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Mixture experiments involve the mixing or blending of two or more
ingredients to form an end product. Typically, the quality of the end
product is a function of the relative proportions of the ingredients and other
extraneous process factors such as heat or time. When some of the process
variables are either uncontrollable or difficult to control (i.e., noise
variables) the goal of a mixture experiment should be to find the mixture
amounts and process settings that lead to a product of high quality that is
also robust to the noise. Due to the nature of mixture experiments this leads
to a constrained optimization problem. This article discusses setting up an
appropriate objective function and provides techniques for determining the
robust mixture proportions. It is also shown that under certain conditions

mixing measurement errors can be handled in the same way.
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Introduction

Many products involve mixing various components. Paint, plastic, bread, and fruit
punch are good examples. In such circumstances it is of interest to determine what
component proportions lead to desirable results in terms of some quality characteristics
such as yield or texture. Let X;, i=1,...,m represent the proportions of the m
components, where ZZI X, =1, and let Y represent the output quality characteristic of
interest. In this case, due to the constraint on the proportions, the feasible region of
mixtures is a simplex, e.g. a triangle for three components and a tetrahedron for four
components.

The goal of a mixture experiment is find a model for the response Y in terms of the
mixture proportions. Scheffé (1958) developed canonical polynomials of various orders to

model the mixture response. His first-degree and second-degree models are given below:
Y = ZBiXi +é€, where ZZIX,. =1 and
i=1

Y = iﬁiXﬁEZﬂikXiXﬁs, where " X, = L. (1)

i=1 i<k

The error term € is assumed to be N(O, 0'2) and independent of the mixture variables.

Cubic and special cubic models have also been determined. See Cornell (1990) for more

information regarding these models and mixture experiments in general. The models (1) do

not contain intercept terms (f3,) and squared terms (f,X?); using the constraint that the

1

sum of the X;'s equals unity, models containing such terms can always be reduced to those
given in (1).

In many mixture problems there are also process variables. A process variable is a
factor in a experiment, other than the mixture variables, such as heat, that may influence the
quality of the end product. The addition of process factors (z;, j=1,...,n+p) to the
models (1) is fairly straightforward (Cornell, 1990). The full second-degree model in

mixture variables and process variables is given by (2).



m m n+p m
Y = EﬁiXi + ZZﬁikXiXk + ZZ,-(Z ai(j)Xi + zz aik(j)XiXk) 2
i=1 j=1 i=1 i<k

i<k

n+ m m
+22;z,-z1[2 Vi(jz)Xi + 22 Y,-k(ﬂ)X,.XkJ +¢&, where 2::1 X =1.
js i=1 i<k

Given a model like (1) or (2), an appropriate experimental design (Cornell, 1990)
and some experimental results, regression methods are used to estimate the model
parameters (f3, @, ). The fitted response surface shows the tradeoffs involved with
various mixture levels. The goal in the traditional analysis of a mixture experiment is to
determine the mixture proportions and process settings that yield the best response. The
best response could be, for example, the maximum yield, or a target texture.

In many mixture problems some process variables should be treated as noise
variables since they are either uncontrollable or difficult to control during regular
production or when the customer uses the product. In addition, mixing measurement
errors may be present that result in mixture proportions that are different than the intended
proportions. Mixing measurement errors can arise due to errors in measuring the mixture
component amounts, for example, when the product is mixed by the customer. In the
presence of noise variables and/or mixing measurement errors the objective of the analysis
of the experiment should change. In the philosophy of Taguchi’s parameter design
(Taguchi and Wu, 1985, Ross, 1988) rather than determine the mixture that yields the best
response, it is desirable to determine the mixture proportions and process settings that yield
a high quality product that is also relatively unaffected by the inherent variability in the
noise variables and the actual mixture proportions. In other words, the objective becomes
one of finding a mixture that is robust to changes in the noise factors and/or mixing
measurement errors.

