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Abstract

A complex mathematical model that produces output values from input values is
now commonly called a computer model. The literature thus far has concentrated on
_obtaining fast predictors for the computer model. Because the relationship between the
inputs and outputs is still mathematically complex, however, these predictors are not
suitable for explanation. We show how plots of nonparametric estimates of main and
interaction effects based on the predictor are useful for identifying a class of parametric
nonlinear models; fitting the nonlinear modelb provides the desired explanation. The
proposed method is illustrated using data from a computer experiment with a solar

collector.
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1 Introduction

Computer models or codes are now frequently used in engineering design, and in many other
areas of physical science. For instance, the main example discussed in this article concerns
the engineering design of a solar collector. This code computes an increase in heat transfer
effectiveness, y, resulting from an engineering innovation. The design is characterized by
six factors (engineering parameters), zy,...,%s. Further details will be given in Section 3.
As is often the case, the code is expensive to compute and the engineers wanted a, possibly
nonlinear, parametric approximation. The surrogate would then be used to determine quan-
titatively the impact of the six design factors on the response and to explain the complex
functional relationships embodied in their computer code.

Figure 1 shows scatter plots of the response against each z variable in turn for data from
an experiment on the solar collector code. They indicate some trend in z, and z5. However,
the scatter plots do not show, for example, the strong relationship in z4, because it is masked
by the effects of the other covariates. This would not matter if the effects were all linear
and additive, but, as we shall see in Section 3, the effect of z4 is highly nonlinear. With
nonlinear effects, we need to know the form of the model to be fitted, and simple plotting
of the data does not suggest a class of nonlinear parametric models here. Moreover, in our
experience, nonlinearities are common in computer experiments, because the inputs often
cover wide ranges.

There is already some work on the design and analysis of computer experiments. See, for
example, Currin, Mitchell, Morris, and Ylvisaker (1991), Sacks, Schiller, and Welch (1989),
Sacks, Welch, Mitchell, and Wynn (1989), and Welch, Buck, Sacks, Wynn, Mitchell, and
Morris (1992). The methods proposed in these references take into account the deterministic
nature of a code like the solar collector computer model. Given the same inputs, it always
reproduces the same output(s). Typically, the code will be expensive to run, e.g., it solves a
large number of differential equations which may require several hours or more of computer
time.

So far this work has focused on finding a good cheap-to-compute nonparametric surrogate



(i-e., predictor) for the computer model. In the solar collector example, however, ezplanation
rather than prediction is the overriding objective. The class of nonparametric predictors
suggested in the above references is unsuitable for this task: They are computationally
cheap approximations, but they are nonetheless mathematically complex.

In this article we propose identifying approximating parametric models from graphical
analysis of estimated effects from a nonparametric model. Along the way we introduce some
new methodology for attaching standard errors to the estimated effects. Note that here the
nonparametric analysis of computér experiments is an intermediate tool rather than an end
in itself. As will be shown, the visualization of effects is fairly automatic.

An overview of the article is as follows. Section 2 first outlines the nonparametric method
we use for analyzing data from a computer experiment. It has several advantages, but it is
by no means the only method that might accomplish this task. Section 2 then explains how
parametric models can be identified graphically. Section 3 demonstrates these ideas using
the solar collector code. In Section 4, the article concludes with some discussion, including

comments on the choice of experimental design and alternative modeling approaches.

2 Identifying Parametric Nonlinear Models

Identifying a class of nonlinear models that fits the data well is easy if there is only one
covariate. A simple scatter plot would reveal the functional relationship which for a computer
model is exact since the relationship is deterministic. Then, the data analyst can choose a
class of models suggested by the scatter plot and fit the model using standard nonlinear
regression software to obtain parameter estimates. This approach was used in a case study
presented in Bates and Watts (1988, Section 3.13) for physical experimental data which
contained random error. While the data from a computer experiment contain no random
error, the objective here remains the same, i.e., to find a good approximating model.
Scatter plots are not very useful for model identification where there is more than one

covariate,' however. The relationship between the response and each covariate can be masked



