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Abstract

A design of an experiment in which a number of factors are at least as large
as the number of runs is referred to as a supersaturated (SS) design. Recently
these designs have received increased attention. Construction of such design
and analysis of data from these design have been discussed be several
authors. All the discussions assume the sparsity of effects: although many
factors are initially considered only a small number of factors is really
important. With the sparsity of effect assumption, it is claimed that one can
identify the real effects in design with 12 or 14 runs when there are as many
as many as 60 factors under consideration. Our objective in this paper is to
examine these claims so that practitioners get an 6pportunity to see what is

going on.
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1. INTRODUCTION

In industrial experimentation it is natural to look at many factors simultaneously. It is
impractical from cost consideration to design experiments so that effects of all these factors
are simultaneously estimated. Considering that only a few of these factors are active in the
sense of having large effects it is suggested that these active factors could be identified with
high probability using smaller number of observations than the number of factors considered.
Such designs are referred to asbsupersaturated designs (see Booth and Cox (1962)) and the
objective in this context is to identify all or most of the active factors. The intention of this
paper is to investigate these designs and their ability to identify active factors.

It is assumed that there is no interaction between the factors and that the effect is linear

on the level of each factor. Under this assumption we have the basic model for observations

Yi:

yi=PF+ BiXij+e,i=12,-n n<m (1.1)

j=1
where m is the number of factors and n is the number of observations (runs). Here Xj; is
the level of factor j(X;) in run ¢ and is restricted to two values +1 or —1. The parameters
B;(7 =1,2,...,m) stand for the effect of factor j and it is assumed that only a few of these
parameters are different from 0.

As the number of parameters is more than the number of observations usual least square
methods are not applicable here. One suggestion is to use a forward stepwise regression
approach (see Lin (1993)) and we adopt this strategy in our discussions. The success of
this method depends on the choice of the design matrix. Lin (1993) suggested using half
fractions of Hadamard matrices to construct supersaturated designs. The procedure can be

summarized as follows. In a standard Hadamard matrix whose first column entries are all
| +1, take any other column which may be called a branching column. Consider the matrix
formed by the rows which have the same sign in the branching columns. Assign factors to the

columns other than the first and branching columns. The resulting design is recommended.
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Lin (1993) used one such design on a real data set reported by Williams (1968) and the
results obtained supported the use of the design.

The construction procedure described before implies that the design obtained is not
unique. For example, suppose we are interested in investigating 23 factors and we consider
a Hadamard matrix of order 28 (28 rows, 28 columns with +1 in the first column). The con-
struction method suggested would lead to a design with 14 rows and 23 columns (excluding
column 1). There are 8 such designs possible. Which one should we use?

In Section 2 we re-analyse the Rubber Data (Williams (1968) and Lin (1993)). Section
3 gives a simulation study to investigate the merits of the half replicate supersaturated
design. Section 4 discusses some of the design issues and gives another possible construction
method. Section 5 gives some concluding remarks. The main purpose of the paper is to
make practitioners aware of some of the difficulties involved in the use of supersaturated

designs.

2. RUBBER DATA

In order to illustrate the performance of the supersaturated design using the half replicate
method, Lin (1993) considered the data originally reported by Williams (1968) who used a
Plackett and Burman (PB) design with 24 factors and 28 runs in a rubber making process.
PB design is a particular case of using a Hadamard matrix and Lin’s half replicate method
described in Section 1 can be used to construct a supersaturated design from the PB design
for the Rubber data and then obtain a set of realistic data from this experiment. The design
and data of Williams are given in Table A.1 in the Appendix. As was pointed out by Box
and Draper (1987) there was a typographical error in one of the entries of the original data
(8th element from top in column 20) and this is corrected in our table. Also columns 13 and
16 are identical and hence we eliminated column 16.

There are 8 possible SS designs that could be constructed using the half replicate method.

