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Abstract

An important goal of quality improvement in manufacturing is the reduction
of variability in product characteristics. Producing more consistent output
improves product performance and may reduce manufacturing costs. This
article discusses and contrasts five generic variation reduction strategies that
encompass all current methods. The five are: output inspection, feed-back
control, reduction of variation in process inputs, feed-forward control, and
process desensitization. Each strategy has distinct advantages and
disadvantages and is only applicable in certain circumstances. The article
compares and contrasts the strategies and provides practitioners guidance in
choosing the most appropriate. An example from the automotive industry
that illustrates the thought process necessary to choose appropriately is

presented.



Introduction

An important goal of quality improvement in manufacturing is the reduction of variability in
product characteristics. Producing more consistent output improves product performance and may
reduce manufacturing costs.

The problem can be simply demonstrated. Suppose a process produces output with an
important quality characteristic Y. See Figure 1. The current process performance, measured
using an appropriate sampling scheme over a long enough period to capture most of the variation,
is shown by the histogram. The goal is to reduce variability in Y while targeting the process at or
near the nominal value. In this article, we focus on variation reduction, and implicitly assume
either that any reduction obtained does not move the process mean significantly away from its

target or that we can re-target the process mean without effecting the process variability.
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Figure 1: Process Diagram

Processes are managed using a control plan that describes how the process should be
operated, and specifies the mechanisms through which the quality of a product will be monitored,
controlled, and verified. In this context, reducing the process output variation requires either the
modification of a current control plan or a change to the process itself. Changes to the method of
operation corresponds to the idea of a living control plan as discussed in the Automotive Industry
Action Group (AIAG) reference manual, Advanced Product Quality Planning and Control Plan

referred to in the automotive industry quality standard, QS-9000. A living control plan is



constantly modified and improved as more information and insight on the process becomes
available.

Reduction in output variation can be accomplished by changing the way the process
operates in a number of different ways. In our experience, however, all variation reduction

approaches can be classified into one of the following five generic strategies:

1. introducing or tightening output inspection;

2. introducing or improving feed-back control;

3. reducing variation in process inputs;

4. introducing or improving feed-forward control;
5. desensitizing the process to input variation;

Each of these five strategies is currently used in industry. A sixth strategy, which we do
not assess in detail, is to discard all or part of the existing process and start again with a new
method or technology. In some situations, this sixth strategy of replacing the existing process (or
part of it) may be the only viable option. For example, we may purchase a new gauge to improve
the accuracy of our measurements or use a new supplier whose products are of higher quality.
However, in the spirit of continuous improvement, we believe that it is cost effective to consider
strategies one through five first. In any case, strategy six could be considered a extreme example
of strategy five, where the process is desensitized by changing the process radically.

All variation reduction strategies are dependent on the ability to measure precisely the
process output Y and possibly input(s) X. As result, studies that examine the short term variability
(gauge R&R), and long-term stability of the measurement system should be carried out prior to any
variation reduction exercise. In this article, we assume that the measurements obtained are reliable,
i.e. that the measurement system itself is not the major source of variation.

The choice of an effective strategy depends critically on knowledge of the existing process.
Key aspects of this knowledge include stability, predictability, ability to adjust, and identification
of the causes of the variation. The availability and cost of attaining this knowledge provides an

important input to a decision on which process variation reduction strategy is most applicable.



The goal of the article is to contrast and compare each of the variation reduction strategies,
highlighting the required process knowledge, potential costs, benefits and drawbacks of each
method. We discuss each strategy in detail, providing information on how the strategy works and
when it works. For each strategy we give simple examples and discuss more complex extensions.
At the end of the article, this information is summarized in Table 1. The thought process required
to choose judiciously is explored through a detailed example on a crankshaft machining process.
We hope that this discussion will provide guidance to quality practitioners faced with a variation

reduction problem.

Output Inspection

Output inspection is the simplest variation reduction strategy and is virtually always
applicable. Assuming 100% effective 100% inspection, the variability is reduced by identifying
and then scrapping or reworking all items that have values of Y beyond selected inspection limits.
The more the limits are tightened, the greater is the reduction in variation. The effect of tightened
inspection is illustrated in Figure 2. Imagine inspecting and sorting units based on whether they
fall between the dashed lines shown, where any units falling outside the limits are either scrapped
or reworked (and then re-inspected). Clearly, this selection of units reduces the overall variability

in the product that is subsequently shipped.
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Figure 2: Output Inspection Example



Output inspection is very versatile. It can be successfully used in any situation where the
output characteristic Y can be determined in advance of shipping the product to a customer. Output
inspection is especially appropriate when the quality dimension is critical and the process produces
only the occasional outlier or flier while all other units exhibit very little variation. For example, in
the production of aluminum pistons, the diameter of each finished piston (as well as a number of
other key characteristics) is measured by an automated gauge after the piston temperature is
controlled. Pistons with large or small diameters are scrapped. In such a situation, the costs
associated with 100% inspection, including installation and operation of the automated gauge, are
warranted due to the high production volume and the critical nature of the product characteristic.
Assuming no inspection error, the 100% inspection strategy has the advantage of being able to
guarantee that no units with quality characteristic outside the inspection limits will be shipped to a
customer.

Output inspection has a number of significant negative features. The cost of reducing
variability by tightening the inspection limits may be very high due to increased rework and scrap
costs and lost capacity. Also, the cost of inspection itself may be large if new gauging or
additional labour is required. In addition, measurement or inspection errors will result in increased
variability. As a result, given the propensity of people to make inspection errors, most successful
applications use automated inspection.

One common modification of this strategy is inspection sampling where not every unit is
measured. One approach is to define lots, where lots are accepted or rejected based on the quality
of a sample taken from the lot. Accepted lots are shipped and rejected lots are 100% inspected or
otherwise disposed. If we know that lot to lot variation is large and within lot variation is small,
then inspection sampling is effective. Thus, using inspection sampling, variation may be reduced
by redefining a lot, changing the inspection limits, or changing the lot acceptance criteria.
Compared to 100% inspection, inspection costs are reduced. However, overall variability will not
be reduced to the same degree. Note that if the process is stable, then partial inspection is a poor
strategy. Deming (Chapter 15, 1986) showed that in this case either no or complete 100%

inspection is optimal.



Feed-back Control

Feed-back control is a simple concept that may lead to complex procedures. The idea is to
monitor the current output characteristic Y and to make adjustments to the process based on the
observed output. By making appropriate adjustments, we compensate for changes in unidentified
process inputs, thus reducing the variability in future values of Y. The effect of a simple feed-back
control plan is illustrated in Figure 3. The panel on the left show the output of the original process.
The panel on the right shows the output of the same process when feed-back control is applied.
The feed-back control mechanism involves re-targeted the process to zero whenever the process
output exceeds the adjustment limit. The amount of adjustment is based on the last observed
process output. Figure 3 demonstrates the resulting reduction in variability of Y.

Process Output using
Original Process Output Feed-Back Control

1.5

Adjustments Made Here

0 50 100 0 50 100
Observations Observations

Figure 3: Feed-Back Control Example

Feed-back control can be successfully applied when three conditions are satisfied. First,
the process must exhibit substantial structural variation (Joiner, 1994). Examples of structural
variation include drift due to tool wear and stratification due to batch to batch variation. Second,
there must be an adjustment procedure to re-target the process. Finally, the time to measure the

output and adjust the process must be small relative to the rate of change of the process.



A feed-back control scheme is defined by its adjustment procedure that tell us when and
how much to adjust, and its sampling frequency. Increased knowledge of the process behaviour
may be used to improve the feed-back control scheme. For example, better knowledge of the
nature of the structural variation can be used to change the sampling frequency or the adjustment
rule.

As an example, feed-back control is used to reduce variation in the concentration of silicon
in molten iron in a foundry. Iron is sampled at a fixed frequency from the output stream and the
concentration of silicon is determined in the sample. Based on the observed concentrations,
adjustments are made (upstream) to the feed rate of silicon in the melting process. Another
common example is the use of procedures based on first-off measurements where, for example, a
machining tool’s set-up may be changed based on measurements taken on the first few products in
a batch. Once a good set-up is achieved, no further process measurements are taken.

The major advantage of feed-back control is that it requires little knowledge of the causes of
variation. Like output inspection, it only uses information obtained from the final product.

There are a number of drawbacks to feed-back control. A major danger is over-adjustment
(tampering). If the process is stable (i.e. it does not exhibit structural variation), then adjusting on
the basis of the output will lead to increased variability. This illustrated in the famous funnel
experiment, see Deming, 1986 pp. 327-328. Another drawback is that the process measurements
and adjustments may be expensive. Finally, due to the feed-back nature of the control, there is an
inherent time delay. To identify when an adjustment is required, we must first observe some
output values that are significantly different from the target value. Thus, feed-back control is
always reactive.

There are many variations of feed-back control. See Tucker, Faltin, and Vander Wiel
(1993) for further details. Specific examples include acceptance control charts (Duncan, 1986) and
pre-control (Shainin and Shainin, 1989, Juran, Gryna, and Bingham, 1979). Most feed-back
control systems use a function of recent output values, not just the last value, to determine if an

adjustment is necessary. If the drift in Y is as regular as shown in Figure 3, we could also base



adjustments simply on the time or the number of units processed (or any other cheaply measured

variable highly correlated with the output dimension Y).

Reduction of Variation in Process Inputs

As the saying goes “garbage in garbage out.” If there is a large amount of variation in
process inputs, then it is difficult to produce consistent output. One improvement approach in this
environment is to reduce the variability in one or more inputs. For ease of discussion, we assume,
for the moment, a single important input X. See Figure 1. The input X may be a characteristic of
raw materials or component parts, a changing environmental factor such as heat, or any other
process input that changes over time. From the point of view of the process that produces X, the
problem of reducing variability in X is analogous to reducing variation in Y and we have created a
recursion in the problem definition.

The effect of reducing the variability in an input is illustrated by the variance transmission
plots shown in Figure 4. In this example, most of the variation in Y is due to variation in the input
X. As aresult, if we reduce the variability in the input X as shown, the variability in the output Y
will also be substantially reduced.

Original Process Process with Reduced Variation in X

Variation
inY

Variation
inY

Variation in X X Variation in X X

Figure 4: Variance Transmission between Input X and Output Y



There are three basic conditions necessary for this strategy to work. First, we must be able
to identify an input X that has a causal influence on the output Y. Second, we must identify an X
that is a major source of the variation in Y. Third, we must be able to reduce the variation in X.

There are many tools for discovering the identity of such an X. We may use observational
studies such as control charts, multi-vari studies (Juran, Gryna, and Bingham, 1979) and
regression, or we may use designed experiments which require an intervention in the process. It is
important that the identified factor X is a significant factor influencing the variation in the output.

This approach is pro-active. The control of the process is moved upstream which may
reduce cost and complexity, and less effort may be needed to monitor the process output Y. An
example of this strategy occurred in the machining of the aluminum pistons described previously.
A variation transmission study identified the piston diameter after an intermediate operation (X) as
the major source of variation in final piston diameter. The variation of X was reduced by instituting
improved operator instructions and training at the intermediate operation.

