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SUMMARY
We consider data sets for which lifetimes associated with the units in a
population are observed if they occur within certain time intervals, but for
which lengths of the time intervals, or censoring times of unfailed units, are
missing. We consider nonparametric estimation of the lifetime distribution
for the population from such data; a maximum likelihood estimator and a
simple moment estimator are obtained. An example involving automobile

warranty data is discussed at some length.
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1 Introduction

There are several contexts in the analysis of failure time or lifetime data where
censoring times for unfailed units are missing. The area that motivated the
current research concerns the estimation of failure time distributions or rates
from product warranty data. If under warranty a product may experience
a certain type of event, or “failure”, then we can estimate the distribution
of time to failure (or the intensity function for recurrent events) over the
warranty period from warranty reports. However, we typically have to deal

with missing censoring times, as we now discuss.
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Suppose that T; is the time to failure for product unit ¢ in a population of
M manufactured units. In some applications T; is measured in real time since
the time of sale of the unit. For many types of product the manufacturer
does not know the date of sale for most units, and therefore the censoring
time (i.e., the elapsed time between the sale of the item and when the data
are assembled) for most unfailed items is unknown. For units that fail under
warranty the failure time and the potential censoring time are known, because
the date of sale is verified as part of the warranty claims process.

Similar problems arise when T} is some type of usage, or operational time.
A familiar example is in connection with automobiles, where T; represents
the mileage at failure. In that case the censoring time is the minimum of the
vehicle’s current mileage and the mileage which it passes out of the warranty
plan. The exact censoring times are in general unknown for all vehicles, but
they may be estimated for cars experiencing a failure, since the date of sale,
date of failure, and mileage at failure are all known. An application involving
automobile warranty data is discussed at some length in Section 7.

Suppose that the lifetime variable T' has distribution function F(t) =
P(T < t) and that the population of M units has independent lifetimes
ty,...,ty generated from that distribution. There are also censoring times
T1,...,Ta associated with the units, where the 7;’s are independent of each
other, with common distribution function G(7) = P(7; < 7). The observed
data are as follows: if t; < 7; we observe t; (and possibly also 7;), but if
t; > 7; we know only that fact and not the value of 7; or t;. Our objective
is to estimate the distribution F'(t) from such data, avoiding any parametric
assumptions.

Suzuki (1985), Kalbfleisch and Lawless (1988), and Hu and Lawless (1996a)
discuss the use of supplementary followup samples of unfailed units as a way
to compensate for the missing censoring times. In many circumstances it
is possible to estimate the censoring time distribution, however, and this
provides another approach. We present in this paper two nonparametric es-

timation methods for the case in which the censoring time distribution G(7)
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is known, or at least estimated from other sources. The main assumptions
that we make initially are (i) the number of product units M in service is
known, (ii) all failures are reported under the data collecting scheme, (iii)
the censoring time distribution is known, and (iv) censoring times are statis-
tically independent of failure times. The assumptions are discussed further
in the paper, and ways to handle departures from them are presented.
Section 2 of the paper presents nonparametric maximum likelihood and
moment estimators for F'(t), assuming that G(7) is known. Section 3 gives
reports on a small simulation study comparing the two estimators. Section
4 consider cases where G(7) is estimated, and Section 5 examines the as-
sumption of independence of failure and censoring times. Section 6 presents
a detailed example involving automobiles. Section 7 outlines extension of the
methodology to deal with multiple failure modes and recurrent events, and

Section 8 presents some concluding remarks.

2 Maximum Likelihood and Simple Moment

Estimators

A nonparametric method of lifetime distribution estimation was previously
given by Suzuki (1988). However, Suzuki and Kasashima (1993) showed that
method was inferior to maximum likelihood so we will not discuss it here.

To develop nonparametric estimators it is convenient and customary to
work with discrete distributions; finite sample estimates of continuous dis-
tribution functions F'(t) are discrete anyway, and may be obtained from the
discrete-time framework. Thus we assume that lifetime T" and censoring time
T may each take on values 1,2,..., and f(t) =P(T; =t), g(7) = P(T; = 7).
The corresponding distribution functions are F(t) = f(1) + ...+ f(t) and
G(t) = g(1) + ...+ g(r). In this section, we assume that 7; and 7; are
independent, and that G(7) is known.