(The PB design with 24 columns including column of +1’s is part of a Hadamard matrix
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Table 2.1 Rubber Data
Factors included after Five Steps
in a Stepwise Procedure

Steps 1 2 3 4 5 R?
Design

1 SL=.15| 17 15 4 22 10 .90
SL=.075 | 17 15 4 22 10 .90
2 SL=.15 15 24 18 13 8 97
SL=.075 | 15 24 18 13 8 97
3 SL=.15 15 20 3 4 22 .92
SL=.075 | 15 20 - - - 73
4 SL=.15 2 13 8 3 20 .84
SL=.075 2 13 8 - - .69
5* | SL=.15 15 12 20 4 10 97
SL=.075 | 15 12 20 4 10 .97
6 SL=.15 4 22 23 18 24 .88
SL=.075 4 | 22 23 - - 74
7 SL=.15 14 12 11 23 - .89
SL=.075 14 12 11 23 - .89
8 SL=.15 15 22 8 17 1 94
SL=.075 | 15 22 8 17 1 .94

Notes: *  Design 5 is the same as that used in Lin (1993)

“.” indicates that the procedure stopped before




of order 28 and the remaining 4 columns can be uniquely determined as shown by Vijayan
(1976); these 4 columns are used as branching columns to produce the 8 designs.) The rows
corresponding to these 8 designs are given in Table A.2 in the Appendix.

Lin (1993) used design number 5 for his analysis, where a stepwise regression procedure
was utilized to identify the active factors. We adopted the same procedure for each of these 8
designs using the stepwise procedure in SAS (Statistical Analysis System). For inclusion and
exclusion we used the default option (“significance” level .15) first. Then we used the level
.075 to get results for design 5 to match those of Lin (1993). All these are presented in Table
2.1. The numbers in the table indicate the factor number. For instance, with significance
level (SL) = .075 in design 1 in the first step, factor 17 was selected as active and factors
15, 4, 22 and 10 were selected in subsequent steps. As can be seen from the table, different
conclusions result from different designs. As expected Design 5 led to the same choices as in
Williams; however, this is the only design which led to this choice. This example illustrates
that it is very difficult to make general conclusions regarding the choice of active factors in

a SS design.
3. SIMULATION STUDY

We conducted a simulation study to verify some of the features of the supersaturated
designs given in Lin (1993, 1995). For this we consider two designs (14 run, 12 run) and the
model given in (1.1).

Case 1: 14 run design with 23 factors
Step 1: Data generation:
We generate n = 14 N(0,1) random variates, €;,¢ =1,...,14 and then
using the model (1.1) generate yi,- - -, y14 for specific sets of values of
the f’s.
Pure noise: We consider all the 3’s to be zero.

Then we consider the following situations.



5,1,20 =1 (3 separate cases)

(1) Bi = 0 P41

(2) B2 =Br =1, other f’s zero
B2 = B = 20, other B’s zero

3) Bi=p=p8=1, other #’s zero
B2 = Br = P13 = .5, other #’s zero
B2 = Br=Piz=1, other f’s zero

B2 = 5,087 = 10,613 =20, other #’s zero
By = 14, 87 = 20, $13 = 20, other B’s zero
B2 = Br = B3 = 20, other #’s zero

Step 2: Analysis for factor selection.
We use the forward selection procedure with a specific significance level
(SL) for including a factor, stop after step 5 and record the selected
factors.

Step 3: Repeat Steps 1 and 2, N = 200 times and record the number of times

each factor was selected.