This article is organized in the following manner. First, methods for determining
mixture proportions robust to noise factors are discussed. The next section turns to the

effect of mixing measurement errors, and shows that assuming no error during the



experiment, mixing measurement error can be handled in a similar manner as noise factors.
Finally, these mixture experiment analysis techniques are illustrated through a re-analysis
of the fish patties texture data given in Cornell (1990). The example uses the original data,
but assumes that two of the original process variables are noise factors and introduces the

possibility of mixing measurement error.

Mixture experiments and noise factors

When designing a robust product there are two goals that may be competing against
one another. An optimal or near optimal response (maximum, minimum, or target) is
desired, along with little variation in the response due to variation in the noise factors. This
sort of multiple objective is common in response surface problems. Myers and
Montgomery (1995) suggest three possible approaches to handle multiple objectives:
graphical optimization, mathematical programming, and simultaneous optimization. To
design robust mixtures, all three approaches are feasible, although either graphical
optimization or simultaneous optimization are probably most appropriate. The graphical
approach involves building a model for both the average response and the variability in the
response and using overlaid contour plots to determine good choices for the mixture
proportions. Clearly, this approach is only feasible when the number of mixture and
process variables is small, say no greater than three or four of each.

Simultaneous optimization is a very generally applicable method that involves
combining the two objectives together into one objective using either explicit or implicit
weights. Many different methods of doing this have been proposed. Using a loss function
is a popular approach (Ross, 1988). In the loss function_ approach to robust design the
goal is to minimize the expected loss that arises due to the uncontrollable variability in the
noise variables. The appropriate form of the loss function depends on many factors

including the nature of the response Y. When the response Y has a target value T a



quadratic loss function is frequently used. A quadratic loss function is appealing since the

expected value of the quadratic loss L= (Y — T)” is the Mean Squared Error (MSE):
E(L) = MSE = (E(Y)-T) +Var,Y) 3)

Note that the expected value and variance of the response, denoted E,(Y) and Var,(Y)
respectively, are determined based on the variability in the noise factors that occurs during
regular production or when the customer uses the product.

The best choice for the loss function is not obvious in most cases, and alternatives
are possible. For the smaller-the-better case the response could be rescaled so that Y > 0
and the loss function defined as L = Y?, whereas for the larger-the-better case the loss
functions L = 1/Y* or L = exp(~Y) are common. Alternatives, such as Expressions (4)
and (5) for the smaller-the-better and larger-the-better cases respectively have been

suggested by Myers and Montgomery (1995) and are easier to use.

E(L) = EZ(Y)+21/VarZ(Y) @)
E(L) = 2+Var,(Y)-E/[Y) 5)

‘A number of different approaches to estimate the expected loss E(L) or another
measure of robustness have been proposed. Taguchi suggests running an experiment via
the inner and outer array technique (Taguchi and Wu, 1985). The inner and outer array
method involves running an experiment for all combinations of control (mixture and
process) and noise levels of interest. However, as pointed out by Shoemaker, Tsui, and
Wu (1991), the inner-outer array methodology is often inefficient, since it requires many
trials and provides estimates of many higher-order terms that are very unlikely to have any
significant effect on the solution. An alternative is to combine the control and noise
variables in a single array and to work directly with the resulting response surface to
approximate a prediction model for the loss or other joint measure of robustness (Welch,

Yu, Kang and Sacks, 1990). Note both techniques assume that during the experiment the



noise factors are controllable and can be set to the desired levels. An alternative when the
noise factors are always uncontrollable but measurable is to use an observational study.

For mixture problems we can estimate the expected loss, E(L) given by (3), (4),

(5) or another loss function, from a fitted model such as (2) using the Welch et al. (1990)

| approach. To determine robust mixture proportion settings we wish to minimize the

expected loss subject to the constraint on the mixture proportions ZZ X; =1, and any

other specific constraints. In all mixture problems, one of the mixture variables can always

be eliminated through the constraint equation X, =1- z::l X;. Also, without loss of

generality the process/noise variables can all be rescaled so that they range between —1 and
+1. Let X= (XI,XZ, e Xm_,) and z= (zl, e z,,+p). Assume that the first n process
variables are noise factors, whereas the remaining p variables are controllable process
variables. The resulting constrained minimization problem can be written generally as:

min E(L(X,z)) (6)

subject to g,(X,z)<0 for g=1,...,c,

where El (L(X,z)) is the expected loss function with the expectation taken over the n noise

variables in z, and the constraints for the standard mixture problem are:

g(X)=-1+Y"'X,, g.,(X)=-X, for i=L..,m~1, and

g.m(z)=2z-land g,,. (2) =-z,—-1 for j=n+l..,n+p,

plus any additional constraints specific to the application. Additional constraints on the
mixture proportions and/or the process variables may arise, for example, due to cost
considerations, physical constraints, or prior exbcrience with the process.