One difficulty with this strategy is that first we must identify an X, which is both an
important contributor to the variation in Y and which is causally related. This may prove arduous
and involve significant study costs. Second, reducing variability in X may be very difficult and/or
costly. Third, tightened specifications on X moves the responsibility for control of the process
upstream, and possibly outside the influence of local management.

Figure 4 shows a continuously varying input X. However, in many cases X is discrete.
For example, X could represent multiple suppliers or multiple machines in parallel processing
operations. In this case, reducing variation in X could be accomplished by reducing the number of
suppliers or establishing procedures to reduce differences among the suppliers. Also, in general,
the situation where a number of important X variables can be identified should be considered since
in typical applications there are many inputs that are sources of variation. With any input factor
that satisfies the three given conditions, reducing the variation in that input is a viable output
variation reduction strategy. However, the resulting reduction in variation of the output Y depends

on how strong a source of variation X is and how successfully we can reduce its variability.



Fortunately, based on the Pareto principle, we can usually focus on only the one or two most

important X factors since they typically contribute the majority of variation in Y.

Feed-forward Control

Using feed-forward control, we adjust the process in response to measurements made on
an input X, anticipating the effect on the output Y. If the measured value of X provides a good
prediction of the corresponding output Y, feed-forward control can reduce variation in Y by
adjusting the process to compensate for different X values. Figure 5 demonstrates the effect of

adjusting Y based on knowledge of X and the relationship between X and Y.
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Figure S: Feed-forward Control Example

Feed-forward control works under restrictive conditions. First, we must identify an X that
is an important source of variation in Y. Second, the relationship between X and Y must be well
known and stable over time. Third, we must be able to measure X in a timely way. Finally, there

must be a way to adjust the process to compensate for the changes in X.

10



Feed-forward control can be very effective if the above conditions are satisfied. A simple
example is the use of set-up procedures based on the properties of the raw materials. Feed-
forward control is an attractive alternative since it is proactive, and because it is not necessary to
measure the output Y.

There are substantial costs and risks associated with feed-forward control. Costs arise
because we need to determine the relationship between X and Y, measure X, and repeatedly adjust
the process when appropriate. As with feed-back control, there is a danger of over adjustment if
there is a measurement problem with X, or if the relationship between X and Y is not well
understood and stable. In addition, repeated process adjustment may be impractical or costly and
may introduce undesired side effects.

Applications of feed-forward control are not always easily identified. Consider selective
fitting, the technique of sorting and matching component parts to get good assemblies. Selective
fitting has been used to reduce variation in clearance between pistons and cylinder block bore walls
by matching piston and bore diameters. This is feed-forward control since we measure the
dimensions (X) of the pistons and bores and use that knowledge to adapt the matching process.

Note that this adds complexity to the assembly process.

Process Desensitization

Desensitization of the process aims to reduce variability by making the process more robust
to the variability in process inputs. This is also called parameter design as discussed by Taguchi
(1985) and Nair (1992). Desensitizing the process works by identifying and exploiting
interactions between important varying inputs X and other normally fixed process parameters such
as machine settings. In this context Taguchi calls X a noise factor or variable. Figure 6
demonstrates how modifying the relationship between Y and X by changing other process
parameters results in less variation in Y over the same range of variability in X.

Typically the settings of the control parameters that yield a more robust process are

identified through a designed experiment which uses both X and selected process parameters
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(called control parameters) in the experiment. The experiment must be designed so that interactions
between X and the control parameters can be identified.
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Figure 6: Desensitizing the Process Example

Process desensitization is a desirable strategy since once it is complete, no further action is
required. Taguchi (1985) cites several examples, including the famous Ina tile case. Another
example involved the reduction of variation of the sulfur concentration (¥) in molten iron where X
was the uncontrollable amount of sulfur in the scrap iron being melted. It was known that ¥ was
highly dependent on the amount of sulfur (X) in the scrap iron. An experiment identified a new
way to run the desulfurization process that reduced this dependency and hence reduced the
variability of Y.

It is difficult to predict when desensitizing the process will work. This is one of its great
weaknesses. Also, making a process more robust requires a great deal of process knowledge.
Determining appropriate settings of the control parameters usually requires expensive designed
experiments that may fail to determine process settings that lead to improvement. Also, the new
process settings may lead to extra costs.

In theory, making a process more robust can be accomplished without any knowledge of
the factor X, even its identity. Taguchi recommends identifying X (the noise factor) and then
conducting an inner-outer array experiment in which X is controlled. An alternative is to define an
experimental run as the operation of the process over a period of time sufficiently long to allow the

unknown X to vary substantially. The process variability is measured over each run and is then
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used as the response in the analysis of the experiment. However, without knowing X, we run a
significant risk of determining a more robust setting that is only better under the limited operating
conditions used in the experiment. It is also more difficult to identify process parameters that may
be used to reduce the variation when X is not identified. Process desensitization without
knowledge of X is illustrated by the speedometer cable example (Quality Engineering Using
Design of Experiments, 1985, p. 367). The goal was the manufacture of speedometer cables that
had very little variation in the shrinkage along the length of the cable. An experiment was designed
that varied process factors. Based on the results of the designed experiment new process settings
were determined that resulted in less shrinkage variation, however, the identity of a cause for

variation was not reported.

Choosing A Strategy - An Example

In any application, a decision must be made as to which strategy or combination of
strategies should be used. To demonstrate the thought process required, we consider an example
from the machining of crankshafts.

Journal diameter is a key product characteristic on machined crankshafts. To keep the
discussion simple, we consider only one diameter of the several that are measured. Y is the
diameter of the shipped product. The machining process at the start of the variation reduction
effort, with respect to the diameter, called the initial process, is illustrated in Figure 7.

The raw castings, identified by hour, date of casting and mold number, were processed by
one of four grinders and subsequently automatically 100% inspected. All crankshafts that did not
conform to the after-grinder specification were either scrapped or reworked. All in-specification
parts were subsequently lapped to improve the surface finish. After the lapping operation, all
output was again automatically 100% inspected at the final gauge with parts not conforming to the
final product specifications yielding scrap or rework. At any time, if an operator noticed a
significant number of rejects due to small or large journal diameters at either gauge, he or she asked

for an adjustment of all the grinders. Also, periodically, if the final output quality was deemed
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poor, the inspection limits at the intermediate gauge were changed. Thus, initially the process was

controlled using a combination of inspection and feed-back control.

Grinder 1

Grinder 2

\ Grinder 3

Raw

Parts o.k. :
Castings Lapper i Ship (v)

Parts

Scrap or Rework Scrap or Rework
Parts and Parts and

. Possibly Adjust Possibly Adjust
Grinder 4 Grinders Grinders

Figure 7: Crankshaft Production Process

The initial process had a process capability C,, =1 which was considered too low. As

well, there was an unacceptably high level of scrap/rework. The objective was to reduce long term
variation in the journal diameters of finished crankshafts and decrease costs. The question of
interest was how to select an appropriate variation reduction strategy.

A required preliminary step in our investigation was studying the measurement systems
utilized. This is fundamental since we base much of our process knowledge and control decisions
on measurements, and indeed the whole impetus for conducting this variation reduction exercise is
based on the measurements. To determine the quality of the measurement systems both the short
term variability and the stability of both the gauge measurements were examined. A gauge R&R
study (Measurement Systems Analysis, 1990) showed that both gauges were capable in the short
term; in other words, the amount the variation introduced by the measurement system was small
compared with the typical process variation. A stability study of the gauges where a master part
was measured every 2 hours, however, showed that the intermediate gauge was unstable. This
was fixed by performing extensive maintenance on the intermediate gauge. The measurements on
the master part also identified a calibration problem since there was a systematic difference between

the measurements obtained with the two gauges. This problem was alleviated by re-targeting the
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intermediate gauge. Based on these studies, an ongoing program was established to ensure the
measurement systems remain stable, capable and calibrated. Once confidence in the measurement
system was established, we turned to the goal of variation reduction.

The simplest approach, since it does not require any additional process information, was
tightening the inspection limits at the final gauge. This approach could be easily implemented since
inspection was already performed. The consequence would be reduced variation in Y, but also an
increase in scrap and rework and lost capacity, which in this case was considered too expensive.

Determining whether any of the other strategies were feasible required more information
about the process. The first step was to determine current process performance in terms of stability
and structural variation of the output measurement. This required monitoring process performance
at the final gauge. To gain as much process information as possible we used measurements from
all units even those that were rejected by the inspection scheme. X and R control charts based on
five consecutive parts measured every two hours at the final gauge are shown in Figure 8. The
control charts show that the process was stable and did not appear to exhibit structural variation
over time. As a result, feed-back control did not appear to be a viable strategy. At this point, a
more extensive study, for example, one that tracks output from every crankshaft could be
considered, since additional study may show that exploitable structural variation does exist.

However, this analysis was postponed to pursue more promising avenues.
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Figure 8: X and R Control Charts of Final Crankshaft Data

The remaining variation reduction strategies require the identification of an input X that is
an important source of variability in the final journal diameters. A study was conducted where
parts were sampled from each grinder and followed through the lapper step to see how the grinders
and measurements at the intermediate gauge were related to the final journal diameters. In the
study, six sample parts were taken from each of the four grinders. Figure 9 shows a scatter plot of
all 24 pairs of before and after lapper journal diameter measurements. Clearly there was a very
strong relationship between before-lapper diameter and the final diameter (¥). Thus, we concluded
that the before-lapper journal diameter is an X, since the variability in the before lapper diameter
appeared to cause the majority of the variability in final journal diameter. Note that we also
determined that the variability caused by the lapper itself is relatively small although it transmits the
variability in X. Thus, reducing the variation added by the lapping operation was not considered a

priority.
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Figure 9: Scatter plot of Before Versus after Lapper Journal Diameters

The remaining three strategies were then considered. A version of feed-forward control
would be the use of a “smart” lapper that would measure the incoming journal diameter for each
crankshaft and change the lapping time accordingly. Note, however, that the major purpose of the
lapper is to improve surface finish, so this scheme would involve a change in function for the
lapper. Also, this strategy would likely require greater lapping times and result in a bottleneck at
the lapping operation. Thus, feed-forward control was rejected due to high cost. The strategy of
desensitizing the process to the variation in after-grind diameter was briefly considered and also
rejected because there were no process parameters in the lapping operation that could be feasibly be
changed to yield a process more robust to variation in incoming journal diameters. This
elimination process left reduction in the variation of journal diameters prior to lapping (reducing
variation in X) as the only feasible strategy.

To reduce the variation in X, we again considered each of the five generic strategies.
Tightening the inspection criterion, this time at the intermediate gauge, was the first strategy
considered. This would yield reduced variability in parts sent to the lapper. However, tighter
inspection on X was rejected since the increase in scrap and reduced yield was deemed too

expensive.
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Feed-back control was also a possibility, but informal monitoring of X at the intermediate
gauge failed to show any structural variation due to time, and further study at this point was again
unwarranted since more promising approaches were present.