In the Pure noise case with SL = .05, 79% of the times, at least one factor was selected
as active in 5 steps. This was not unexpected. With 23 contrasts tested to zero individually
and assuming them to be independent (this is not quite true in our case) there is a chance
1 — (1 — @)® of selecting at least one significant contrast where « is the SL for inclusion.
When a = .05 this probability = .70 which is in the vicinity of the simulated value. We
cannot avoid this situation even if we have a large number of observations. On the other

hand if the present experiment is considered as a device to reduce the number of factors



Table 3.1 Simulation Results
Selection Pattern of
Factors (Lin’s 14 run Design)

Factors Corresp- | Percent of times real effect factors selected Percent of time X,
with Real | onding # | in k steps in 5 steps selected in the first
Effects values k = # factors in col. 1 step
SL=0.10 | SL=0.05 | SL=0.10 [ SL = 0.05 | SL =0.10 | SL=0.05
0.5 36.5 27.5 56.5 38
X1 1 87 85.5 93 90.5
20 100 100 100 100
X2, X7 1,1 55 56 67 62.5 24.5 22
20, 20 78 74 78 T4 22 26
X1, Xs, 1,1,1 40.5 38 55 45.5
X3
0.5, 0.5, 0.5 0 0 1 1 43.5 46.5
X, X7, 1, 1,1, 5 ;) 4 2 91.5 91
5, 10, 20 100 100 100 100 0 0
X13 14, 20, 20 0 0 0 0 100 100
20, 20, 20 0 0 0 0 100 100




which need to be carefully examined in a later experiment, then it is important to know

whether the procedure leads to the active factors with high probability. For this purpose

we consider cases 1-3 where one, two, or three 3’s are different from zero. The results are

presented in Table 3.1. We note the following from the table:

(1)

(i)

(i)

When only one f is different from zero or it is much larger than the rest, the corre-
sponding factor gets selected in the first 5 steps. For instance, with a SL of 10%, X,
gets selected 100% of the cases if §; = 20,87% of the cases when 8; = 1 and only
36.5% when (3; = .5. When SL=.05 and 3, = .5, X gets selected only in 36% of cases.
(Note that the standard error of 8, ~ .27).

When two ’s are important and very large (8, = B7 = 20), the corresponding factors
get selected about 78% of the time. This drops to 67% when 8, = 7 = 1. It should
also be noted that in all these cases X;, which is not an active factor gets selected in

step 1 in about 22% of the time.

When more than two ’s are important, conclusions are different depending on which
B3’s are non zero. For instance, with SL = .1if 83 = 87 = 13 = 1 and 3; = 0,7 #
2, 7, or 13, the combination (X, X7, X13) is selected only 4% of the time while X; is
selected 91.5% of the time in step 1; however if §; = B, = B3 = 1 and the rest are zero
then (X1, X2, X3) gets picked up 55% of the time. It should also be noted that when
By = 14,87 = P13 = 20 or B = B7 = P13 = 20 and the rest are zero the combination
(X2, X7, X13) is never selected while X; is selected 100% of the time. On the other
hand, if 8, = 5, 87 = 10, B13 = 20 the combination gets selected 100% of the cases.

Factors selected as active depend on what columns in the design matrix are assigned
to the real active factors. This is a result of the correlation structure of the columns

of the design matrix.



Case 2: 12 run design

Lin (1995) presented an algorithm to generate certain SS designs and the ones for 12 runs
are shown in the paper. General construction methods are available to produce these designs
with number of factors as high as 66. Basically the design is constructed from the columns
.of a standard Hadamard matrix. Using the notation 1’ = (1,1,1),u} = (1,-1,-1),u} =
(—1,1,-1), and u} = (—1,—1,1) we can write down one such Hadamard matrix of order

12 as given below:

1 2 3 4 ) 6 7 8 9 10 11 12
1 1 —u; 1 —u3 —uz —u; —u; —uy u; u; u;
1 1 us —1 uy us Uy u; us —usz —u; —uy
1 -1 1 u; us Uy —Uu; —ug u; —us u; us
1 -1 -1 —u; —u; -—us u; u; —u, us —uz —uy

The different columns of the design matrix would be obtained by taking componentwise
products of two columns of this basic matrix leading to a design matrix with 66 columns. We
- denote the componentwise product of the columns z and j by “éxj”. Lin (1995) demonstrated
the usefulness of SS designs by carrying out a simulation study using the above design. In
the simulation study factors corresponding to columns 1 x 4,1 x 8, and 8 x 10 were given
large effects (3 values 17, 24 and 15 respectively), those corresponding to 1 x 11, and 8 x 11
were given moderate effects (3 values 3), and others were taken as zero. The results of the
simulation indicated that the 5 active factors were selected in the first five steps of a forward
selection procedure always in all the repetitions.