by the relationships between the response and the other covariates (e.g., Montgomery and
Peck, 1982, Section 4.2.5). To overcome the masking problem, a plot of a function involving
only the covariate of interest is needed. In other words, the effects of the other covariates
need to be eliminated. Such plots will be considered shortly, after some preliminaries.
First, a brief overview of the nonparametric predictor used in this article is given because
it plays a key role in the method proposed shortly. The data from a computer experi-
ment consist of n vectors of covariate values (or inputs) denoted by x;,...,x, for the d -
dimensional covariates zi,...,zq as specified by a particular experimental design. The cor-
responding response values (for a particular output variable) are denoted y = (y1,...,ya)"
Then, following the approach of, e.g., Welch et al. (1992), the response y is treated as a

realization of a stochastic process:
Y(x) =8+ Z(x), (1)

where E(Z(x)) = 0 and Cov(Z(w), Z(x)) = o2R(w,x) for two input vectors w and x. The
correlation function R(-,-) can be tuned to the data, which for this article is assumed to

have the form:

d
R(w,x) = ]| exp(—0;lw; — z;|*), (2)

i=1
where 6; > 0 and 0 < p; < 2. The p;’s can be interpreted as smoothness parameters—the
response surface is smoother with respect to z; as p; increases—and the §;’s indicate how
local the estimate is. If the 6;’s are large, only data at points in the immediate vicinity
of a given point are highly correlated with Y at that point and are thus influential in the
prediction at that point. If the 8;’s are small, data at points further away are still highly
correlated and still influence the prediction at that point.

The best linear unbiased predictor of Y at an untried x can be shown to be:

Y(x) = +r' (xR (y - 15), (3)

Y

where r(x) is the n X 1 vector of the correlations between Y (x) and y, 8 is the generalized

least squares estimator of 3, R is the n X n correlation matrix with element ¢, j defined by
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R(x;,x;) in (2) and 1 is an n X 1 vector of 1’s. While this cheap-to-compute predictor has
proven to be accurate for numerous applications, it does not reveal the relationship between
y and x4, ..., Zq in a readily interpretable way. Consequently, this predictor is unsuitable for
ezplaining the functional relationship between the covariates and the response.

When the functional relationship between the covariates z;,...,z4 and the response y is

approximately additive, i.e.,
Y = po + pa(z1) + pa(z2) + - . . + pa(za),

the difficult problem of identifying a nonlinear function y(zi,...,z4) has turned into the
much easier problem of identifying u;(z;) for ¢ = 1,...,d. Note that while the method
proposed later in this section does not assume additivity, an important point is that additivity
does make the model identification much easier.

Recall that in order to identify the functional relationship between a group of covariates
and the response, the effect of these covariates needs to be isolated from the others. When
we want to isolate the effect of a single covariate, the true main effect of the covariate can

be defined in the following two ways:

1. Integrating out the other factors. The main effects are defined as:
pi(:) = f y(x) [] dzn
hi
(Sacks et al., 1989). They can be estimated by replacing y(x) by Y(x) Standard

errors for the estimated main effects are derived in Appendix A.

2. Keeping the other variables fized. For example, the other variables might be fixed at
their respective midranges. Standard errors for the estimated effects using this method

are available directly from MSE(Y;) as given for example in Sacks et al. (1989).

In both calculations, the unknown y(x) needs to be replaced by ¥'(x) from Equation (3).
The first approach is preferred because it is analogous to analysis of variance in that all the

other covariates are averaged out. Note also that integrating f’(x) is numerically easy to
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perform if the x region is cuboidal and if the correlations are in product from as in (2). In a
similar fashion, the joint effect of two or more covariates can be investigated by integrating
out all the other covariates or fixing the other covariates at specific values.

Main effects for each z; and joint effects of, say, two covariates for each pair (z;,z;) can
then be displayed graphically. By choosing a tentative model for each of the effect plots which
displays some key feature (i.e., impacts the response), an overall model can be developed by
adding up all the corresponding candidate models.

If there are no interactions (and hence, additivity holds) the d-dimensional problem has
been reduced to d one-dimensional problems. If large interactions are present, then the
interacting covariates need to be considered jointly. Covariates can then be grouped so
that covariates in two different groups do not interact. Provided that the groups contain
no more than two variables, candidate models may still be identified from contour plots
of the response. For larger sized groups, such plots will generally not be helpful. In this
case, when faced with many interactions, transforming the response may help in reducing
the apparent complexity. Experience with a number of computer models, however, suggests
the complexity of computer models tends to arise from additive nonlinearities rather than
through interactions.