At this stage, we needed further information about what was causing the variation in X.
Our previous study that sampled parts from different grinders and followed them through the
process provided some valuable information. Using the results of that study, we investigated the
influence of the different grinders. Table 1 shows the results of an analysis of variance (ANOVA)
to study the effect of different grinders on the final diameter. The average value of the after grinder
diameters were 6.4, 2.1, 1.0 and 3.2 respectively with a standard error of 0.41. Clearly, between
grinder variation was a significant contributor to the variation in X. As a result, an input factor that
caused a significant amount of the variation in X was the grinder number. We denoted this factor

X2. Notice that X2 was discrete with four different realizations.

Table 1: Analysis of Variance Table for Crankshaft Example

Degrees of  Sum of Mean
Source Freedom  Squares Square F P
Grinder 3 98.38 32.79 32.56 0.000
Error 20 20.14 1.01
Total 23 118.52

Having identified X2, one possible variation reduction strategy was to use feed-forward
control. In the initial process, feed-forward based on X2 was not possible since the grinder used
was not recorded. However a simple process change would make it potentially feasible. For
example, we could have changed the transfer process between the grinders and the lappers so that
the lapper worked sequentially on a batch of crankshafts from a single grinder. Then feed-forward
control would be possible because the lapper could be set to remove more material from batches
ground by a grinder that typically yielded larger incoming diameters. For this feed-forward control
scheme an estimate of the average diameters that would result from each grinder would be needed.
A potential problem with this approach was that to ensure the lapper was compensating correctly,

each grinder’s average output diameter must either stay constant over time, or occasionally be re-
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estimated. This feed-forward strategy was similar to the one previously discussed and was also
rejected since it would lead to a bottleneck at the lapping operation. Desensitizing the process to
the variation in grinder targets was also rejected because, as mentioned previously, there were no
process parameters in the lapping operation that could be feasibly be changed.

This left reducing the differences between the grinders (reducing variation in X2) as the
logical alternative. Based on Table 1, we anticipated that removing the between grinder variation
would reduce the variation in the before lapping diameter from approximately 5.2 to 1.0. This was
accomplished by realigning the four grinders so that their output was targeted to the same nominal
mean value. The results of implementing these changes in the process showed a decrease in the
variation of the final diameters, and a substantial reduction in the amount of scrap and rework
generated by the process at both the intermediate and final inspections. The intermediate and final
inspections were retained to monitor the success of the new control plan and to protect against poor
quality.

This example presents a successful application of variation reduction and illustrates the
thought process followed. However, reduction in variation itself should be an ongoing process.
For example, based on our experience with grinders we suspect that the average output value of
each grinder will drift over time. This implies that the implemented variation reduction strategy
will only be effective in the short term. This anticipated structural variation in X was not evident
previously since when measuring X the output from the different grinders was mixed together and
the drift is probably fairly slow. This suggests that by plotting the after grinder diameter for each
of the grinders separately, over a longer time, structural variation may become evident. These
plots can be obtained by either changing the intermediate gauge into four separate gauges one for
each grinder, or keeping track of which grinder was used for each part. If this structural variation
exists, we anticipate that keeping the grinders aligned can be accomplished using feed-back control
on the diameter after grinding. Identifying the exact nature of this feed-back control requires more
information and is currently the object of further study. Determining the best feed-back control
scheme will require an understanding of the costs associated with re-targeting, grinder

maintenance, downtime, etc. and an understanding of the variability caused by the grinder itself.
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In this example, there are also many other process changes that potentially could lead to
variation reduction. At each iteration of our analysis we tried to focus on the major source of
variability since it provides the greatest potential for improvement. However, in subsequent
variation reduction exercises different sources of variation will be most important and different

strategies will likely be most appropriate.

Summary and Conclusions

This article compares and contrasts five variation reduction techniques. We believe these
five techniques either singly or in combination encompass all possible variation reduction methods.
The goal of the article is to describe and explain the various methods and to aid the practitioner in
making a judicious choice of technique. The process knowledge requirements and potential risks
of the different variation reduction methods are summarized in Table 1. By keeping in mind the
various strategies and their strengths and weaknesses, a practitioner will be able to make better
decisions regarding process information that should be obtained and how best to improve the
process.

Choosing an appropriate variation reduction strategy is not a linear process. At each stage
there are many options and there is no recipe. In each variation reduction exercise we try to learn
enough about our process so that the feasible strategies are determined. However, often it is the
quality of our study that determines how much useful process knowledge we obtain. A study can
fail to identify a process characteristic, such as structural variation, either because the characteristic
is not present, or because the study is flawed. For example, in the crankshaft example, based on
the current data no structural pattern in the after grinding diameters is apparent, but structural
variation may be evident if we look at the output of each grinder separately. This means that as we
obtain more process knowledge we may be led to designing different studies. Also, variation
reduction is an ongoing process with each subsequent iteration attempting to further reduce the
variation.

Another potential problem, in practice, is that the current process control strategy, such as

feed-back or feed-forward control, masks the operation of the actual process and may make it
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difficult to determine an appropriate variation reduction strategy. For more information on
overcoming this difficulty and a good review of process control strategies see Box and Kramer
(1992).

For ease of discussion, this article has focused on the applications with only single quality
characteristic Y. In most practical applications a product would have multiple critical characteristics
that must all be controlled simultaneously. In that case, reducing the variation in the output is a
more difficult problem, since we do not want to reduce the variation in one characteristic only to
see the variation in some other characteristic increase. The complications introduced by

considering multiple quality characteristic simultaneously is worthy of further study.

Table 1: Summary of Information and Process Requirements of the Five
Generic Variability Reduction Strategies

Variability Reduction Information and Process Potential Risks

Strategy Requirements
Introducing or Improving measurement on Y scrap/rework/inspection costs
Output Inspection inspection errors
loss of capacity
Introducing or Improving measurement on Y measurement time lag
Feed-Back Control process targeting procedure over-adjustment
stable structural variation in Y
Reducing Variation in X identity of X not true X
measurement on X increased cost of inputs
Introducing or Improving identity of X not true X
Feed-Forward Control measurement on X over-adjustment

process re-targeting procedure | Y = f(X) relationship unstable
stable Y = f(X) relationship

Desensitizing the Process | identify robust process settings | may work only in experiment
feasible robust process settings new process settings may be
identity of X is useful more expensive
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Abstract

An important goal of quality improvement in manufacturing is the reduction
of variability in characteristics of process output. Producing more
consistent output improves product performance and may reduce
manufacturing costs. This article discusses and contrasts five generic
variation reduction techniques that encompass all current methods. The five
approaches are: final product inspection, feed-back control, reduction of
variation in process inputs, feed-forward control, and process
desensitization. Each technique has distinct advantages and disadvantages
and is only applicable in certain circumstances. The article discusses the
various techniques and provides practitioners guidance in choosing the most
appropriate approach. Two examples that illustrate the thought process

necessary to choose appropriately are given.



Introduction

An important goal of quality improvement in manufacturing is the reduction of variability in
characteristics of process output. Producing more consistent output improves product performance
and may reduce manufacturing costs.

The problem can be simply demonstrated. Suppose a process produces output with an
important quality characteristic Y. See Figure 1. The current process performance, measured over a
long enough period to be stable, is shown by the histogram. The goal is to reduce variability in ¥
while targeting the process at or near the nominal value. In this article, we focus on variation
reduction, and implicitly assume either that any reduction obtained does not move the process mean
significantly away from its target or that we can re-target the process mean without effecting the

process variability. In this way, reducing the variability in ¥ will improve the process capability.

O——» Process — Output Y Q)

Figure 1: Process Diagram

Reduction in variation can be accomplished in a number of ways. In our experience, all

approaches can be classified into one of five generic strategies:

1. final product inspection;

2. feed-back control;

3. reduction of variation in process inputs;
4. feed-forward control;



5. process desensitization.

All five strategies are currently used in industry. Every process is managed using one, or more
usually, a combination of strategies 1 to 4, whereas strategy 5 is solely an improvement technique.
Reducing the variation inherent in an existing process requires the modification of a current
strategy or the adoption of a new one. No reduction in variation can be achieved without changing
either the process or how it is managed. Process monitoring (e.g. control charts) on either outputs
or inputs may lead to understanding of how the process operates but will not, by itself, result in
variation reduction.

This corresponds to the idea of a living control plan as discussed in the AIAG reference
manual, Advanced Product Quality Planning and Control Plan. This manual is referenced in the
automotive industry quality standard, QS-9000. A control plan specifies the mechanisms through
which the quality of a product will be monitored, controlled, and verified. A living control plan is
constantly modified and improved as more information on the process becomes available.

The goal of this article is to contrast and compare each of the variation reduction strategies,
highlighting the required process knowledge, potential costs and benefits of each method. Each
strategy has potential advantages and drawbacks and is applicable only in certain circumstances.
The choice of an effective strategy depends critically on knowledge of the existing process. Key
issues include stability, predictability, ability to adjust, and identification of the causes of the
variation. The availability and cost of attaining this knowledge provides a key input to a decision
on which process variation reduction strategy is most applicable. We hope that this discussion will

provide guidance to quality practitioners faced with a variation reduction problem.

Final Product Inspection

Final product inspection is the simplest variation reduction strategy and is virtually always
applicable. Variability is reduced by identifying and then scrapping or reworking all items that have
values of Y beyond selected inspection limits. The more the limits are tightened, the greater is the

reduction in variation. The effect of tightened inspection is illustrated in Figure 2. Imagine



inspecting and sorting units based on whether they fall between the dashed lines shown, where any
units falling outside the limits are either scrapped or reworked (and then re-inspected). Clearly,
this selection of units reduces the overall variability in the process output that is subsequently

shipped.

Frequency Frequency

| l
ot " | Inspection

Y Y

Figure 2: Final Product Inspection Strategy

Final product inspection is very versatile. It can be successfully used in any situation
where the output characteristic Y can be determined in advance of shipping the product to a
customer. Final product inspection is especially appropriate when the quality dimension is critical
and the process produces only the occasional outlier or flier while all other units exhibit very little
variation. For example, in the production of aluminum pistons, the diameter of each finished
piston (as well as a number of other key characteristics) is measured by an automated gauge after
the piston temperature is controlled. Pistons with large or small diameters are scrapped. In such a
situation, the costs associated with 100% inspection, including installation and operation of the
automated gauge, are warranted due to the high production volume and the critical nature of the
product characteristic. Assuming no inspection error, the 100% inspection strategy has the
advantage of being able to guarantee that no units with quality characteristic outside the inspection
limits will be shipped to a customer.

Final product inspection has a number of significant negative features. The cost of
reducing variability i)y tightening the inspection limits may be very high due to increased rework

and scrap costs and lost capacity. Also, the cost of inspection itself may be large if new gauging or



additional labour is required. Measurement or inspection errors will result in increased variability.
As aresult, given the propensity of people to make inspection errors, most successful applications
use automated inspection. As shown in Figure 1, the resultant quality of many of the units passed
through our inspection procedure may be just barely inside the cutoff values. As a result, from a
loss function perspective (Taguchi, 1986), inspection may be a poor approach since the output may
be only marginally better after the inspection procedure. Finally, inspection is applicable to
processes with continuous flows only if the production is divided into batches.