We wish to demonstrate that the results depend on which columns of the X matrix
correspond to the large and moderate effect factors. In our simulation study we assigned the
B values 17, 24,15 (large effects in Lin’s simulation) to columns 8 x 10,6 x 12, and 9 x 11 and
the B value 3 to columns 3 x5 and 4 x 7, and zero to the remaining columns. 12 observations

were generated from model (1.1) using the §-values indicated before and a forward selection



procedure as in Lin (1995) was used to pick up the active factors. In 200 repetitions, none
of the active factors corresponding to columns 6 x 12,9 x 11,3 x 5 and 4 x 7 were picked up
in the first five steps while the factor corresponding to column 8 x 10 was selected only 29%
of the time. The factor corresponding to column 1 x 2 (inactive) was always the choice in

the first step.

4. DISCUSSION AND SUGGESTIONS FOR IMPROVEMENT

When the number of factors is very large it is inevitable that some of the inactive factors
would be selected with high probability. This is not a serious problem as long as active
factors are also selected with high probability. We notice from simulations in Section 3 that
sometimes the procedures fail to select active factors and select inactive factors instead. This
is a very serious issue and others (see Chipman et al (1995), Hamada and Wu (1992) and
Wu (1993)) have noticed this as well. The nonorthogonality of the columns of the design
matrix X is the root of the problem.

Suppose that the first r factors are active and the rest inactive. For the sake of discussion
let us assume that the error € in (1.1) is negligible. Then the observations can be written in

the form

y=ﬂo+§T:X;ﬂi (4.1)

=1

where y is the observation vector, X; the ¢th column of the X matrix and 1 is a column of
one’s. Note that X;(: = 1,2,--,r) is orthogonal to 1. Then the estimate of 5 in the first

step of the forward selection procedure is
B =(1/ XX ) Xy = (1/n) Y SuB:
=1
where S;r = X ;' X . The first selected factor is the one for which

n| By |=| > SuBi | is largest.
i=1



Let us assume for discussion that the 8; (0 = 1,2, --,r) have the same magnitude (say

B) and that é; represent the sign of §;. Then the factor for which

iy =| Z 6;Sik | (42)
=1

is largest would be selected as active in Step 1 of the forward selection procedure. If the
design is such that (4.2) is largest for a k different from 1,2,...,r, the selection procedure
would lead to an inactive factor to be active. Since the k' factor X} is very highly correlated
with X;(1 = 1,2,---,r), the residuals from Step 1 of the forward selection procedure would
be almost uncorrelated with X;(z = 1,2,---,r) and hence the chance of the selection of the
true active factors Xy, --, X, in the subsequent steps is very small.

Now consider the covariance (“X’X”) matrix in Table A.3, for the 14 run design given in
Lin (1993). Suppose that the active factors are X3, X7 and X3 with the same £ coefficients.
Then t, = t; = t13 = 10 while ¢, is 18. Hence X; would be selected before factors 2, 7, 13
unless the error (€) is very large in which case such a study would not be very conclusive

anyway. Once X is chosen, the adjusted estimates (,Bk.a) for the remaining /’s are obtained

as
(14 - S%k/sll):ék-a = B(tr — (S1x/S11)th)
leading to
s 10—-6x18/14 _ B
ﬂku_( 14—36/14 )ﬁ —(1/5)/8 k““2a7713