2.1 Maximum Likelihood Estimation

With known population size M and censoring time distribution G(7), the

likelihood function based on the probability of the observed data for the

population is of the familiar censored data form (Lawless 1982, Chapter 1),
IT 7@) II P(Ti > 7). (1)
ti<Ti ti>T

The difference with the usuale situation is that 7; is not observed for the

unfailed units. Thus, treating it as a random variable with distribution G(-),

Tmazx

P(T;>m) = ; [1- ;f(t)]g(f)

Tmazx

= 1- z_: f(t)é(t),

where G(7) = P(T; > 7) and Tmaz = sup{r : G(r) > 0}. We assume that
Tmaz < 00, Which is rather unrestrictive in practice.
The likelihood function (1) may be written as

Tmazx Tmazx

I_-[1 fF@™1 - ; RGO (2)

with n; = #{t; : ¢ < 7,t; =t} and m = #{7 : t; < 7} = ¥y ny, where
# A represents the number of elements in set A. Estimates of f(t),t =
1,..., Tmaz, can be obtained by maximizing (2) under the constraints f(t) > 0
and f(1) + ...+ f(Tmaz) = F(Tmaz) < 1. To do this we set ¢ =1 — F(Tyaz)
and note that Y77¢= f(¢) +c = 1, where ¢ > 0. To maximize (2) with respect
to f(1),..., f(Tmaz) and c under the constraints we consider

Tmaz Tmaz Tmaz

I(f,c,A) = Z_; nylog f(t)+ (M —m)log[l — ; f(t)é(t)]+/\[t2_; f@)+e—1],

where ) is a Lagrange multiplier. The equations

o m G(1)
of(t) — f(t) 1— £z f(s)G(s)
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ol ol Tmx
8—0—)\ 0’8/\ ;f(s)+c—1=0,

give the m.l.e.’s of the f(t)’s as

fML(t) 1, vovsTmazy (3)

M G (t)
provided that fML(l) + ...+ fML(Tma,,) < 1. This is virtually always the
case when F'(Tmqz) is not too close to one, which is satisfied in most appli-
cations. In the warranty reports context, for example, 7,4, is the maximum
failure time observable and not larger than the warranty time limit, and the
probability that a unit fails while under warranty is considerably less than
one. If the constraint is not met, then doubt may be cast on the validity of
the assumed function G(7). When the estimates (3) sum to slightly over 1,
a reasonable approach is to simply rescale them so they sum to 1.

The nonparametric maximum likelihood estimate of F'(t),t =1,..., Tmas,
is then Fyr(t) = fuo(1) + ...+ farr(t). Similar to the discussion for the
nonparametric maximum likelihood estimator in Hu and Lawless (1996a), for
example, arguments can be given to establish the consistency and asymptotic

normality of this estimator. This also follows from the next section.

2.2 A Simple Moment Estimator

We see that the number of observed units with failures at t in (2) is n; =
M 1(t; = t, 7 > t), where I(A) is the indicator of event A (i.e., it equals 1
if A is true and 0 if not), and its expectation is MG(¢)f(t), t = 1,2,... A
simple moment estimator of f(t),

fSM(t) t= 1,'°')Tma$7 (4)

MG(t)

is obtained by noting that E{n;} = MG(#)f(t), t = 1,..., Tmas. Notice that
fsa(t) is the same as the nonparametric m.Le. fur(t) (3) in the current



situation. It is easy to see that fSM(t) is unbiased with variance

f@t)

MG(t)[l — fBOG@)], t=1,..., Tmas (5)

Var{ng(t)} =

The sample variance estimator

T lfou(®) = 31 2ot 50

=1
nt(M - nt)
M3G(t)? ’

with u;(¢) = I(t; = t, 7 > t)/G(t) and a(t) = ©M, ui(t)/M, is the same as
the consistent estimate for the variance (5) achieved by replacing f(t) with
its estimate fsar(t).