One common modification of this strategy is inspection sampling where not every unit is
measured. This requires the definition of a lot. Lots are accepted or rejected based on the quality of
a sample taken from the lot. Accepted lots are shipped and rejected lots are 100% inspected or
otherwise disposed. If we know that lot to lot variation is large and within lot variation is small,
then inspection sampling is effective. Thus, using inspection sampling, variation may be reduced
by redefining a lot, changing the acceptance criteria, or changing the inspection limits. Compared
to 100% inspection, inspection costs are reduced. However, overall variability will not be reduced
to the same degree. Note that if the process is stable, then partial inspection is a poor strategy.
Deming (Chapter 15, 1986) showed that in this case either no or complete 100% inspection is

optimal.

Feed-back Control

Feed-back control is a simple concept that may lead to complex procedures. The idea is to
monitor the current output characteristic ¥ and to make adjustments to the process based on the
observed output. By making appropriate adjustments, we compensate for changes in unidentified
process inputs, thus reducing the variability in future values of Y. The effect of a simple feed-back
control plan is illustrated in Figure 3. Whenever the process output reaches the adjustment limits,
the process is re-targeted by making appropriate adjustments. Figure 3 demonstrates the resulting
reduction in variability. The effect of feed-back control is determined by the adjustment limits and

adjustment procedure.
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Figure 3: Drift in Process Output Quality

Feed-back control can be successfully applied when three conditions are satisfied. First,
the process must be predictable; that is, the past and current output must tell us something about
future values. In other words, the process must exhibit structural variation (Joiner, 1994).
Examples of structural variation include drift due to tool wear and stratification due to batch to
batch variation. Second, there must be a way to re-target the process. Finally, the time to measure
the output and adjust the process must be small relative to the rate of change of the process. An
existing feed-back control strategy can be altered to reduce variation by addressing one of the three
conditions. For example, better knowledge of the nature of the process variation can be used to
redesign the adjustment limits.

Feed-back control is used, for example, to reduce variation in the concentration of silicon in
molten iron in a foundry. Iron is sampled from the output stream and the concentration of silicon is
determined in the sample. Based on the observed concentrations adjustments are made (upstream)
to the feed rate of silicon in the melting process. Another common example is the use of setup
procedures based on first-off measurements. The major advantage of feed-back control is that it
requires little process knowledge. Like final product inspection, it uses measurements on the final

product only.



There are a number of drawbacks to feed-back control. A major danger is over adjustment
(tampering). If the process is stable, then adjusting on the basis of the output will lead to increased
variability. This illustrated in the famous funnel experiment, see Deming, 1986 pp. 327-328. If
the pattern of the structural variation is unstable over time, then variation will not be reduced as
expected due to inappropriate adjustments. Also, the process measurements and adjustments may
be expensive. - Finally, due to the feed-back nature of the control, there is an inherent time delay.
To identify when an adjustment is required we must first observe some output values that are
significantly different from the target value. Thus, feed-back control is always reactive.

There are many ways to monitor the process and decide when to make adjustments. See
Tucker, Faltin, and Vander Wiel (1993) for further details. Specific examples include acceptance
control charts (Duncan, 1986), Precontrol (Shainin and Shainin, 1989, Juran, 1988). Most feed-
back control systems use a function of recent output values, not just the last value, to determine if
an adjustment is necessary. If the drift in Y is as regular as shown in Figure 3, we could also base
adjustments simply on the time or the number of units processed (or any other cheaply measured

variable highly correlated with the output dimension Y).

Reduction of Variation in Process Inputs

As the saying goes “garbage in garbage out.” If there is a large amount of variation in
process inputs, then it is difficult to produce consistent output. One improvement approach in this
environment is to reduce the variability in one or more inputs. The important input X may be a
characteristic of raw materials or component parts, a changing machine setting or any other process
input that changes. Reducing variation in inputs corresponds to moving improvement upstream.
The problem of reducing variability in X is the analogous to reducing variation in Y. Thus, we
have created a recursion in our problem definition, because the input X is the output of some other
process. To reduce variability in X we can apply any of the five strategies discussed in this article.

The effect of reducing the variability in an input is illustrated by the variance transmission

plots shown in Figure 4. In this example, most of the variation in Y is due to variation in the input



X. As aresult, if we reduce the variability in the input X as shown, the variability in the output Y

will also be significantly reduced.

Variation
inY

Variation
inY

Variation in X X Variation in X X

Figure 4: Variance transmission between input X and Output Y

There are three basic conditions necessary for this strategy to work. First, we must be able
to identify an input that has a causal influence on the output Y. Thus, a change in X must lead to a
change in Y. Second, we must identify an X that is a major source of variation as shown in Figure
4. Third, we must be able to reduce the variation in X.

There are many tools for discovering the identity of such an X. We may use observational
studies such as control charts and multi-vari charts or more active approaches such as designed
experiments. It is very important that the identified factor X is truly a significant factor influencing
the variation in the output.

This approach is proactive. The control of the process is moved upstream which may
reduce cost and complexity, and less effort may be needed to monitor the process output Y. An
example of this strategy occurred in the machining of the aluminum pistons described above. A
variation transmission study identified the piston diameter after an intermediate operation as X, the
major source of variation in final piston diameter. The variation of X was reduced by instituting
improved operator instructions at the operation and better training of the operators in the use of
these instructions.

One difficulty with this strategy is that first we must identify an X, which is both an

important contributor to the variation in Y and which is causally related. This may prove arduous



and involves possibly significant study costs. Second, reducing variability in X may be very
difficult and/or costly. Third, tightened specifications on X moves the responsibility for control of
the process upstream, and possibly outside the influence of local management.

Figure 4 shows a continuously varying input X. However, in many cases X is discrete.
For example, X could represent multiple suppliers or multiple machines in parallel processing
operations. In this case, reducing variation in X could be accomplished by reducing the number of

suppliers or establishing procedures to reduce differences among the suppliers.

Feed-forward Control

Using feed-forward control, we adjust the process in response to measurements made on
an input X, anticipating the effect on the output Y. If the measured value of X provides a
prediction of the corresponding output Y, feed-forward control can reduce variation in ¥ by
adjusting the process to compensate for different X values. Figure 5 demonstrates the effect of

adjusting Y based on knowledge of X and the relationship between X and Y.
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Figure 5: Feed-forward Control



Feed-forward control workg under restrictive conditions. First, we must identify an X that
is an important source of variation. Second, the relationship between X and ¥ must be well known
and stable over time. Third, we must be able to measure X in a timely way and predict when X
will have an effect. Finally, there must be a way to adjust the process to compensate for the
changes in X.

Feed-forward control can be very effective if the above conditions are satisfied. A simple
example is the use of set-up procedures based on the properties of the raw materials. Another is
selective fitting, the technique of sorting and matching component parts to get good assemblies.
This procedure has been used to reduce variation in clearance between pistons and cylinder block
bore walls by matching piston and bore diameters. Note that this adds additional complexity to the
assembly process.

There are substantial costs and risks associated with feed-forward control. Costs arise
because we need to determine the relationship between X and Y, measure X, and repeatedly adjust
the process when appropriate. As with feed-back control, there is a danger of over adjustment if
there is a measurement problem with X or if the relationship between X and Y is not well
understood. In addition, repeated process adjustment may be simply impractical or very costly and

may introduce other undesired side effects.

Process Desensitization

Desensitization of the process aims to reduce variability by making the process more robust
to the variability in process inputs. This is also called parameter design as discussed by Taguchi
(1985) and Nair (1992). Desensitizing the process works by identifying and exploiting
interactions between important varying inputs X and other normally fixed process parameters.
Figure 6 demonstrates how modifying the relationship between Y and X by changing other process

parameters results in less variation in Y over the same range of variability in X.
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Typically the process settings that yield a more robust process are identified through a
designed experiment which uses both X and a set of control factors. The experiment must be

designed so that interaction between X and the control factors can be identified.

Original
Process More Robust

Process

Figure 6: Desensitizing the Process

Process desensitization is a very desirable strategy since once it is complete, no further
action is required. Taguchi (1985) cites several examples, including the famous Ina tile case.
Another example involved the reduction of variation of sulfur concentration in molten iron where X
was the unknown and uncontrollable amount of sulfur in the scrap iron being melted. An
experiment identified new settings in the desulferization process that reduced the within-shift
variability in the output molten iron.

It is difficult to predict when desensitizing the process will work. This is one of its great
weaknesses. Also, making a process more robust requires a great deal of process knowledge.
Determining appropriate settings of the control parameters usually requires expensive designed
experiments that may fail to determine settings that lead to improvement. Also, the new process
settings may be a more expensive way to run process and require a re-targeting of the process.

In theory, making a process more robust can be accomplished without any knowledge of
the factor X, even its identity. Taguchi recommends identifying X (the noise factor) and then
conducting an inner-outer array experiment in which X is controlled. An alternative is to define an
experimental run as the operation of the process over a period of time sufficiently long to allow the

unknown X to vary substantially. Control factors are altered in an organized way for a number of
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such runs. The process variability is measured over each run and is then used as the response in
the analysis of the experiment. However, without knowing X, we run a significant risk of
determining a more robust setting that is only better under the limited operating conditions used in
the experiment. It is also more difficult to identify control factors that may be used to reduce the

variation when X is not identified.

Examples

In any application, a decision must be made as to which strategy or combination of
strategies should be used. To demonstrate the thought process required, we consider two
examples. The examples demonstrate that the more you know about the process, the more
flexibility there is in choice of strategies. In the first example, all the generic strategies are
reasonable. However, the best approach depends on unknown factors, and can not be determined
without further study. In the second example, reducing the variation in the inputs was deemed the

most cost effective strategy. However, other approaches were potentially feasible.

Example 1: A Multi-batch Process

Suppose we have a process that operates on batches of raw material. A sample of process
output is given in Figure 7 where each batch of raw material yields 50 sample points. Clearly, the
major shifts in the process correspond to changes in batch of raw material. Given only this

information, and the goal of variation reduction what are the possible strategies?
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Figure 7: Multi-batch Process Output

If the output is measured on discrete units, then final product inspection coupled with a
rework loop will reduce the variability in the output. Because of the large batch to batch variability,
lots can be defined based on input batch and sampling inspection can be used to identify discrepant
lots. However, in this example, inspection is likely not a good choice because it will provide only
minimal improvement unless we are willing to rework many units.

In this example, feed-back control is a good approach. By closely monitor the output Y
each time we change batches of raw material, we can estimate the current process mean. Assuming
an adjustment mechanism is available, we can then adjust the process to compensate for the batch
effect. Feed-back control has the disadvantage that there will be some time after we start a new
batch of inputs where we operate the process to determine the magnitude of adjustment required.

Reducing the differences between batches of raw material leads to more consistent batches,
thereby creating more consistent output. This is probably the most desirable approach, but will
certainly require further study since we do not know what characteristic of the batches is
responsible for the variation in Y. That is, we have not identified X.