A number of techniques are available to solve this constrained nonlinear
optimization problem. Typically the most efficient is to use the Karush-Kuhn-Tucker
(KKT) conditions (Luenberger, 1989). Th¢ KKT conditions use Lagrange multipliers and

stipulate that a solution X", z" to (6) must satisfy:



VE(L(X",2"))+ iﬂ.;ng(X*) =0
g=1

A.8,(X")=0 (7

/l’; >0 for g=1,...,c, where V is the gradient operator.

Solving the above problem is accomplished by using a quadratic approximation to
the Lagrangian function E(L)+ 2;, l;gq . The routine “constr” in the Optimization
toolbox of MATLAB® can be used to solve this problem. Note that ¢ equals the number of

constraints given in (6).

Let the mean and variance of the noise factors in the process equal E(z ].) =U; and

Var(zj) = 0, j=L,...,n respectively. Note that yt; and o7 represent the mean and

variability of the noise factor present during regular operation of the process, which is not
necessarily the same as the mean and variance of the noise factors in the experiment. Then,
from (2), it is possible to derive closed form expressions for the expected value and
variance of Y. For example, assuming u, = p1, =0 gives Equations (8) and (9), though
similar expressions for the general case are easily obtained. Using (8) and (9), an explicit
expression for the expected loss given by (3), (4) or (5) can be written which then specifies

the minimization problem (6) to be solved.

E(Y) = ZﬂiXi + ZﬁikXiXk , and 3
i=1 i<k
n m 2 m 2
Var,(Y) = Yo7 (2 o X+ Y, aik(].)X,.Xk) + Y olo; (2 Vi Xi + 2, yik(ﬂ)X,.Xk)
j=1 i=1 i<k j<l i=1 i<k

” 2
2

+ 21,20-]‘ (z:, YipXi + Zk Yik(jj)XiXk) 9)

. Jj= i= I<

Unfortunately solutions to (6) using this methodology are not guaranteed to

converge to the global optimal unless E(L(X,z)) and all g (X)'s are convex. All the

g,(X) constraints of the standard robust mixture problem are linear and thus convex, but



E(L(X,z)) is nonlinear and not convex in general. As a result, a number of starting

positions should be tried.

Mixture experiments and mixing measurement errors

In many applications creating mixtures involves some mixing measurement error.
We define mixing measurement error as errors that yield actual mixture proportions that are
different than the desired proportions. Mixing errors can arise through imprecise
measurement of the component amounts or simple carelessness. In this article it is
assumed that during regular production, or when the customer mixes the components,
some mixing error may occur, but negligible mixing error occurs during the experiment.
Under these conditions, the response model (2) derived from the experimental results is
unaffected by the mixing error. This scenario is realistic when experiments are performed
with greater care than is feasible during regular production or when the customer mixes the
product. Assuming negligible errors during the experiment the effect of mixing
measurement error is similar to the effect of noise factors, since in both cases the goal is to
determine which mixture proportions are robust to the uncontrollable variability, be it due
to noise, or due to mixing errors in actual production.

However, mixing measurement error is more complex than noise factors since, for
mixture experiments, an error in the measurement for one component amount effects the
relative proportion of all components. This is very important because in mixture
experiments it is assumed that the relative proportion of the mixture variables influences the
quality of the mixture.