Then the estimator for F'(t),t =1,..., Tmaes, based on fSM(-) is

Fsm(t) = fsm(s), t=1,..., Tmas- (6)

By noting that

Cov{fsm(s1), fsm(s2)} = A/}CG( D [I = 83) — (32)0(81)],

we have a consistent estimate for the variance of Fap(t) as

. L ons(M —n, M Tlsy
Var{Fsm(t)} = ;]\E_F*’T(s)’-’) - Z;; M3G(51)C¥(82)

2.3 Extension

We generalize the situation above slightly to allow the distribution of 7; to

depend on a discrete covariate or group indicator z;. Suppose that z; takes on



values 9, . ..,z% and is observable. This is useful because with automobiles,
for example, the censoring time for a car may depend upon what time it
entered service and that time is usually provided by the dealer. We then
denote gi(r) = P(T; = 7|z; = 29) and Gi(r) = P(T; < 7lz; = 2). Let
M, = #P, with P, = {i : 2, =2%,i=1,...,.M}, k=1,...,K. We
assume that the distribution of T; does not depend on z; now.

With known subpopulation sizes My and censoring time distributions
Gr(7), k = 1,..., K, the likelihood function of the failure time distribution

based on the data available is

II f&) II P(T > Til=:)

= 17 II0 = 3 A, )

where Gi(t) = P(T; > 7|z; = 20), Tmaz = maX sup{7 : Gx(7) > 0}, and
mg = #{z; 1 z; = z,; < n}. A nonparametric m.Le. of f(t) can be
obtained similarly to the procedure in Section 2.1. In this case the maximum

likelihood equations reduce to
o~ (Mi — ) Ge(t)

fML(t) =Ny {Z

S 1= T fun(s)Gi(s)

-1
} ,t=1,..., Trmaz, (9)

where

Tmaz

1-— Z_; Fur(s)Gi(s)

is an estimate of P(T > w|z; = z0). There is no closed form for fML(t)
when K > 2. Equations (9) can be used to provide an iteration scheme for
obtaining the farz(t)’s.

We can, however, obtain a simple closed form estimator. The fact that

K
E{nt|:v,~,i = 1,. . ,M} = Z Mkék(t)f(t), t= 1,. v vy Tmaz

k=1



gives an unbiased estimator of the f(¢):

A n; _
fESM(t) = Ei;] Mkék(t)’ t=1,..., Tz (10)
We have
Cov{fesm(s1), frsm(s2)}
f(s1) oy Yorey MiGi(51)Gi(s2)
iy MiGi(s1) o1 = 52) = flez) Yieq MGy (s2)

(11)

The variance of FESM(t) =%t fESM(S) is

Var{Fgspu(®)} = 3 Y Cov{fesm(s1), fesm(s2)},

s1=1s2=1

and can be consistently estimated by

Var{Fgsu(t)}
t t K a a
Mey Lk MiGr(51)Gi(s2)

= = I(s1 = s82) — ns = ,

2 T MGG [ ) T MG P
(12)
obtained through replacing the f(-) in (11) with the estimates fgsar(-). It is
easily seen that vV M{Fgsp(t) — F(t)} has a limiting normal distribution as

M — oo and that in order to construct tests or confidence intervals it can

be treated as normal with mean 0 and variance estimated by (12).
Estimation of the asymptotic variance of fML(t) may be obtained through
the standard procedure for a maximum likelihood estimator. The information

matrix is now

1 0%l
INFO(f) = =37 (3f(31)8f(3.2)>7ma1x7m“’ (13)
where the elements are
i N U VI Gi(s1)Gi(s2)
Fiafe) - e TS T S M T M T e GG
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$1,82 = 1,..., Tmaz. Thus, an estimate of the asymptotic variance of FML(t) =
S fML(s) may be obtained as well. However, to implement the procedure
is very complex when 7,,,, is large because calculation of large matrices has
to be involved. In addition, if censoring is heavy, INFO(f) could often be sin-
gular and the method can not be applied. The discussion in Hu and Lawless
(1996a) for estimation of asymptotic variance of nonparametric maximum

likelihood estimators applies here.

3 Simulation

Comparison of the nonparametric maximum likelihood and moment esti-
mators presented in Section 2 was investigated through a simulation study.
Being motivated by warranty data, we chose the following simulation setup.
Consider a product with an one-year warranty; suppose that there are M =
4000 units sold within a year, and the warranty data have been collected
over one and a half years since the first unit was sold (we take its sale time
as zero). Suppose further that the times of these units to their first failures
are independent from each other, identically Weibull distributed, and inde-
pendent of their sale times, while the sale times are uniformly distributed
over the one year period. The censoring time associated with unit : is now
7; = min(1l, 1.5 — z;) year, where z; is its sale time and 7. = 1.