Subsequently, the identified parametric model can be fit using standard nonlinear regres-
sion techniques. When there is additivity, starting values for the parameter estimates can

be estimated from the main effect plots.

3 Application to a Solar Collector Code

In this section, the proposed method is applied to an expensive-to-compute computer model
for the heat exchange effectiveness between the air and an unglazed transpired-plate so-
lar collector with slot-like perforations (henceforth, referred to as holes). The use of equally
spaced slot-like holes replaces the unrealistic assumption of infinitesimally small and infinites-

imally close holes and thus, represents an engineering novelty in the design of unglazed solar



collectors. Golneshan (1994) showed that the heat exchange effectiveness for these solar col-
lectors is a function of six covariates, (1) inverse wind velocity, (2) dimensionless slot width,
(3) Reynolds number, (4) admittance, (5) dimensionless plate thickness, and (6) the radia-
tive Nusselt number, as defined by a system of differential equations. The computer code
(Cao, 1993) solves the system of differential equations for given covariate values and requires
around two hours of computing time on a workstation. The response considered here is the
increase in heat exchange effectiveness attributed to the heat transfer in the holes from the
hole sides and is expressed as a percentage (0-100). For further details, see Cao (1993). For
notational simplicity, in the following, the six covariates listed above will be referred to as
Zi,Z3,...,%e and the response as y.

The mechanical engineers who had developed the solar collector code were interested
specifically in explaining the impact of the six covariates (which are design factors) on the
response heat exchange effectiveness; ultimately, the explanation would help to identify bet-
ter solar collector designs. Note that such understanding was not apparent from inspecting
the system of differential equations. The engineers were interested in developing a surrogate
parametric model because empirical models of this type existed in the literature for solar
collectors based on older technologies; they had no preconceived idea of what form the model
should take because the collectors with slot-like holes represented state-of-the-art technol-
ogy. Hence, the need arose for performing an experiment on the solar collector code, i.e., a
computer experiment. |

The experimental design used for the computer design was one that filled the six di-
mensional cuboidal region, a so-called space filling design. Specifically, a Latin hypercube

design (McKay, Beckman, and Conover, 1979) consisting of 100 points was chosen in which
' the minimum distance between points (i.e., the covariate vectors) in low-dimensional pro-
jections was maximized. The design was found using ACED (Algorithms for Constructing
Experimental Designs) which was developed by Welch. All the two-dimensional projections
of the Latin hypercube design can be seen in Figure 2 which shows that the design is indeed
space-filling.



Because the response “ heat exchange effectiveness” is a percentage, models in the logit
of the response were considered. Scatter plots of the logit data (Figure 1) indicate a possible
linear trend in z; and z5. The remaining relationships, if any, are masked by the presence
of the other covariates. In the following, the proposed method for identifying a class of
surrogate nonlinear models will be applied.

The stochastic process predictor (3) for the logit response was fit using the nonparametric
method outlined in the previous section, implemented in GaSP (Gaussian Stochastic Pro-
cesses), also developed by Welch. One of the observations is very extreme on the logit scale.
Based on predicting each y; using all the data except y;, the cross validation prediction error
for this observation is very large (see Figure 3). Standardizing this cross-validation residual
by dividing by its standard error gives a value of 7.1, also very large.

We remove this observation for modeling purposes and refit the model. Figure 4 displays
a cross validation plot of the new fit with 99 data points. The predictor appears to be
reasonably accurate. Main effect plots, generated by integrating out the other covariates,
are as shown in Figure 5 for covariates z; through . The main effect for covariate ¢ is very
flat, and all two-way interactions are close to zero everywhere. These effects were considered
negligible by the engineers. The features displayed in the main effect plots suggest that
the effect of z;, =5, and z3 are approximately linear and the effect of =5 is approximately
quadratic.

The main effect plot for 4 is rather ragged. Although the plot gives a good indication of
the apparently nonlinear z4 effect, it is doubtful that the true x4 relationship is that bumpy.
One possible explanation is that the computer code may have some numerical convergence
problems in certain regions of the x space. This possible erratic behavior may then be
erroneously attributed to z4 which clearly has the most nonlinear or complex impact on the
response. Engineering knowledge suggeéts that the increase in heat efficiency is a monotone
increasing function of the admittance rate of the plate z,. The head engineer commented:
“The slight blip in the curve is almost certainly due to some numerical problem” (Hollands,

1995, personal communication). Therefore, we do not model the little down peak at x4 = 300.



