half-normal plots for the two components of variation. For fy there are six
effects which -appear to-be-significant: G, C, E, A, N,.-and F. Only C stands out as
being clearly significant for §;. There are no clearly significant effects for ;, but
E, N, D, B, AN, FN, and GN appear marginal. None of the estimated effects are
significant for lack-of-fit variation, while for the part-to-part variation A is clearly

significant and N, EN, B, and C are all large enough to warrant further attention.
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Xny=1 Xy =-1
Run fo fi B of o2 Rum fo fi B of o2
1 666.5 5.02 1.16 5.61 7.78 1 665.0 4.98 133 6.87 1.20
2 664.2 5.12 1.44 7.10 4.45 2 6600 4.69 1.48 26.81 3.20
3 6682 498 1.22 4.28 4.99 3 6652 4.86 1.26 6.34 2.70
4 6684 4.76 1.25 4.81 3.53 4 664.2 4.55 1.54 3.64 2.64
5 6663 4.66 135 4.93 0.67 5 664.2 446 1.39 2.54 0.56
6 6744 432 1.32 14.78 1.00 6 6741 433 136 13.27 0.30
7 666.6 4.92 131 230 0.21 7 666.1 491 130 1.76 0.18
8 664.9 490 1.25 3.21 0.75 8 663.6 5.02 1.29 3.96 0.12
Table 7: Estimated Parameters for Injection Molding Data
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Figure 5: Half Normal Plots for Location Model Parameters
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The fitted models for the parameters are

A

Bo = 666.4+1.2X4 — 1.8Xc
+1.4Xg — 1.0XF + 1.8X¢ + 1.1Xy,
B = 4.79+0.16Xc,
B, = 1.33+0.03Xp — 0.04Xp — 0.05X5
~0.04Xy + 0.01X4 Xy — 0.03Xr Xy — 0.02Xe X,
b = 0.12+41.10X4 +0.22Xp — 0.21.X,
+0.40Xx + 0.28X5 Xy + 0.04Xg,

— 2
where v = log 0.

To begin, consider the fitted model for 3;. Factor C can be used to adjust the
sensitivity -of the response to the signal. In this case C would be set to level X¢ =1
if a wider range of attainable targets was necessary. Otherwise the level of C could

be determined by other considerations.

Next consider the model for log 03. Part-to-part variation is not the only type of
variation which is relevant to the process. However it is clearly desirable to reduce this

type of variation as much as possible. In this case, A should be set to the X4 = —1
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Xg=-1 Xg=1
Xy =-1 -1.57 -2.05
Xy =1 -1.33 -0.69

Table 8: Estimated Values for log o2

level. It also appears worthwhile to set B to the Xg = —1 level and C to the X¢ =1
level. The compound noise factor, N, and the EN interaction also affect 2. Since the
EN interaction was significant, E was also included in the model. Table 8 contains
the estimated values of logo? for the combinations of levels of E and N assuming
X4 = -1, Xg = —1, and X¢ = 1. The table indicates that for E set to Xg = —1
the part-to-part variation will be more consistent with respect to changes in the noise

factors than for Xg = 1.

Now consider the model for By. Due to previous considerations the levels of A,
C, and E have already been determined. This leaves factors F and G which could be
used to make adjustments to By (if necessary). Notice, that N does affect §y but no

interaction has been identified which could offset this.

Finally consider the model for f,. In this case the levels for B, D, and E have been
previously determined. Consider the effect of N. The estimated observed coefficient

(given fixed levels of control factors) for N would be
(—0.04 +0.01X,4 — 0.03XF — 0.0QXG)XN.

In order to make the system insensitive to changes in N, we would like to make the
absolute value of this coefficient as small as possible. As the setting X4 = —1 has

already been determined this suggests setting Xp = —1 and X¢g = —1.

Notice that the PMM approach did not clearly indicate that any control factors
could be adjusted to improve system performance. Even if certain factors had been
identified, it would not have provided insight into how these factors affect the sys-
tem. RFM on the other hand, not only indicated certain control factors could be

used to improve the system, it also provided insight into how these factors affected
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the system. In particular a quadratic model was identified as suitably describing
the signal-response relationship and control factors which could be used to alter the
parameters of this relationship were identified. Further, the residual plots produced
from the fitted models for the signal-response relationship indicated the possibility of
a systematic error in the signal levels. Finally, the flexibility of the RFM procedure
allowed variation to be divided into two components, af, and o7, which led to the
conclusion that factor A could be used to reduce part-to-part variability.

The advantages of the RFM approach can be better appreciated by contrasting
the main findings summarized above with what Taguchi’s approach would lead to.
First, Taguchi’s dynamic SN ratio assumes a linear relation while the data clearly
exhibit a quadratic relation. Second, use of data analysis techniques, like residual
plots suggests the possibility of errors in the signal factor setting. Third, analyzing
components of variation allows us to identify factor A as effective in reducing part-
to-part variability, which can have major engineering implications. Since Taguchi’s
approach does not encourage the use of modern data analysis, following his analysis

method will unlikely lead to the last two findings.

7 Conclusion

This paper explored the use of designed experiments to improve the performance of
signal-response systems. These are systems whose function depends on the causal
relationship between a signal factor and a response variable. Measurement systems
and multiple target systems are examples of such systems and were considered in
detail. To summarize we recommend the following steps for investigating signal-

response systems.

1. Identify a suitable performance measure which reflects the ability of the system

to perform its designated function.

2. Adopt a response function modeling approach. In essence this means that the

signal-response relationship is to be modelled as a function of both control and
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noise factors. Then the identified performance measure is applied to the fitted

model to determine preferred settings for the control factors.

3. The experiment should be designed using a two stage strategy. First, a design
array is adopted for the control and noise factors. Then, for each row in this

array, the signal factor is varied over a number of levels.

4. The analysis is quite straightforward. For each row in the control-noise array,
parametric location and dispersion models are fitted for the response. The fitted
parameters for these models are then modelled as functions of the control and
noise factors. Standard procedures, such as half normal plots and regression
analysis, are used to identify significant effects and produce a fitted model. The
PM is then applied to this model and preferred settings of the control factors
identified.
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Appendix: Data from the Injection Molding Ex-

periment

Signal Factor Levels
Run 650 700 750 800 850 900 950 1000 | Xn
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