We generated sale times z;, 1 = 1,..., M, from the uniform distribution
over (0,1], and failure times t; from the Weibull distribution

1) = S ep{~(5)}

(0%

with § = 2.0 and o = 3.95,1.85. We chose the values of the parameters
to make the simulation realistic. The values m/M = 0.05,0.20, respectively,
and allow us to study situations with heavy and moderately heavy censoring.

From the simulated data, we evaluated the three nonparametric estimates of
F(t) = 1 — exp{—(t/a)’}, t € (0,1]: (i) Fsn(t), based on (4); (i) Frsm(t),
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F(0.5) F(0.8)

methods a=3.95 a=1.85 a=395 a=1.85

true value 015895 070442 .040189 170550
Fspy .015844 (.002017) .070463 (.004016) .040227 (.003271) .171054 (.006321)
Frsy 015844 (.002017) .070463 (.004016) .040225 (.003270) .171045 (.006296)
Fyr  .015843 (.002015) .070460 (.004016) .040223 (.003263) .171006 (.006294)

Table 1: Sample Means and Standard Errors of the Estimates for F(0.5) and
F(0.8)

based on (10) and assuming the numbers of units sold in each quarter of
the year (My, My, M5, M,) are known; (iii)ﬁ'ML, the m.le. based on (9) for
the same stratified-sample situation as (ii). The estimates were obtained
through discretizing the time interval (0,1]. That is, we divided the time
period into 120 small intervals, ((k — 1)/120,k/120], £ = 1,...,120, and
assigned variables having values in the kth interval to the value £/120.

We used Splus for generating the random variables needed and all the
computing. The maximum likelihood estimate was evaluated by using the
iteration procedure based on (9); we took f(©(k/120) = f(k/120) and termi-
nated the iterations when 120 | fG+1)(k/120) — £ (k/120)| < 0.0001, where
F(#) is the jth iterate toward farr(t).

Table 1 presents the sample means and standard errors (in brackets) of
estimates for F'(0.5) and F(0.8) based on the three estimators from 1000
simulation repetitions, for each case o = 3.95,1.85. There is essentially no
difference in the estimators. We also show estimates of F(t) from a single
simulated sample in Figure 1, and estimates of F'(0.5) and F'(0.8) and their
estimated standard deviations (in brackets) in Table 2. The estimated stan-
dard deviations were based on (7), (12) and (13) respectively. Comparing
the two tables, we see (7) and (12) estimate the variances of Fip(t) and
I:"ESM(t) well.
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F(0.5) F(0.8)

methods a=3.95 a=1.85 a=3.95 a=1.85

true value .015895 .070442 .040189 .170550
Fsum .016750 (.001999) .065000 (.003987) .042109 (.003238) .172678 (.006424)
Frsm .016750 (.002000) .065000 (.003987) .042019 (.003261) .172319 (.006428)
Fur 016752 (.001984) .064967 (.003973) .042052 (.003343) .172151 (.006431)

Table 2: Estimates for F(0.5) and F(0.8) and Their Estimated Standard

Deviations

(Figure 1 is inserted here)

Figure 1: Estimates of the Lifetime Distribution Function
(a) a =3.95; (b) o =1.85

This simulation suggests that there is almost no difference in the three

estimators, and they all estimate F'(t) well in the situations we consider.

4 Effect of Estimating The Censoring Time

Distribution

The estimation procedures in Section 2 assume the censoring time distribu-
tion G(7) is known. In most practical situations, however, G(7) is estimated,
or only roughly known. Hu and Lawless (1996b) investigate likelihood based
parametric estimation for this situation; their approach can be extended to
a nonparametric setting. We here focus on the extension of the simple mo-
ment estimator in Section 2.2; the estimator in Section 2.3 can be extended
similarly. An example is presented in Section 6.

Suppose that G(7) is consistent. In that case the estimates analogous to
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(4),

¢

Fomut) = —=—, t=1,..., Tmaz, 14
sm) ME(2) (1)
and to Fsp(2) in (6),
t
FSM(t) = Z fSM(S), t= 1, « v oy Tmaz, (15)
s=1

are both consistent.