Plots of the main effects using the method of fixing the other variables at their respective
midranges rather than averaging them out, result in very similar graphs. For example, Figure
6 shows the Method 2 main effect plot for z4.

The nonlinear shape of the 4 main effect plot which appears to asymptote can be cap-
tured by a Michaelis-Menten model (Bates and Watts, 1988, p. 329); the Michaelis-Menten
model has long been used to model the behavior of a limiting chemical reaction which rises at
a decreasing rate to an asymptote. It also arises in the context of a reciprocal link function in
generalized linear model, where an inverse linear response function is assumed (McCullagh
and Nelder, 1989, p. 291). Here, to give more flexibility, the Michaelis-Menten model was

augmented by introducing an additional parameter B, and takes the following form:

1
- ﬂo+ﬂ1/$fz.

The overall model consisting of linear effects in z,, 2, 3, and z5, a quadratic effect in x5

Y

and the augmented Michaelis-Menten model for x4 was then fit using standard nonmlinear

regression software which gave:

logit(y) = 6.601z; — 0.0028z3 — 35.41z; +
1
—0.388 + 0.210/z2488°

53.61z5 — 392.54x2 +

All of the parameters including the flexibility parameter 8, were significant at the 0.0001
level. Also, adding z¢ reveals that z¢ is not significant at the .05 level. Although the data
contain no random error so that significance testing has no theoretical grounds here, the
results of the significance tests do indicate the importance of the various effects relative to
the ability of the overall model to fit the data. Note that the model contains only eight
parameters but fits the 99 data points quite well as indicated by the corresponding cross
validation plot given in Figure 7. The fact that the parametric nonlinear model does not
fit the data quite as well as the nonparametric model is not surprising, since the parametric

model is much simpler.



4 Discussion

The examples presented in nonlinear regression books typically deal with only a single co-
variate =, where the functional relationship between = and the response y is unknown. On
the other hand, the method proposed in this article can be applied to an arbitrarily large
number of covariates.

Throughout this paper, we have used model (1) for the initial nonparametric analysis.
Other nonparametric methods, like Generalized Additive Models, could be used. However,
the model we use has three main advantages: first, the model is truthful to the deterministic
nature of the data, second, error bounds for the effects are available, and third, interactions
do not need to be modeled explicitly. Breiman (1991) criticized algorithms for producing
“only one picture” of the functional relationship, thus ignoring the many other “pictures”
which are almost as good. The error bounds given for the effects can serve here as an
assessment of the variability of the effect fit.

There are certainly other ways to identify a parametric nonlinear model. For example,
clever residual analyses in the hand of a skilled data analyst may well lead to the same
results. For the solar collector experiment, an added variable (partial regression) plot for
z4 based on a linear regression model for the remaining covariates shows the effect of x4
is nonlinear, albeit wit.h considerable scatter as displayed in Figure 8. This success is not
surprising since the assumption of a linear model for the remaining variables turns out to be
a good approximation. If the true model had contained several strong nonlinearities, then
added variable plots on their own would not have sufficed.

Elaborate residual analyses are often not done for three reasons: (1) They are hard to
do, especially when the “true” model contains more than one nonlinear effect. (2) Data
analysts, especially inexperienced ones, may not always know about them. (3) They can
take a lot of time to perform. The method presented here is easy and fairly automatic for
detecting nonlinear effects. It is not a panacea for all “true” models, however. If the “true”
model cannot be transformed to an additive model with few or no interaction effects, then

identification of nonlinear relationships with several covariates will still be a challenge. For
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these cases, it is doubtful whether alternate methods will work either.

The effect plots play a key role in the proposed method and their resolution depends on
the experimental design used. The Latin hypercube design is a desirable choice because the
design points fill the experimental region well and produce high-resolution plots.