Determining mixtures that are robust to mixing measurement errors under these
assumptions can be done in a manner similar to that employed in the previous section. In
the optimization problem represented by (6) an expression for the expected loss E(L) is
required. An appropriate expression for the expected loss under mixing measurement

errors depends on the nature of the error. We assume the mixing measurement error arises



due to measurement errors in the mixture component amounts. Two types of measurement
errors in the component amounts are considered in this article. In engineering metrology
(Sirohi and Radha Krishna (1980, p. 30)) measurement errors are specified as either

relative, i.e. proportional to component amounts, or absolute in size. Let A, represent the

desired amount of component i used in the mixture. Then, ideally the mixture proportions

are X; = A / EZIA,. for i=1,...,m. Using this notation, relative errors result in actual
component amounts of the form A, (1 + e,.), whereas absolute errors yield actual component
amounts of the form A, +e;, where e, equals the error made in the mixture amount for
component i. Relative or absolute measurement errors in the component amounts yield

mixing measurement error in the actual component proportions as given by Equation (10)

and (11) respectively.
X(rel) = A(l+e)/Y" A(l+e), fori=1,...m. (10)
X(abs) = (A+e)/Y (A+e), fori=l..m. (11)

As illustrated by Expressions (10) and (11) for both relative and absolute
measurement €ITor, €ITors in any one component amount, or a combination of component
' amounts, leads to errors in the component proportions for all mixture variables with non-
zero proportions. Thus measurement error in any one or more component amounts yields a
correlated mixing measurement error structure for all component proportions. As an
example, Figure 1 shows the pattern of errors resulting from relative and absolute errors in
the case of three mixture variables. The 27 points signify the mistaken component
proportions that arise when all combinations of mixing errors e, = —err, 0, +err are
considered for all three component proportions and the desired component amounts are A =
(0.7, 0.2, 0.1). Note that in Figure 1 only the upper quarter of the feasible region is

shown to aid the visual display.



x1=1

x1=1/2 x2=1/2 x1=1/2 x3=1/2 x1=1/2 x2=1/2 x1=1/2 x3=1/2

Figure 1: Mixing Measurement Error Plots
relative errors (err = .2) on left, absolute errors (err = .05) on right,

centered at (X,,X,,X,) = (0.7, 0.2, 0.1)

For relative measurement errors, Expression (10) is appropriate for all mixture
proportions. However, for realism, the absolute measurement error model (11), must be
adjusted when some component proportions are close to zero. In this article it is assumed
that no measurement error is possible for components that have recommended amounts
equal to zero. In other words, if a component is absent from the desired mixture it will not
be added in error, and negative component amounts are not tolerated. Thus, since mixture
problems depend only on the relative proportions of the various ingredients, in the extreme
case that the recommended mixture contains only one component, mixing error has no
effect. Notice that the mixing measurement error patterns change based on the type of error
assumed, the size of errors, and on the desired mixture amounts.

To evaluate the robustness of a design to mixing measurement error, the expected
loss is still an appropriate measure. Unfortunately due to the interaction of errors the
resultant effect of the mixing measurement error on the expected loss is complex and no
simple closed form expression for the expected loss can be obtained. However, the
expected loss can be approximated by evaluating the response model (2) at a number of
carefully chosen mixture proportions that simulate the mixing measurement error pattern.
For example, based on error patterns like those shown in Figure 1, a response model, and

the probability of each point in the error pattern, E,(Y), Var,(Y) and thus E(L) can be

10



estimated. The probability of any point in the error pattern is based on the probability

density function of the measurement errors. In this article either normal, e, ~ N (O, o, ), or
uniform, e; ~ U(-a;,q;), is assumed although other distributions could be used if

supported by prior knowledge or data. There are a number of ways the simulated error
- pattern can be generated. Random points from the distribution of the measurement errors
may be chosen. Alternatively v representative points from each of the measurement error
distributions could be used. Using the representative points methodology the effect of
mixing measurement error is estimated from v points, where m equals the number of
components subject to measurement error. As V increases the estimates become more

accurate but the amount of work increases rapidly.