If we can identify and measure X on each batch, then feed-forward control may be a good

choice. If X is a good predictor of Y, and the process target is adjustable, we could compensate
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for the batch differences before we use the batch. Note that this avoids the time delay implicit in
feed-back control.

Finally, desensitizing the process to variation in batches can also work, but will require an
extensive study to determine robust process settings. If we have not identified X, then each run of
the experiment will have to include several batches of raw material. The robust settings may not be
able to remove the effect of batch difference entirely since, in this example, the differences between

batches is large.

Example 2: Crankshaft Machining

Journal diameter is a key product characteristic on machined crankshafts. The machining
process is illustrated below in Figure 8. Raw castings are identified by hour, date of casting and
mold number. The measurements at the final gauge are monitored informally. If the operator
notices a significant number of rejects due to small or large journal diameters, he or she asks for an

adjustment in the grinder that produced most of the rejects.

Grinder 1

Grinder 2
Raw /l ———  Lapper
Castings
\. Grinder 3 Parts not o.k.

Scrap or
Rework
Parts and
Grinder 4 Adjust
Grinders

Parts o.k. Ship
Parts

Final Gauge

Figure 8: Crankshaft Production Process

The objective is to reduce long term variation in the journal diameters of finished

crankshafts. How do we select a strategy?
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The first step is to determine current process performance, in terms of stability, structural
variation and capability. This requires monitoring process performance at the final stage. Without
this knowledge, it is difficult to assess which, if any strategy, is likely to be effective.

The simplest approach is to tighten the inspection limits. The consequence is an increase in
scrap and rework and lost capacity, which in the this case is considered too expensive. A second
possibility is to consider improving the current feed-back control. This involves defining a
standardized procedure that all operators will follow that makes better use of the final inspection
data. Since changing people’s behavior is difficult, and because there is a large number of in-
process crankshafts between the grinders and the final gauge, consideration of this choice is
postponed. The next step is to identify X, an important source of variability in the journal
diameters. A modified multi-vari study (Juran, 1988) was carried out that considered the lapper,
the grinders and lot of castings as major potential sources of variability. This study was
inexpensive because it involved measuring and recording journal diameters on a purposely selected
sample of crankshafts before lapping and at final inspection. The results show large grinder to
grinder differences in average diameter before lapping which was transmitted to the final diameter.
As aresult, the grinders were identified as the major source of variation.

The remaining three strategies can now be considered. The first possibility is to change the
control plan on the grinders so that each is targeted to the same value (reduce input variation). The
second possibility is to change the transfer process between the grinders and the lappers so that the
lapper works on a batch of crankshafts from a single grinder. Then feed-forward control is
possible because the lapper can be set to remove more material from batches with larger average
incoming diameters. Note that the major purpose of the lapper is to improve surface finish so that
this would be a change in function. Another possibility considered was the use of a “smart” lapper
that would measure the incoming journal size and change the lapping time accordingly. These feed-
forward schemes were both rejected due to high cost. The strategy to desensitize the process due to
the variation in after-grind diameter was briefly considered and rejected because there were no

control factors in the lapping operation that could be feasibly used.
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The elimination process left grinder control as the only feasible strategy. This required a
further investigation of the current control plan for the grinder operation. A better feed-back control

system using the diameter after grinding was then implemented.

Summary and Conclusions

This article compares and contrasts five variation reduction techniques. We believe these
five techniques either singly or in combination encompass all possible reduction methods. The
goal of the article is to describe and explain the various methods and to aid the practitioner in
making a judicious choice of technique. Figure 9 provides a tree diagram showing the major
divisions leading to an appropriate choice. X refers to a significant input and Y refers to the critical
output dimension. The process knowledge requirement and potential risks of the different

variation reduction methods have been summarized in Table 1.

relation
Y=£(X) stable
over time
and adjustment
possible

structure in
Y and Y stable or

unpredictable

feedforward  robust feedback inspection
feedback  improve X inspection
robust inspection
improve X
inspection

Figure 9: Decision Tree to Determine Appropriate Variance Reduction Strategy

Reduction of variation requires either a change in the process or a change in the control of a
process. Adopting final product inspection, feed-back control, reduction of variation in inputs, or

feed-forward control leads to a change in the process control plan. Process desensitization, on the

16
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other hand, leads to a change in the process, and does not necessarily effect the control plan.

However with a more robust process, it is possible that the control plan rules could be relaxed.
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Abstract

An important goal of quality improvement in manufacturing is the reduction
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consistent output improves product performance and may reduce
manufacturing costs. This article discusses and contrasts five generic
variation reduction techniques that encompass all current methods. The five
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necessary to choose appropriately are given.



Introduction

An important goal of quality improvement in manufacturing is the reduction of variability in
characteristics of process output. Producing more consistent output improves product performance
and may reduce manufacturing costs.

The problem can be simply demonstrated. Suppose a process produces output with an
important quality characteristic Y. See Figure 1. The current process performance, measured over a
long enough period to be stable, is shown by the histogram. The goal is to reduce variability in ¥
while targeting the process at or near the nominal value. In this article, we focus on variation
reduction, and implicitly assume either that any reduction obtained does not move the process mean
significantly away from its target or that we can re-target the process mean without effecting the

process variability. In this way, reducing the variability in ¥ will improve the process capability.

O——» Process — Output Y Q)

Figure 1: Process Diagram

Reduction in variation can be accomplished in a number of ways. In our experience, all

approaches can be classified into one of five generic strategies:

1. final product inspection;

2. feed-back control;

3. reduction of variation in process inputs;
4. feed-forward control;



5. process desensitization.

All five strategies are currently used in industry. Every process is managed using one, or more
usually, a combination of strategies 1 to 4, whereas strategy 5 is solely an improvement technique.
Reducing the variation inherent in an existing process requires the modification of a current
strategy or the adoption of a new one. No reduction in variation can be achieved without changing
either the process or how it is managed. Process monitoring (e.g. control charts) on either outputs
or inputs may lead to understanding of how the process operates but will not, by itself, result in
variation reduction.

This corresponds to the idea of a living control plan as discussed in the AIAG reference
manual, Advanced Product Quality Planning and Control Plan. This manual is referenced in the
automotive industry quality standard, QS-9000. A control plan specifies the mechanisms through
which the quality of a product will be monitored, controlled, and verified. A living control plan is
constantly modified and improved as more information on the process becomes available.

The goal of this article is to contrast and compare each of the variation reduction strategies,
highlighting the required process knowledge, potential costs and benefits of each method. Each
strategy has potential advantages and drawbacks and is applicable only in certain circumstances.
The choice of an effective strategy depends critically on knowledge of the existing process. Key
issues include stability, predictability, ability to adjust, and identification of the causes of the
variation. The availability and cost of attaining this knowledge provides a key input to a decision
on which process variation reduction strategy is most applicable. We hope that this discussion will

provide guidance to quality practitioners faced with a variation reduction problem.

Final Product Inspection

Final product inspection is the simplest variation reduction strategy and is virtually always
applicable. Variability is reduced by identifying and then scrapping or reworking all items that have
values of Y beyond selected inspection limits. The more the limits are tightened, the greater is the

reduction in variation. The effect of tightened inspection is illustrated in Figure 2. Imagine



inspecting and sorting units based on whether they fall between the dashed lines shown, where any
units falling outside the limits are either scrapped or reworked (and then re-inspected). Clearly,
this selection of units reduces the overall variability in the process output that is subsequently

shipped.

Frequency Frequency

| l
ot " | Inspection

Y Y

Figure 2: Final Product Inspection Strategy

Final product inspection is very versatile. It can be successfully used in any situation
where the output characteristic Y can be determined in advance of shipping the product to a
customer. Final product inspection is especially appropriate when the quality dimension is critical
and the process produces only the occasional outlier or flier while all other units exhibit very little
variation. For example, in the production of aluminum pistons, the diameter of each finished
piston (as well as a number of other key characteristics) is measured by an automated gauge after
the piston temperature is controlled. Pistons with large or small diameters are scrapped. In such a
situation, the costs associated with 100% inspection, including installation and operation of the
automated gauge, are warranted due to the high production volume and the critical nature of the
product characteristic. Assuming no inspection error, the 100% inspection strategy has the
advantage of being able to guarantee that no units with quality characteristic outside the inspection
limits will be shipped to a customer.

Final product inspection has a number of significant negative features. The cost of
reducing variability i)y tightening the inspection limits may be very high due to increased rework

and scrap costs and lost capacity. Also, the cost of inspection itself may be large if new gauging or



additional labour is required. Measurement or inspection errors will result in increased variability.
As aresult, given the propensity of people to make inspection errors, most successful applications
use automated inspection. As shown in Figure 1, the resultant quality of many of the units passed
through our inspection procedure may be just barely inside the cutoff values. As a result, from a
loss function perspective (Taguchi, 1986), inspection may be a poor approach since the output may
be only marginally better after the inspection procedure. Finally, inspection is applicable to
processes with continuous flows only if the production is divided into batches.

One common modification of this strategy is inspection sampling where not every unit is
measured. This requires the definition of a lot. Lots are accepted or rejected based on the quality of
a sample taken from the lot. Accepted lots are shipped and rejected lots are 100% inspected or
otherwise disposed. If we know that lot to lot variation is large and within lot variation is small,
then inspection sampling is effective. Thus, using inspection sampling, variation may be reduced
by redefining a lot, changing the acceptance criteria, or changing the inspection limits. Compared
to 100% inspection, inspection costs are reduced. However, overall variability will not be reduced
to the same degree. Note that if the process is stable, then partial inspection is a poor strategy.
Deming (Chapter 15, 1986) showed that in this case either no or complete 100% inspection is

optimal.

Feed-back Control

Feed-back control is a simple concept that may lead to complex procedures. The idea is to
monitor the current output characteristic ¥ and to make adjustments to the process based on the
observed output. By making appropriate adjustments, we compensate for changes in unidentified
process inputs, thus reducing the variability in future values of Y. The effect of a simple feed-back
control plan is illustrated in Figure 3. Whenever the process output reaches the adjustment limits,
the process is re-targeted by making appropriate adjustments. Figure 3 demonstrates the resulting
reduction in variability. The effect of feed-back control is determined by the adjustment limits and

adjustment procedure.
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Figure 3: Drift in Process Output Quality

Feed-back control can be successfully applied when three conditions are satisfied. First,
the process must be predictable; that is, the past and current output must tell us something about
future values. In other words, the process must exhibit structural variation (Joiner, 1994).
Examples of structural variation include drift due to tool wear and stratification due to batch to
batch variation. Second, there must be a way to re-target the process. Finally, the time to measure
the output and adjust the process must be small relative to the rate of change of the process. An
existing feed-back control strategy can be altered to reduce variation by addressing one of the three
conditions. For example, better knowledge of the nature of the process variation can be used to
redesign the adjustment limits.

Feed-back control is used, for example, to reduce variation in the concentration of silicon in
molten iron in a foundry. Iron is sampled from the output stream and the concentration of silicon is
determined in the sample. Based on the observed concentrations adjustments are made (upstream)
to the feed rate of silicon in the melting process. Another common example is the use of setup
procedures based on first-off measurements. The major advantage of feed-back control is that it
requires little process knowledge. Like final product inspection, it uses measurements on the final

product only.