‘Originally, a 4%~2 fractional factorial design was considered for the solar collector com-
puter experiment. A fractional factorial or even full factorial design would have had several
drawbacks, however. First, if only a few covariates (factors) had an impact, the design
effectively collapses into a design in the active factors with replications. But, replications
in a computer experiment are non-informative because of the deterministic nature of the
computer code and therefore would have been a waste of resources. Second, it could have
been easy to miss an unknown effect by only experimenting at a few different points for each
factor. For example, the exact nature of the nonlinear x4 effect would have been difficult to
identify with only four levels; in fact, the dramatic nonlinear behavior of x4 surprised the
enginéers. Third, the decision of where to place the levels becomes much more crucial for the
factorial design; lower dimensional projections of Latin hypercube design typically consist
of n distinct and spread-out points so that their exact position is less important. Finally, a
4%-2 fractional factorial design would have required 256 runs. Contrast this with the 100-run
Latin hypercube design that was used; even fewer runs might have been sufficient.

Computer experiments typically use such space filling designs so the proposed method
is particularly suited to computer experiments. While physical experiments typically collect
much less data than computer experiments, in principle the proposed method can be applied

to physical expériments by adding a random error term to the model.
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A The Derivation of the Main Effects Bounds

Suppose we want to plot the estimated effect of some of the z variables, denoted by x_ g.;-

The remaining z variables, denoted by x have to be integrated out of the predictor. The

out
estimated effect is
) = 37 [ ¥ )t (4
where V is the volume of the x_, region over which we integrate. For example, in the first
plot of Figure 5, X ... = Z1, and the plotting coordinates fi(z;) require an integration over
Xout = (:i:z, ..., xg)! for each value of z; plotted. The integral in (4) is easy to approximate if
the z-space is cuboidal, and if the correlation function is a product of correlation functions
for each = variable. Here we show that the mean squared error of fi is also fairly easy to
compute.
Numerically, we approximate (4) by a sum over a grid of m points xg,)t, .. ,x‘(,’::t) repre-

senting the x

out SPace. Thus (4) becomes

. 13 ;
”’(xeﬂ‘ect) = E E Y(xeﬂ'ect, xngt), (5)
=1 )

where we have decomposed the vector of z variables as X = (Xeffect; Xoy;). The sum in (5)

estimates the corresponding sum of true function values, with mean squared error
1™ . ) 1™ @ 2
1
E <_ E Y(xeﬂ'ect, xoiut) - Z Y(xeﬂ'ect, xout))
mis mia

1 &N e i o)
= F ("’; Z (Y(xe{feCh xglzt) - Y(xeﬁ'ech xg‘zt)))

=1
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= # Z E ((?(xeﬂ‘ectv xﬁ?t) = Y (Xeffect x((fzt)) (f/(xeﬁ‘ech x((;R:) — Y (Xefrect, xg:l)))

i

1 A 1 1 A “I ‘il
= W Z COV (Y(xeﬂ'ect, xggt) - Y(xeﬁ'ect, xf,gt), Y(xeﬁ‘ect, xgul) b Y(xeﬁ'ect, xgul)) . (6)

Note that the last expression in (6) follows from unbiasedness, i.e., E(f’(x) -Y(x)) =0.
In this appendix we generalize the model (1) by replacing the intercept term, 8, by a

regression model:

Y(x) =) Bifi(x) + 4(x), (7)

i=1
where f(x) = [fi(x),-.., fe(x)]* are k known regression fanctions and B = (£1,B2,---,0k)
are the corresponding unknown parameters.
Lety = (11,Y>, ..., Y,)! denote the vector of observations at the design points, and denote
the best linear predictor of Y at x by f’(x) = cty. The coefficients cx can be determined
through minimization of E(cty—Y(x))? subject to the unbiasedness constraint Ficy = f(x),

where F is the expanded design matrix (see for example Sacks, Schiller, and Welch, 1989):

o oM o ® \ [ fx @
) I F R o2r(x).

The quantities R and r(x) were defined in (3).
We now calculate the covariance between Y (x;) — Y (x;) and Y'(x;) — Y (x;) at any points
x; and x; . Because E(Y(x) — Y(x)) =0, we obtain
Cov(Y(x1) — Y (31), ¥(%3) = Y (%5)) = Cov(ch,y — Y (x1),ck,y — Y (xz))
= o? [C;IR Cx, + R(x1,%2) — & r(x2) — c;2r(x1)] ,
where R(x,X2) is the correlation between Y'(x;) and Y(x;). Substituting cx, and cy, from
(8) yields
Cov(Y(x1) — Y(x1), Y (x2) — Y(x2)) =
o(R(x1,%2) — r(x:1)'R™Ir(x;) + £(x:1)' K~ (x2) + r(x:)'RTFK'F'R'r(x,)
—£(x;)’K'F'R ™ 'r(x;) — f(x2)' K 'F'R™'r(xy)), 9)
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where K = FtR™IF.