Fish Patties Texture Example

This application of mixtures is discussed in more detail in Cornell (1990). The
problem is to produce the best fish patties from a combination of three possible fish
species, namely mullet ( X, ), sheepshead (X,), and croaker ( X,). The response or quality
variable of interest Y is the average texture readings measured in grams of force (x107)
required to puncture the patty surface. Ideally the patty is not too soft nor too firm. The
target average texture value T lies between 2.0 and 3.5. The experiment also involves three
process variables: the oven baking time z, (25 and 40 minutes), the oven temperature z,
(375 and 425 degrees F), and the deep frying time z, (25 and 40 seconds). The process
variables were all rescaled so that the two process levels used correspond to —1 and +1.
The experimental results are given in Cornell (1990, p. 359) and are reproduced in the
Table A1l in the Appendix. The experimental design included a complete inner and outer
array for all permutations of the mixture proportions (1, 0, 0), (1/2, 1/2, 0) and (1/3, 1/3,
1/3), and two levels for each of the process/noise variables. Thus there are (3+3+1)2° =

56 runs.
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12
Cornell (1990) fits the full second-order model (2) and determines the significant

parameters. Refitting the response based on the identified significant parameters yields

response equation (12) below. All terms given in (12) are significant at 5%.

¥ = 2.86X, + 111X, +2.03X,-.99X,X,—.85X, X, (12)
+ z,(-44X,+17X,+.19X,—. 77X X,) + 2,(.64X,+.2X,+.4X,) + 2,2,(.09X, X,)
subjectto X, +X, +X, =1, 0< X, <1 fori=1, 2, 3, and z; = %1 forj=1, 2, 3.

A contour plot of the value of expected response Y, given by (12), for different

mixture proportions and z, = -1, z; = z, = 0 is shown in Figure 2.

x2=1 x3=1

Figure 2: Contour Plot of Response ¥ for z3=-1,z=2=0

To introduce the notion of noise it is assumed that two of the process variable (z,
and z,) are outside of the control of the manufacturer. This would happen, for example, if
the fish patties are deep fried by the manufacturer and sold frozen, with the final baking of
the fish patties to be performed by customers. The fish patties are packaged with a

suggested temperature and baking time, but due to variations in ovens and in customers,



the recommended time and temperature are not always used. Thus, for this example, m =
3,n =2 and p = 1 following the notation from the previous sections.

Denote the mean and variance of the noise factors due to differences in customers as
M; and of, respectively. In many situations both the mean and variance of the noise
factors is out of the manufacturer’s control. However, in the fish patties example, the
frozen fish patties are sold with a recommended baking time and temperature. Thus, in the
fish patties example we can presumably influence at least u, and u,. As a result, the
means of the noise variables are variable in the optimization problem.

For simplicity of analysis in this example, assume that the recommended baking
time and temperature are 32.5 minutes and 400 degrees respectively. This baking time and
temperature are midway between the two levels used in the experiment, i.e., they
correspond to z; = z, = 0. Also assume that on average the baking recommendations are
followed by the customers, i.e., y, =u, =0, however, some variation about the
recommended values is expected. Assuming o7 = o7 = 1/9 yields a standard deviation of
1/3 for which the interval —1 to +1 represents a six-sigma span. Notice that this noise
variability refers to the expected variability in the customers, given in terms of the rescaled
noise variable, and not (necessarily) to the variability of the noise factors used in the
experiment. In addition it is assumed that the covariance between all noise factors is zero,
although the addition of a covariance term in the analysis is straight-forward. A perhaps
more realistic analysis of the fish patties data where the means of the noise variables are
allowed to vary yields optimal solutions all at u, =u, =1. Since this value is at the
boundary of our experimental region follow-up experiments should be run to verify the
form of the response surface near that operating condition.

When the design of the experiment is under our control, Taguchi (1986, p. 109)
recommends setting the levels of the noise variables so that the variability of the noise
factors in the experiment equal the variability of the noise factors in the real world. In this

example this advice was not followed since the original experiment was designed to analyze

13



the problem considering only process variables and not noise variables. The noise levels
chosen would correspond to o7 = o = 1, which was deemed too large to be reasonable in
this example.