Note that the estimate of f; has gone down from what was to be (i.e. 10/14 ) if not
adjusted for X;. For factors which are not highly correlated with X3, the effect of adjustment

for X; would be small. For example for £ = 8 or 24

o = BT — 1/

while B, = (1/7)B. This would again lead to selection of inactive factors in preference to the
active ones.
The situation will be the same even if 3;, 37, and ;3 are different provided that these

dominate over the others. For example, if 8, = (2/3)B3,87 = B and B3 = (1/2)8 then

9



B2 = (23/14)8 while B = (27/14)8 and hence X; would be chosen rather than X,. After
adjusting for X1, B2.. = B while Bs.a = (111/94)8 leading to the selection of X in preference
to active factors. Thus the high covariances S5;; cause the problem of selecting the inactive
factors. One suggestion made to lessen the impact of these covariances is to consider a design
in which the average value of S7;, (E(S?) say) is as small as possible (for example, see Booth
and Cox (1962), Wu (1993)).

Let us consider a 12 run design in 13 factors. It can be shown that for such a design the
minimum value of E(S?) = 48 and is attained by the following design (Table A.4) given by
Wu (1993).

For this design

12 if ¢=3
Sij={4 j7=12,13 i#1lorj—10
0 otherwise

Suppose now that X4, X5, X6, and X7 have large and equal effects while the rest have

zero effects and that the error (¢) is negligible; we obtain

. { 8 k=4,5,6,1
B =
(4/3)8 k=12,13
Hence one of the factors Xi,, X13 would be selected first and since the correlation between
these factors is zero, the other would be selected in the second step.
The design given in Table A.5 gets around this problem. However, this design (Design

2) has a slightly higher E(S5?). Design 1 (Table A.4) is less attractive because X;; and Xi3
have many factors correlated with them and their combined effect spuriously gave strength
to these factors. One way to avoid this is to construct designs for which the maximum
contribution made to a factor by the others through correlation is small. Thus a useful

method for construction of a design is to consider the minimax criterion: Choose the design

for which
A= mle Z I S,'j I
J
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is as small as possible.
This is the criterion used to obtain the design in Table A.5. It should be noted that if

A < 2n then the active factors will have a higher chance of selection than the inactive factors.
5. CONDLUDING REMARKS

Data analysis in Section 2 and the simulations in Section 3 indicate that one should be
very cautious with the use of SS designs. The simulations, in particular show that there
is-a high chance of missing the real active factors and selecting the inactive ones instead.
The assignment of factors to columns of these designs is crucial because of the correlation
structure among the columns of the design.

We have not yet seen a SS design used in a real situation to collect data. It is interesting
to note that the examples used for demonstrating SS designs in all the previous papers were
originally considered for other purposes; other designs were used for data collection, and

important factors were already identified.
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Table A.1

Rubber Data, Williams (1968)
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Cp

109

-16 -23 -31 -8 —-23 -43 -14 -4 -49 -8 -32 -—-12 -12

-7 37 13 -12 -14 30 15 14 -4

-20

—26

EF

*The level of run 8, factor 20 is here shown as +. In the source reference, the lower level appears: that seems to be a typographical error.



Table A.2

14 Run Supersaturated Designs

from a Hadamard Matrix of order 28.

Design

number Rows from the PB design
1 2 4 5 7 9 11 14 18 22 23 24 26 28
2 6 8 10 12 13 15 16 17 19 20 21 25 27
3 3 4 5 7 9 13 15 16 17 18 21 23 27
4 6 8 10 11 12 14 19 20 22 24 25 26 28
5 3 4 6 8 9 10 13 17 22 23 24 25 28
6 5 7 11 12 14 15 16 18 19 20 21 26 27
7 4 9 10 11 13 14 17 18 19 20 21 >25 26
8 3 5 6 7 8 12 15 16 22 23 24 27 28
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Table A.4

Design from Wu (1993)
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Table A.5

New 12 Run Design

Factors

11 12 13

10
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