There are a number of drawbacks to feed-back control. A major danger is over adjustment
(tampering). If the process is stable, then adjusting on the basis of the output will lead to increased
variability. This illustrated in the famous funnel experiment, see Deming, 1986 pp. 327-328. If
the pattern of the structural variation is unstable over time, then variation will not be reduced as
expected due to inappropriate adjustments. Also, the process measurements and adjustments may
be expensive. - Finally, due to the feed-back nature of the control, there is an inherent time delay.
To identify when an adjustment is required we must first observe some output values that are
significantly different from the target value. Thus, feed-back control is always reactive.

There are many ways to monitor the process and decide when to make adjustments. See
Tucker, Faltin, and Vander Wiel (1993) for further details. Specific examples include acceptance
control charts (Duncan, 1986), Precontrol (Shainin and Shainin, 1989, Juran, 1988). Most feed-
back control systems use a function of recent output values, not just the last value, to determine if
an adjustment is necessary. If the drift in Y is as regular as shown in Figure 3, we could also base
adjustments simply on the time or the number of units processed (or any other cheaply measured

variable highly correlated with the output dimension Y).

Reduction of Variation in Process Inputs

As the saying goes “garbage in garbage out.” If there is a large amount of variation in
process inputs, then it is difficult to produce consistent output. One improvement approach in this
environment is to reduce the variability in one or more inputs. The important input X may be a
characteristic of raw materials or component parts, a changing machine setting or any other process
input that changes. Reducing variation in inputs corresponds to moving improvement upstream.
The problem of reducing variability in X is the analogous to reducing variation in Y. Thus, we
have created a recursion in our problem definition, because the input X is the output of some other
process. To reduce variability in X we can apply any of the five strategies discussed in this article.

The effect of reducing the variability in an input is illustrated by the variance transmission

plots shown in Figure 4. In this example, most of the variation in Y is due to variation in the input



X. As aresult, if we reduce the variability in the input X as shown, the variability in the output Y

will also be significantly reduced.

Variation
inY

Variation
inY

Variation in X X Variation in X X

Figure 4: Variance transmission between input X and Output Y

There are three basic conditions necessary for this strategy to work. First, we must be able
to identify an input that has a causal influence on the output Y. Thus, a change in X must lead to a
change in Y. Second, we must identify an X that is a major source of variation as shown in Figure
4. Third, we must be able to reduce the variation in X.

There are many tools for discovering the identity of such an X. We may use observational
studies such as control charts and multi-vari charts or more active approaches such as designed
experiments. It is very important that the identified factor X is truly a significant factor influencing
the variation in the output.

This approach is proactive. The control of the process is moved upstream which may
reduce cost and complexity, and less effort may be needed to monitor the process output Y. An
example of this strategy occurred in the machining of the aluminum pistons described above. A
variation transmission study identified the piston diameter after an intermediate operation as X, the
major source of variation in final piston diameter. The variation of X was reduced by instituting
improved operator instructions at the operation and better training of the operators in the use of
these instructions.

One difficulty with this strategy is that first we must identify an X, which is both an

important contributor to the variation in Y and which is causally related. This may prove arduous



and involves possibly significant study costs. Second, reducing variability in X may be very
difficult and/or costly. Third, tightened specifications on X moves the responsibility for control of
the process upstream, and possibly outside the influence of local management.

Figure 4 shows a continuously varying input X. However, in many cases X is discrete.
For example, X could represent multiple suppliers or multiple machines in parallel processing
operations. In this case, reducing variation in X could be accomplished by reducing the number of

suppliers or establishing procedures to reduce differences among the suppliers.

Feed-forward Control

Using feed-forward control, we adjust the process in response to measurements made on
an input X, anticipating the effect on the output Y. If the measured value of X provides a
prediction of the corresponding output Y, feed-forward control can reduce variation in ¥ by
adjusting the process to compensate for different X values. Figure 5 demonstrates the effect of

adjusting Y based on knowledge of X and the relationship between X and Y.
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Figure 5: Feed-forward Control



Feed-forward control workg under restrictive conditions. First, we must identify an X that
is an important source of variation. Second, the relationship between X and ¥ must be well known
and stable over time. Third, we must be able to measure X in a timely way and predict when X
will have an effect. Finally, there must be a way to adjust the process to compensate for the
changes in X.

Feed-forward control can be very effective if the above conditions are satisfied. A simple
example is the use of set-up procedures based on the properties of the raw materials. Another is
selective fitting, the technique of sorting and matching component parts to get good assemblies.
This procedure has been used to reduce variation in clearance between pistons and cylinder block
bore walls by matching piston and bore diameters. Note that this adds additional complexity to the
assembly process.

There are substantial costs and risks associated with feed-forward control. Costs arise
because we need to determine the relationship between X and Y, measure X, and repeatedly adjust
the process when appropriate. As with feed-back control, there is a danger of over adjustment if
there is a measurement problem with X or if the relationship between X and Y is not well
understood. In addition, repeated process adjustment may be simply impractical or very costly and

may introduce other undesired side effects.

Process Desensitization

Desensitization of the process aims to reduce variability by making the process more robust
to the variability in process inputs. This is also called parameter design as discussed by Taguchi
(1985) and Nair (1992). Desensitizing the process works by identifying and exploiting
interactions between important varying inputs X and other normally fixed process parameters.
Figure 6 demonstrates how modifying the relationship between Y and X by changing other process

parameters results in less variation in Y over the same range of variability in X.
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Typically the process settings that yield a more robust process are identified through a
designed experiment which uses both X and a set of control factors. The experiment must be

designed so that interaction between X and the control factors can be identified.

Original
Process More Robust

Process

Figure 6: Desensitizing the Process

Process desensitization is a very desirable strategy since once it is complete, no further
action is required. Taguchi (1985) cites several examples, including the famous Ina tile case.
Another example involved the reduction of variation of sulfur concentration in molten iron where X
was the unknown and uncontrollable amount of sulfur in the scrap iron being melted. An
experiment identified new settings in the desulferization process that reduced the within-shift
variability in the output molten iron.

It is difficult to predict when desensitizing the process will work. This is one of its great
weaknesses. Also, making a process more robust requires a great deal of process knowledge.
Determining appropriate settings of the control parameters usually requires expensive designed
experiments that may fail to determine settings that lead to improvement. Also, the new process
settings may be a more expensive way to run process and require a re-targeting of the process.

In theory, making a process more robust can be accomplished without any knowledge of
the factor X, even its identity. Taguchi recommends identifying X (the noise factor) and then
conducting an inner-outer array experiment in which X is controlled. An alternative is to define an
experimental run as the operation of the process over a period of time sufficiently long to allow the

unknown X to vary substantially. Control factors are altered in an organized way for a number of
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such runs. The process variability is measured over each run and is then used as the response in
the analysis of the experiment. However, without knowing X, we run a significant risk of
determining a more robust setting that is only better under the limited operating conditions used in
the experiment. It is also more difficult to identify control factors that may be used to reduce the

variation when X is not identified.

Examples

In any application, a decision must be made as to which strategy or combination of
strategies should be used. To demonstrate the thought process required, we consider two
examples. The examples demonstrate that the more you know about the process, the more
flexibility there is in choice of strategies. In the first example, all the generic strategies are
reasonable. However, the best approach depends on unknown factors, and can not be determined
without further study. In the second example, reducing the variation in the inputs was deemed the

most cost effective strategy. However, other approaches were potentially feasible.

Example 1: A Multi-batch Process

Suppose we have a process that operates on batches of raw material. A sample of process
output is given in Figure 7 where each batch of raw material yields 50 sample points. Clearly, the
major shifts in the process correspond to changes in batch of raw material. Given only this

information, and the goal of variation reduction what are the possible strategies?
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Figure 7: Multi-batch Process Output

If the output is measured on discrete units, then final product inspection coupled with a
rework loop will reduce the variability in the output. Because of the large batch to batch variability,
lots can be defined based on input batch and sampling inspection can be used to identify discrepant
lots. However, in this example, inspection is likely not a good choice because it will provide only
minimal improvement unless we are willing to rework many units.

In this example, feed-back control is a good approach. By closely monitor the output Y
each time we change batches of raw material, we can estimate the current process mean. Assuming
an adjustment mechanism is available, we can then adjust the process to compensate for the batch
effect. Feed-back control has the disadvantage that there will be some time after we start a new
batch of inputs where we operate the process to determine the magnitude of adjustment required.

Reducing the differences between batches of raw material leads to more consistent batches,
thereby creating more consistent output. This is probably the most desirable approach, but will
certainly require further study since we do not know what characteristic of the batches is
responsible for the variation in Y. That is, we have not identified X.

If we can identify and measure X on each batch, then feed-forward control may be a good

choice. If X is a good predictor of Y, and the process target is adjustable, we could compensate
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for the batch differences before we use the batch. Note that this avoids the time delay implicit in
feed-back control.

Finally, desensitizing the process to variation in batches can also work, but will require an
extensive study to determine robust process settings. If we have not identified X, then each run of
the experiment will have to include several batches of raw material. The robust settings may not be
able to remove the effect of batch difference entirely since, in this example, the differences between

batches is large.

Example 2: Crankshaft Machining

Journal diameter is a key product characteristic on machined crankshafts. The machining
process is illustrated below in Figure 8. Raw castings are identified by hour, date of casting and
mold number. The measurements at the final gauge are monitored informally. If the operator
notices a significant number of rejects due to small or large journal diameters, he or she asks for an

adjustment in the grinder that produced most of the rejects.

Grinder 1

Grinder 2
Raw /l ———  Lapper
Castings
\. Grinder 3 Parts not o.k.

Scrap or
Rework
Parts and
Grinder 4 Adjust
Grinders

Parts o.k. Ship
Parts

Final Gauge

Figure 8: Crankshaft Production Process

The objective is to reduce long term variation in the journal diameters of finished

crankshafts. How do we select a strategy?
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The first step is to determine current process performance, in terms of stability, structural
variation and capability. This requires monitoring process performance at the final stage. Without
this knowledge, it is difficult to assess which, if any strategy, is likely to be effective.

The simplest approach is to tighten the inspection limits. The consequence is an increase in
scrap and rework and lost capacity, which in the this case is considered too expensive. A second
possibility is to consider improving the current feed-back control. This involves defining a
standardized procedure that all operators will follow that makes better use of the final inspection
data. Since changing people’s behavior is difficult, and because there is a large number of in-
process crankshafts between the grinders and the final gauge, consideration of this choice is
postponed. The next step is to identify X, an important source of variability in the journal
diameters. A modified multi-vari study (Juran, 1988) was carried out that considered the lapper,
the grinders and lot of castings as major potential sources of variability. This study was
inexpensive because it involved measuring and recording journal diameters on a purposely selected
sample of crankshafts before lapping and at final inspection. The results show large grinder to
grinder differences in average diameter before lapping which was transmitted to the final diameter.
As aresult, the grinders were identified as the major source of variation.