Using the assumptions u, =4, =0 and o7 = o, = 1/9, we derive from (12), (8)

and (9):
E,  (Y) = 2.86X, +111X, +2.03X,-.99X,X,-.85X,X, and (13)
Var, , (Y) = 07[.44X,+.17X,+.19X,~. 77X, X, +.09X, X,z | (14)
+02[.64X,+.2X,+.4X,]’

Figure 3 shows a contour plot of Var, , () as given by Equation (14). Note that

since it is assumed that 4, = i, =0, Figure 2 shows contour plots for E, , (Y) as well as

Y when z=2,=0.

X2=1 » X3=1
Figure 3: Contour Plot of Var, , (Y) for z, =-1
Remembering that the target range for the average texture readings is between 2 and

3.5, a graphical solution approach can be attempted based on Figures 2 and 3. Figure 2

suggests that mixture points near the X; =1 vertex are best, whereas Figure 3 shows that
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the variability in the solution is reduced as the X, =1 vertex is approached. Making
compromises between these conflicting goals is difficult using the graphical approach
although the tradeoff is evident. The simultaneous optimization approach suggests that the
most robust design minimizes the E(L) or MSE subject to the mixture constraints. Thus

our optimization problem is to find the X, X,, X, and z, to

minimize E(L) = MSE = [E, , (Y)~T] +Var, (Y) (15)
subjectto X, +X, +X; =1, 0<X;<1fori=l1,2,3,and -1<z; <+1,

with target value Tand E, , (Y) and Var, , (Y) given by (13) and (14).

Since in this example the number of mixture components is small, graphical
displays are easily created and can be very informative. Contour plots of the MSE for
various mixture proportions and target values T are given in Figures 4 and 5. An
approximate optimal solution can be determined by finding the feasible mixture that lies on

the contour of smallest MSE. Additional considerations, such as cost, could at this point

also be considered. In this example, z, = —1 always leads to the best MSE values. As a

result, all contour plots are shown for z, = -1.
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x2=1 x3=1

Figure 4: Contour Plot of MSE with T = 2.5, z; =-1

X2=1 x3=1

Figure 5: Contour Plot of MSE with T = 2.0, z; =-1

In this simple example, contour plots like Figures 4 and 5 would probably be

sufficient to determine the optimal mixture proportions. However, when confronted with
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more mixture components and/or process variables a numerical technique is essential. The
robust mixture design problem can be solved using the methodology presented in previous
sections. Results obtained using the KKT conditions solution approach given by (7), are
shown in Table 1 for various target values. For example, when T = 2.75 the optimal
robust mixture of fish is (X;,X,,X;) = (.9486, .0514, 0) with z, = -1, i.e., a mixture of
about 95% mullet and 5% sheepshead and a 25 second deep frying time. These optimal
robust settings are somewhat different than the optimal mixture proportions when
considering only the mean response. Using only the mean response criteria any mixture
proportion along a contour line in Figure 2 is equally good. However, when looking at
MSE these solutions are not equivalent. To show the influence of the noise variables on
the optimal solution to this problem, Table 1 also shows the range of MSE values obtained
along contours of given target value when z, = -1 and z; =z, =0. For example, along the
contour ¥ =2.0 in Figure 2 the resultant MSE values range from a low of 0.0212 to a high
of 0.0299. Table 1 shows that ignoring the effect of noise factors can lead to solﬁtions

having substantially larger MSE values than the optimal solution.

Table 1: Robust Solution for Fish Patties Example
m=4=0,0/=0,=1/9
Target Optimal Solution Comparison
T (X1, X,,X;) %z MSE | MSERange

2.00 | (0, .0434, .9566) -1  .0211 | .0212 to .0299
2.25 | (7475, .2525,0) -1  .0306 | .0367 to .0420
2.50 | (.8523,.1477,0) -1  .0467 | .0474 to .0535
275 | (19486, .0514,0) -1  .0595 | .0604 to .0631
3.00 (1,0,0) -1 .0866 N/A

Now consider the addition of mixing measurement error in the fish patties example.
Mixing measurement error could occur, for example, if the amounts of the different fish
species are not very carefully controlled during regular production. In this scenario we

would like to determine a formula for fish patties that yields textures that are robust to
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changes in the fish proportions. The effect of mixing measurement error is investigated
using the methodology discussed in the previous section.