Behavior of the estimator fsar(t) depends on how well G(7) estimates
G(7), and whether G(7) is related to the primary data, i.e., the n;’s. In this
paper, we assume é(T) is independent of the primary data. The covariance
of the fsp(t)’s is then

Cov{fsm(s1), fsm(s2)}
= E{Covlfsm(s1), Fsur(s2)|G()1} + Cov {Elfsne(s)IG(7)], Bl Fsne(s2)|G(7)]}
_ E{f(sl)C‘;(sl)[I(s_l=32>—f(32)é(s2)]}+COV{G(sl)f<sl) G<52)f(sz)},

MG(51)G(s2) G(s1)  G(sa)
(16)

which can be estimated by

fsu(s1) o1 = 59) — Fons(s5)C(s fSM(Sl)fSM(Sz)’;V Bs). Bl s
Mé(sz) [Hon = o2) = fom(s2)Gloa)) + é(sl)é(32) C {G( 1), G( 221}7’)

assuming an estimate Cov {é(sl), é(sz)} is available. The second term in
(17) accounts for variation due to G(7) having been estimated. Then, an
estimate for the variance of FSM(t) can be obtained from

t

Var{Fsu(t)} = 3 th Cov{ fsm(s1), fsn(s2)}.

s1=1s2=1

In Section 6, we will discuss this further based on the example there. We
remark that the discussion above can be extended to the situation in Section
2.3 with a little modification.
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5 Non-independent Censoring

Section 2 assumes that censoring times 71, ..., 7y are independent of life-
times T4, ..., Th. This assumption may sometimes be questionable: for ex-
ample, if the lifetime of an automobile component depends on both the age of
the car and the number of miles it is driven, then the fact that warranty plans
have age and mileage limitations (e.g., two years and 24000 miles) implies a
dependence between T; and 7;. Our objective here is to briefly consider the
effect of non-independent censoring on the estimator of Section 2.2. We also
present a version of the simple moment estimator for a special case in this

situation.

5.1 Effect on ng

The estimator fsp of (4) can be written in the form

R M It =t >t)
t) =
foult) = =5 37 2 )

Now E{I(t; = t,; > t)} = f(O)P(T; > t|Ti = t), so if P(T; > t|T; = t) #
P(7; > t), then ng(t) is biased, with
) = st {SAE G2 052 0)
E{fsm(t)} = f(t){ NAED)

The extent of the bias may be assessed by hypothesizing models for the

(18)

dependence of T; and 7T;, and in many cases we may find that the bracketed
term in (18) is close to one. If it is not, there may be little motivation to
estimate the marginal distribution f(t); what is needed instead is a model
that accounts for the dependence of T' and 7. With automobiles, this usually
means that a lifetime model which incorporates both age and mileage is
needed. Lawless et al. (1995) discuss such models and indicate how to test
independence of lifetime and censoring time from automobile warranty data.
If there is a serious concern in a practical situation about dependence, then

such methods should be employed.

13



5.2 A Special Case

In some situations T} and 7; are related only through a covariate (or covari-
ates), say ;, such that T; and 7; are independent given z;, 1 = 1,..., M.
This is considered in different contexts by Kalbfleisch and Lawless (1991),
and Hu and Lawless (1996b). We extend the model of Section 2.3 slightly to
deal with this.

As in Section 2.3, we suppose that x; takes on values z%, k = 1,..., K,

and is observed for every unit z. Then

Fom(ta) = ﬁé’:@ t=1,..., Tmas (19)
is an unbiased estimator of f(¢|z%), k = 1,..., K, where nyx = #{t; : t; <
i, t; = t,z; = 22}. Noting that f(t) = YK, f(¢|z22)P(X = z{), we have an
estimator for f(t), and also for F(t), provided P(X = z) is known or esti-
mated, k = 1,..., K. The changing pattern of Fap(t2) = T, fomr(s]|zd)
when the value of z{ varies may help us see how lifetime is related to cen-
soring time. If the dependences between T; and z;, and 7; and z; can be
specified parametrically, we can see how the dependence of the failure time
and the censoring time affects the simple moment estimator from (18). Para-
metric models also allow us to handle continuous covariates. Hu and Lawless
(1996b) consider this approach.

For a slightly different situation where only the z;’s associated with units

having observed failures can be observed, we may consider the estimator for

f(t|zR),

Nk
M.Gi(t)

if an estimate M} is available. We address this in Section 6 through the

_f(tlil?g) = t= 1, c oo s Tmaz, (20)

example. The idea may be applied to situations where the number of product
units in service M is unknown but there is an estimate for it.