The remaining three strategies can now be considered. The first possibility is to change the
control plan on the grinders so that each is targeted to the same value (reduce input variation). The
second possibility is to change the transfer process between the grinders and the lappers so that the
lapper works on a batch of crankshafts from a single grinder. Then feed-forward control is
possible because the lapper can be set to remove more material from batches with larger average
incoming diameters. Note that the major purpose of the lapper is to improve surface finish so that
this would be a change in function. Another possibility considered was the use of a “smart” lapper
that would measure the incoming journal size and change the lapping time accordingly. These feed-
forward schemes were both rejected due to high cost. The strategy to desensitize the process due to
the variation in after-grind diameter was briefly considered and rejected because there were no

control factors in the lapping operation that could be feasibly used.
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The elimination process left grinder control as the only feasible strategy. This required a
further investigation of the current control plan for the grinder operation. A better feed-back control

system using the diameter after grinding was then implemented.

Summary and Conclusions

This article compares and contrasts five variation reduction techniques. We believe these
five techniques either singly or in combination encompass all possible reduction methods. The
goal of the article is to describe and explain the various methods and to aid the practitioner in
making a judicious choice of technique. Figure 9 provides a tree diagram showing the major
divisions leading to an appropriate choice. X refers to a significant input and Y refers to the critical
output dimension. The process knowledge requirement and potential risks of the different

variation reduction methods have been summarized in Table 1.

relation
Y=£(X) stable
over time
and adjustment
possible

structure in
Y and Y stable or

unpredictable

feedforward  robust feedback inspection
feedback  improve X inspection
robust inspection
improve X
inspection

Figure 9: Decision Tree to Determine Appropriate Variance Reduction Strategy

Reduction of variation requires either a change in the process or a change in the control of a
process. Adopting final product inspection, feed-back control, reduction of variation in inputs, or

feed-forward control leads to a change in the process control plan. Process desensitization, on the
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other hand, leads to a change in the process, and does not necessarily effect the control plan.

However with a more robust process, it is possible that the control plan rules could be relaxed.
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Abstract

An important goal of quality improvement in manufacturing is the reduction
of variability in characteristics of process output. Producing more
consistent output improves product performance and may reduce
manufacturing costs. This article discusses and contrasts five generic
variation reduction techniques that encompass all current methods. The five
approaches are: final product inspection, feed-back control, reduction of
variation in process inputs, feed-forward control, and process
desensitization. Each technique has distinct advantages and disadvantages
and is only applicable in certain circumstances. The article discusses the
various techniques and provides practitioners guidance in choosing the most
appropriate approach. Two examples that illustrate the thought process

necessary to choose appropriately are given.



Introduction

An important goal of quality improvement in manufacturing is the reduction of variability in
characteristics of process output. Producing more consistent output improves product performance
and may reduce manufacturing costs.

The problem can be simply demonstrated. Suppose a process produces output with an
important quality characteristic Y. See Figure 1. The current process performance, measured over a
long enough period to be stable, is shown by the histogram. The goal is to reduce variability in ¥
while targeting the process at or near the nominal value. In this article, we focus on variation
reduction, and implicitly assume either that any reduction obtained does not move the process mean
significantly away from its target or that we can re-target the process mean without effecting the

process variability. In this way, reducing the variability in ¥ will improve the process capability.

O——» Process — Output Y Q)

Figure 1: Process Diagram

Reduction in variation can be accomplished in a number of ways. In our experience, all

approaches can be classified into one of five generic strategies:

1. final product inspection;

2. feed-back control;

3. reduction of variation in process inputs;
4. feed-forward control;



5. process desensitization.

All five strategies are currently used in industry. Every process is managed using one, or more
usually, a combination of strategies 1 to 4, whereas strategy 5 is solely an improvement technique.
Reducing the variation inherent in an existing process requires the modification of a current
strategy or the adoption of a new one. No reduction in variation can be achieved without changing
either the process or how it is managed. Process monitoring (e.g. control charts) on either outputs
or inputs may lead to understanding of how the process operates but will not, by itself, result in
variation reduction.

This corresponds to the idea of a living control plan as discussed in the AIAG reference
manual, Advanced Product Quality Planning and Control Plan. This manual is referenced in the
automotive industry quality standard, QS-9000. A control plan specifies the mechanisms through
which the quality of a product will be monitored, controlled, and verified. A living control plan is
constantly modified and improved as more information on the process becomes available.

The goal of this article is to contrast and compare each of the variation reduction strategies,
highlighting the required process knowledge, potential costs and benefits of each method. Each
strategy has potential advantages and drawbacks and is applicable only in certain circumstances.
The choice of an effective strategy depends critically on knowledge of the existing process. Key
issues include stability, predictability, ability to adjust, and identification of the causes of the
variation. The availability and cost of attaining this knowledge provides a key input to a decision
on which process variation reduction strategy is most applicable. We hope that this discussion will

provide guidance to quality practitioners faced with a variation reduction problem.

Final Product Inspection

Final product inspection is the simplest variation reduction strategy and is virtually always
applicable. Variability is reduced by identifying and then scrapping or reworking all items that have
values of Y beyond selected inspection limits. The more the limits are tightened, the greater is the

reduction in variation. The effect of tightened inspection is illustrated in Figure 2. Imagine



inspecting and sorting units based on whether they fall between the dashed lines shown, where any
units falling outside the limits are either scrapped or reworked (and then re-inspected). Clearly,
this selection of units reduces the overall variability in the process output that is subsequently

shipped.
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Figure 2: Final Product Inspection Strategy

Final product inspection is very versatile. It can be successfully used in any situation
where the output characteristic Y can be determined in advance of shipping the product to a
customer. Final product inspection is especially appropriate when the quality dimension is critical
and the process produces only the occasional outlier or flier while all other units exhibit very little
variation. For example, in the production of aluminum pistons, the diameter of each finished
piston (as well as a number of other key characteristics) is measured by an automated gauge after
the piston temperature is controlled. Pistons with large or small diameters are scrapped. In such a
situation, the costs associated with 100% inspection, including installation and operation of the
automated gauge, are warranted due to the high production volume and the critical nature of the
product characteristic. Assuming no inspection error, the 100% inspection strategy has the
advantage of being able to guarantee that no units with quality characteristic outside the inspection
limits will be shipped to a customer.

Final product inspection has a number of significant negative features. The cost of
reducing variability i)y tightening the inspection limits may be very high due to increased rework

and scrap costs and lost capacity. Also, the cost of inspection itself may be large if new gauging or



additional labour is required. Measurement or inspection errors will result in increased variability.
As aresult, given the propensity of people to make inspection errors, most successful applications
use automated inspection. As shown in Figure 1, the resultant quality of many of the units passed
through our inspection procedure may be just barely inside the cutoff values. As a result, from a
loss function perspective (Taguchi, 1986), inspection may be a poor approach since the output may
be only marginally better after the inspection procedure. Finally, inspection is applicable to
processes with continuous flows only if the production is divided into batches.

One common modification of this strategy is inspection sampling where not every unit is
measured. This requires the definition of a lot. Lots are accepted or rejected based on the quality of
a sample taken from the lot. Accepted lots are shipped and rejected lots are 100% inspected or
otherwise disposed. If we know that lot to lot variation is large and within lot variation is small,
then inspection sampling is effective. Thus, using inspection sampling, variation may be reduced
by redefining a lot, changing the acceptance criteria, or changing the inspection limits. Compared
to 100% inspection, inspection costs are reduced. However, overall variability will not be reduced
to the same degree. Note that if the process is stable, then partial inspection is a poor strategy.
Deming (Chapter 15, 1986) showed that in this case either no or complete 100% inspection is

optimal.

Feed-back Control

Feed-back control is a simple concept that may lead to complex procedures. The idea is to
monitor the current output characteristic ¥ and to make adjustments to the process based on the
observed output. By making appropriate adjustments, we compensate for changes in unidentified
process inputs, thus reducing the variability in future values of Y. The effect of a simple feed-back
control plan is illustrated in Figure 3. Whenever the process output reaches the adjustment limits,
the process is re-targeted by making appropriate adjustments. Figure 3 demonstrates the resulting
reduction in variability. The effect of feed-back control is determined by the adjustment limits and

adjustment procedure.
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Figure 3: Drift in Process Output Quality

Feed-back control can be successfully applied when three conditions are satisfied. First,
the process must be predictable; that is, the past and current output must tell us something about
future values. In other words, the process must exhibit structural variation (Joiner, 1994).
Examples of structural variation include drift due to tool wear and stratification due to batch to
batch variation. Second, there must be a way to re-target the process. Finally, the time to measure
the output and adjust the process must be small relative to the rate of change of the process. An
existing feed-back control strategy can be altered to reduce variation by addressing one of the three
conditions. For example, better knowledge of the nature of the process variation can be used to
redesign the adjustment limits.

Feed-back control is used, for example, to reduce variation in the concentration of silicon in
molten iron in a foundry. Iron is sampled from the output stream and the concentration of silicon is
determined in the sample. Based on the observed concentrations adjustments are made (upstream)
to the feed rate of silicon in the melting process. Another common example is the use of setup
procedures based on first-off measurements. The major advantage of feed-back control is that it
requires little process knowledge. Like final product inspection, it uses measurements on the final

product only.



There are a number of drawbacks to feed-back control. A major danger is over adjustment
(tampering). If the process is stable, then adjusting on the basis of the output will lead to increased
variability. This illustrated in the famous funnel experiment, see Deming, 1986 pp. 327-328. If
the pattern of the structural variation is unstable over time, then variation will not be reduced as
expected due to inappropriate adjustments. Also, the process measurements and adjustments may
be expensive. - Finally, due to the feed-back nature of the control, there is an inherent time delay.
To identify when an adjustment is required we must first observe some output values that are
significantly different from the target value. Thus, feed-back control is always reactive.

There are many ways to monitor the process and decide when to make adjustments. See
Tucker, Faltin, and Vander Wiel (1993) for further details. Specific examples include acceptance
control charts (Duncan, 1986), Precontrol (Shainin and Shainin, 1989, Juran, 1988). Most feed-
back control systems use a function of recent output values, not just the last value, to determine if
an adjustment is necessary. If the drift in Y is as regular as shown in Figure 3, we could also base
adjustments simply on the time or the number of units processed (or any other cheaply measured

variable highly correlated with the output dimension Y).

Reduction of Variation in Process Inputs

As the saying goes “garbage in garbage out.” If there is a large amount of variation in
process inputs, then it is difficult to produce consistent output. One improvement approach in this
environment is to reduce the variability in one or more inputs. The important input X may be a
characteristic of raw materials or component parts, a changing machine setting or any other process
input that changes. Reducing variation in inputs corresponds to moving improvement upstream.
The problem of reducing variability in X is the analogous to reducing variation in Y. Thus, we
have created a recursion in our problem definition, because the input X is the output of some other
process. To reduce variability in X we can apply any of the five strategies discussed in this article.

The effect of reducing the variability in an input is illustrated by the variance transmission

plots shown in Figure 4. In this example, most of the variation in Y is due to variation in the input



X. As aresult, if we reduce the variability in the input X as shown, the variability in the output Y

will also be significantly reduced.