It turns out equation (9) can also be written in product form:

Cov(¥(x1) — Y (x1), Y (x2) — Y (x2)) = .
f(x1) 0 F £(x2)
o? | R(x,x3) — . (10
( r(x;) ) ( F R ) ( r(x.) ) )
Substituting expression (9) into (6) gives

m iy 1,2/

’r(xeﬁ'ect) R— I_.(xeﬂ‘ects) + f(xeﬂ'ect)tK lf(xeﬂ‘ect) + i;(xe{fect)tR—lFK_IFtR_II_'(xeﬂ'ect)

MSE(_ ZY(xeﬂ‘ecta out)) - az [ 2 Z R ((xeﬂ‘ect, out) (xeﬂ'ect, S_n:l )

—2F (Xetoct) 'K F*R 7 (Xetect) | (11)

where F(Xeffect) = # > r(xeﬁect,xgﬂt), and f(Xegect) = # > f (xeﬁect,xg,)t).

The expressions in equation (11) are easy to evaluate if

1. the correlation function R(x;,X;) is a product of correlations in each x variable,

R(x17x2) - HR (:c(l) (2))’

.‘I’J

where :c_,(,-l) denotes the value of the j** z-variable for point x;, and

2. the points representing the space of the variables integrated out, x((,{,)t, . x((,':t), are a

grid. Without loss of generality, suppose x,,,, is the first g of the « variables, z,,...,z,,

and the grid of x_, values is

out
=0,...,a™}re...0 {z),..., ("},

@) ;

where z;” is the i** grid value for variable z;, and H] _L M = m.

For example, if these conditions hold, the first term in (11) becomes
1

m2 Z R ((xeﬁ'ect, out) (xeﬂ‘ect, out)) R( Xeffect? xeﬁ'ect) E R(xfgt? gl:l
o D Rn) = 5 (B35 RGP al) . (S5 R6P.a) . a2
1,3/ i=11¢'=1 1=11'=1
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All other terms in equation (11) are similar in that the leading and the closing factor of
a product is either f or F. The computation of F is similar to (12). Their interior factors
are constant with respect to the summing. Because we restrict the terms in f(z) to be
polynomials z{* ... 39, i.e., a product in each of the z variables, the averages f are also
simple to compute.

The mean squared error MSE(Y'(x)) for the error bounds for Method 2, where variables
not of interest are fixed at their midranges, is given in Sacks, Schiller, and Welch (1989) and

can also be obtained from equation (11) as a special case for m = 1 and 7 = ¢'.
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Figure 1: Scatter plots of logit(y) versus z;.
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Figure 3: Cross validation predictions from the nonparametric model (» = 100 data points).

The line Predicted Response = Actual Response is shown.
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Figure 4: Cross validation predictions from the nonparametric model (n = 99 data points).

20



<] el - 24
| L : o]
& UETEEEEE LA 1 RER S e
< «
© © ©
o o 1
) @
‘Y.. g- q.
0020 0025 0030 0035 0040 0045 0050 0.010 0.015 0.020 0.025 0.030 50 60 70 80 90 100
x1 x2 x3
] | .3t ]
= < Lt o
o . Sl il e : ol
Q- <. - - - ‘? 3 “' I SRS S EEE R R EEEREE R R R R R RREEREEE]
— - . - B RN
i : B : g
s - 31 . ¥
© © ©
o o i
) @ o
o o - o
[ 100 200 300 0.01 002 003 004 0.05 008 007 2 4 [ 8 10
x4 x5 x6

Figure 5:

Main effect plots. The middle line is the estimated effect, the upper and lower

lines are approximate 95% pointwise confidence limits based on the standard error derived

in Appendix A.
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mate 95% pointwise confidence limits.
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Figure 7: Cross validation predictions from the parametric nonlinear model.
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