Tables 2 and 3 show results obtained assuming uniform absolute and uniform
relative errors respectively with a target texture value T'= 2.5. For simplicity it was
assumed that the same error structure holds for all mixture components. Different error
levels or models for each component could be easily incorporated. These results are
generated by using representative points that divide the measurement error distributions into
seven groups of equal probability. This approach was found to be effective, since it
assured reasonable coverage of the measurement error densities while restricting the
number of required numerical calculations.

Tables 2 and 3 show that the change in optimal mixtures can be substantial if the
mixing measurement error is large. The comparison column gives the MSE of the no error
solution (.8523, .1477, 0) under the given error model. For example, assuming a uniform
absolute measurement error of 0.2, the mixture (.8523, .1477, 0) yields an MSE of 0.1047
which is substantially larger than that obtained with the optimal solution (.6984, 0, .3016).
In this example the mixing measurement errors required to substantially change the solution

are relatively large, but this need not always be the case.

Table 2: Solution to Fish Patties Example with Uniform Absolute Errors
U=i,=0,0=0;=19,T=25

Optimal Solution Comparison
Bror | (X.%.X)) & MSE | ution MSE
0.0 (.8523, .1477,00 -1  .0467 .0467
0.05 | (.8533,.1467,0) -1  .0519 .0519
0.1 (7409, 0, 2591) -1  .0574 .0679
0.2 (.6984, 0, .3016) -1  .0694 .1047
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Table 3: Solution to Fish Patties Example with Uniform Relative Errors
U,=u,=0, 0l=0,=19,T=25

Optimal Solution Comparison
Error (%X, X) % MSE | soiution MSE
0.0 (.8523, .1477,0) -1 .0467 .0467
0.2 (.8564, .1436, 0) -1 .0502 .0503
0.3 (.8382, .11, .0517) -1 .0542 0551
0.5 (.8086, .0532, .1382) -1  .0637 .0735

The numerical solutions given by solving (6) provide optimal mixture proportions for the
given problem. However, it is typically prudent to also explore the feasible region to get a
sense of the tradeoffs involved with different mixture proportions. At this stage, qualitative
factors, or quantitative factors not included in the formal problem statement, can be
considered. For problems with few variables, like the fish patties example, this is
straightforward through examination of plots like Figure 4. In problems with larger
numbers of mixture variables, the numerical solution can be used to focus the follow-up

graphical exploration on those mixtures close to the numerically optimal mixture.

Conclusions

In this article mixtures subject to noise factors and/or mixing measurement error are
analyzed. Under uncontrollable variation such as noise or mixing measurement error,
mixtures that are robust to this variation are desired. Using the methodology presented in
this article, optimal robust mixture blends can be found using constrained nonlinear
optimization. The effect of noise variables and/or mixing measurement error is dependent
on the variability of the noise factors, the magnitude of the measurement errors, and the
response model. An example, given to illustrate the effect of this analysis on the optimal
mixture proportions, shows that the influence of noise and/or mixing measurement error

can be substantial.
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Appendix

The 56 experimental data points for the fish patties example from Cornell (1990) are

reproduced below in Table Al.

Table A1: Average Texture Reading for Fish Patties

Process
Variables Mixture Composition
11 1 1 1 1 1 1 1
Z] z2 z3 (1,0,0) (0,1,0) (0,0,1) (E, 510) (‘2'1095) (OaE 5) (—3', —3-,3)
-1 -1 -1 1.84 0.67 1.51 1.29 1.42 1.16 1.59
1 -1 -1 2.86 1.10 1.60 1.53 1.81 1.50 1.68
-1 1 -1 3.01 1.21 2.32 1.93 2.57 1.83 1.94
1 1 -1 4.13 1.67 2.57 2.26 3.15 2.22 2.60
-1 -1 1 1.65 0.58 1.21 1.18 1.45 1.07 1.41
1 -1 1 232 0.97 2.12 1.45 1.93 1.28 1.54
-1 1 1 3.04 1.16 2.00 1.85 2.39 1.60 2.05
1 1 1 4.13 1.30 2.75 2.06 2.82 2.10 2.32
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