Variation
inY

Variation
inY

Variation in X X Variation in X X

Figure 4: Variance transmission between input X and Output Y

There are three basic conditions necessary for this strategy to work. First, we must be able
to identify an input that has a causal influence on the output Y. Thus, a change in X must lead to a
change in Y. Second, we must identify an X that is a major source of variation as shown in Figure
4. Third, we must be able to reduce the variation in X.

There are many tools for discovering the identity of such an X. We may use observational
studies such as control charts and multi-vari charts or more active approaches such as designed
experiments. It is very important that the identified factor X is truly a significant factor influencing
the variation in the output.

This approach is proactive. The control of the process is moved upstream which may
reduce cost and complexity, and less effort may be needed to monitor the process output Y. An
example of this strategy occurred in the machining of the aluminum pistons described above. A
variation transmission study identified the piston diameter after an intermediate operation as X, the
major source of variation in final piston diameter. The variation of X was reduced by instituting
improved operator instructions at the operation and better training of the operators in the use of
these instructions.

One difficulty with this strategy is that first we must identify an X, which is both an

important contributor to the variation in Y and which is causally related. This may prove arduous



and involves possibly significant study costs. Second, reducing variability in X may be very
difficult and/or costly. Third, tightened specifications on X moves the responsibility for control of
the process upstream, and possibly outside the influence of local management.

Figure 4 shows a continuously varying input X. However, in many cases X is discrete.
For example, X could represent multiple suppliers or multiple machines in parallel processing
operations. In this case, reducing variation in X could be accomplished by reducing the number of

suppliers or establishing procedures to reduce differences among the suppliers.

Feed-forward Control

Using feed-forward control, we adjust the process in response to measurements made on
an input X, anticipating the effect on the output Y. If the measured value of X provides a
prediction of the corresponding output Y, feed-forward control can reduce variation in ¥ by
adjusting the process to compensate for different X values. Figure 5 demonstrates the effect of

adjusting Y based on knowledge of X and the relationship between X and Y.
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Figure 5: Feed-forward Control



Feed-forward control workg under restrictive conditions. First, we must identify an X that
is an important source of variation. Second, the relationship between X and ¥ must be well known
and stable over time. Third, we must be able to measure X in a timely way and predict when X
will have an effect. Finally, there must be a way to adjust the process to compensate for the
changes in X.

Feed-forward control can be very effective if the above conditions are satisfied. A simple
example is the use of set-up procedures based on the properties of the raw materials. Another is
selective fitting, the technique of sorting and matching component parts to get good assemblies.
This procedure has been used to reduce variation in clearance between pistons and cylinder block
bore walls by matching piston and bore diameters. Note that this adds additional complexity to the
assembly process.

There are substantial costs and risks associated with feed-forward control. Costs arise
because we need to determine the relationship between X and Y, measure X, and repeatedly adjust
the process when appropriate. As with feed-back control, there is a danger of over adjustment if
there is a measurement problem with X or if the relationship between X and Y is not well
understood. In addition, repeated process adjustment may be simply impractical or very costly and

may introduce other undesired side effects.

Process Desensitization

Desensitization of the process aims to reduce variability by making the process more robust
to the variability in process inputs. This is also called parameter design as discussed by Taguchi
(1985) and Nair (1992). Desensitizing the process works by identifying and exploiting
interactions between important varying inputs X and other normally fixed process parameters.
Figure 6 demonstrates how modifying the relationship between Y and X by changing other process

parameters results in less variation in Y over the same range of variability in X.
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Typically the process settings that yield a more robust process are identified through a
designed experiment which uses both X and a set of control factors. The experiment must be

designed so that interaction between X and the control factors can be identified.

Original
Process More Robust

Process

Figure 6: Desensitizing the Process

Process desensitization is a very desirable strategy since once it is complete, no further
action is required. Taguchi (1985) cites several examples, including the famous Ina tile case.
Another example involved the reduction of variation of sulfur concentration in molten iron where X
was the unknown and uncontrollable amount of sulfur in the scrap iron being melted. An
experiment identified new settings in the desulferization process that reduced the within-shift
variability in the output molten iron.

It is difficult to predict when desensitizing the process will work. This is one of its great
weaknesses. Also, making a process more robust requires a great deal of process knowledge.
Determining appropriate settings of the control parameters usually requires expensive designed
experiments that may fail to determine settings that lead to improvement. Also, the new process
settings may be a more expensive way to run process and require a re-targeting of the process.

In theory, making a process more robust can be accomplished without any knowledge of
the factor X, even its identity. Taguchi recommends identifying X (the noise factor) and then
conducting an inner-outer array experiment in which X is controlled. An alternative is to define an
experimental run as the operation of the process over a period of time sufficiently long to allow the

unknown X to vary substantially. Control factors are altered in an organized way for a number of
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such runs. The process variability is measured over each run and is then used as the response in
the analysis of the experiment. However, without knowing X, we run a significant risk of
determining a more robust setting that is only better under the limited operating conditions used in
the experiment. It is also more difficult to identify control factors that may be used to reduce the

variation when X is not identified.

Examples

In any application, a decision must be made as to which strategy or combination of
strategies should be used. To demonstrate the thought process required, we consider two
examples. The examples demonstrate that the more you know about the process, the more
flexibility there is in choice of strategies. In the first example, all the generic strategies are
reasonable. However, the best approach depends on unknown factors, and can not be determined
without further study. In the second example, reducing the variation in the inputs was deemed the

most cost effective strategy. However, other approaches were potentially feasible.

Example 1: A Multi-batch Process

Suppose we have a process that operates on batches of raw material. A sample of process
output is given in Figure 7 where each batch of raw material yields 50 sample points. Clearly, the
major shifts in the process correspond to changes in batch of raw material. Given only this

information, and the goal of variation reduction what are the possible strategies?
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Figure 7: Multi-batch Process Output

If the output is measured on discrete units, then final product inspection coupled with a
rework loop will reduce the variability in the output. Because of the large batch to batch variability,
lots can be defined based on input batch and sampling inspection can be used to identify discrepant
lots. However, in this example, inspection is likely not a good choice because it will provide only
minimal improvement unless we are willing to rework many units.

In this example, feed-back control is a good approach. By closely monitor the output Y
each time we change batches of raw material, we can estimate the current process mean. Assuming
an adjustment mechanism is available, we can then adjust the process to compensate for the batch
effect. Feed-back control has the disadvantage that there will be some time after we start a new
batch of inputs where we operate the process to determine the magnitude of adjustment required.

Reducing the differences between batches of raw material leads to more consistent batches,
thereby creating more consistent output. This is probably the most desirable approach, but will
certainly require further study since we do not know what characteristic of the batches is
responsible for the variation in Y. That is, we have not identified X.

If we can identify and measure X on each batch, then feed-forward control may be a good

choice. If X is a good predictor of Y, and the process target is adjustable, we could compensate
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for the batch differences before we use the batch. Note that this avoids the time delay implicit in
feed-back control.

Finally, desensitizing the process to variation in batches can also work, but will require an
extensive study to determine robust process settings. If we have not identified X, then each run of
the experiment will have to include several batches of raw material. The robust settings may not be
able to remove the effect of batch difference entirely since, in this example, the differences between

batches is large.

Example 2: Crankshaft Machining

Journal diameter is a key product characteristic on machined crankshafts. The machining
process is illustrated below in Figure 8. Raw castings are identified by hour, date of casting and
mold number. The measurements at the final gauge are monitored informally. If the operator
notices a significant number of rejects due to small or large journal diameters, he or she asks for an

adjustment in the grinder that produced most of the rejects.

Grinder 1

Grinder 2
Raw /l ———  Lapper
Castings
\. Grinder 3 Parts not o.k.

Scrap or
Rework
Parts and
Grinder 4 Adjust
Grinders

Parts o.k. Ship
Parts

Final Gauge

Figure 8: Crankshaft Production Process

The objective is to reduce long term variation in the journal diameters of finished

crankshafts. How do we select a strategy?
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The first step is to determine current process performance, in terms of stability, structural
variation and capability. This requires monitoring process performance at the final stage. Without
this knowledge, it is difficult to assess which, if any strategy, is likely to be effective.

The simplest approach is to tighten the inspection limits. The consequence is an increase in
scrap and rework and lost capacity, which in the this case is considered too expensive. A second
possibility is to consider improving the current feed-back control. This involves defining a
standardized procedure that all operators will follow that makes better use of the final inspection
data. Since changing people’s behavior is difficult, and because there is a large number of in-
process crankshafts between the grinders and the final gauge, consideration of this choice is
postponed. The next step is to identify X, an important source of variability in the journal
diameters. A modified multi-vari study (Juran, 1988) was carried out that considered the lapper,
the grinders and lot of castings as major potential sources of variability. This study was
inexpensive because it involved measuring and recording journal diameters on a purposely selected
sample of crankshafts before lapping and at final inspection. The results show large grinder to
grinder differences in average diameter before lapping which was transmitted to the final diameter.
As aresult, the grinders were identified as the major source of variation.

The remaining three strategies can now be considered. The first possibility is to change the
control plan on the grinders so that each is targeted to the same value (reduce input variation). The
second possibility is to change the transfer process between the grinders and the lappers so that the
lapper works on a batch of crankshafts from a single grinder. Then feed-forward control is
possible because the lapper can be set to remove more material from batches with larger average
incoming diameters. Note that the major purpose of the lapper is to improve surface finish so that
this would be a change in function. Another possibility considered was the use of a “smart” lapper
that would measure the incoming journal size and change the lapping time accordingly. These feed-
forward schemes were both rejected due to high cost. The strategy to desensitize the process due to
the variation in after-grind diameter was briefly considered and rejected because there were no

control factors in the lapping operation that could be feasibly used.
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The elimination process left grinder control as the only feasible strategy. This required a
further investigation of the current control plan for the grinder operation. A better feed-back control

system using the diameter after grinding was then implemented.

Summary and Conclusions

This article compares and contrasts five variation reduction techniques. We believe these
five techniques either singly or in combination encompass all possible reduction methods. The
goal of the article is to describe and explain the various methods and to aid the practitioner in
making a judicious choice of technique. Figure 9 provides a tree diagram showing the major
divisions leading to an appropriate choice. X refers to a significant input and Y refers to the critical
output dimension. The process knowledge requirement and potential risks of the different

variation reduction methods have been summarized in Table 1.

relation
Y=£(X) stable
over time
and adjustment
possible

structure in
Y and Y stable or

unpredictable

feedforward  robust feedback inspection
feedback  improve X inspection
robust inspection
improve X
inspection

Figure 9: Decision Tree to Determine Appropriate Variance Reduction Strategy

Reduction of variation requires either a change in the process or a change in the control of a
process. Adopting final product inspection, feed-back control, reduction of variation in inputs, or

feed-forward control leads to a change in the process control plan. Process desensitization, on the
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other hand, leads to a change in the process, and does not necessarily effect the control plan.

However with a more robust process, it is possible that the control plan rules could be relaxed.
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