Similarly, as in Sections 2 and 3, we can consider variance estimation of
F)z9),t=1,..., ez and k= 1,..., K.

14



6 An Example

Some real warranty data for a specific system on a particular car model are
considered for illustration. The data include warranty claims from 823 cars
among 8394 cars produced during a two-month period. The warranty plan
in question was for one year or 12000 miles; the data collection was over the
first 18 months after the first car was sold. We examine the distribution of
the time to the first failure (claim) of the cars. For illustration we consider
both “time” as mileage in miles and as age in years (i.e., real time) although
for engineering purposes mileage is more relevant.

Let t; and 75,2 = 1,..., M = 8394 be the first failure times and censoring
times, respectively, and let s; denote the time of sale for car z, where the first
car sold has a sale time of zero. Real time will be expressed in years, and the
warranty data therefore include followup of cars up to time 1.5 years. The
censoring time 7; for car ¢ may be described as follows. Let the age of the car
(i.e., time since the car was sold) when it reaches 12000 miles be a; years, and
define u; = 12000/a; as the average mileage accumulation rate over the age
interval (0, a;], in miles per year. Then for the case where t; and 7; represent
age in real time (i.e., years since sale), 7; = min(1.5 — s;,1,12000/u;). In the
case where t; and 7; represent mileage, and 7; = min(min[1.5—s;, 1]u;, 12000).

The values of t;’s are observed only for those cars with ¢; < 7;, i.e., for the
m = 823 cars with their warranty claims recorded. Although the sale dates
s;’s are known for all 8394 cars, the values of 7;’s are not. If we are willing
to make the simplifying assumption that mileage accumulation is linear over
(0, a;], then u; may be evaluated for cars that fail, since the mileage as well as
the age at failure is recorded. In this case we would thus have the censoring
times 7;’s for the cars which fail, but not for those which do not. The simple
estimators used here do not require any censoring times.

A customer survey of 607 cars of the same type and approximate geo-
graphic location as those in the warranty data base was taken, wherein the

approximate mileages at one year were obtained for each car. We assume
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(Figure 2 is inserted here)

Figure 2: Approximate 95% Confidence Intervals of Failure-Time Distribu-

tion (“time”=mileage)

that mileage accumulation occurs at a constant rate u; for car 7 over the first
year after sale; this is obviously an oversimplification but is satisfactory for
practical purposes in this case. Sale date and mileage accumulation rate can
reasonably be assumed independent, and we know

12000

T

G(r)=I(r <1)P(1L5—s; 2 7,U; < )

in the “time” equals age case and
G(7) = I(r < 12000)P(U; min[1.5 — s4,1] > 7)

in the “time” equals mileage case. Then we can estimate the distribution of
censoring time G(7) in the warranty data base population by using the em-
pirical distribution of sale dates s; (i = 1,...,8394) along with the empirical
distribution of U; based on the customer survey. The moment estimate (6)
may thus be computed, and is shown in Figure 2, for the case where failure
“times” are measured in miles. Figure 2 also shows approximate pointwise
95% confidence intervals for the failure time distribution function F(t), ob-
tained as Fgpr(t) £ 1.96V(t)z, where V(t) is the estimated variance of Fan(t)
given by (7). These intervals are based on the fact that as M increases, the
distribution of [Fspr(t) — F (t)]f/(t)‘% approaches a standard normal distri-
bution. Two sets of confidence limits are shown: intervals I use the variance
estimate (7), which assume that G(7) is known; intervals II are based on
(17), and account for the fact that G(7) has been estimated by using the
car survey. The second set of intervals are considerably wider and provide a
more valid assessment of uncertainty. We could similarly produce estimates
of the failure time distribution in terms of car age.

We remark that an alternative approach is to stratify cars according to
their time of sale and then to use the approach in Section 2.3. This produces
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an estimate of F'(t) that is indistinguishable from that in Figure 2 in this
case.

It is possible here that failure may be related to both age (time since sale)
and mileage. To investigate this we formed a covariate z based on mileage
accumulation rates, as follows. We divided mileage rates into 5 classes:
(0, 6000], (6000, 12000], (12000, 18000], (18000, 24000], (24000, co) miles per year,
and let = k denote the kth class (k = 1,...,5). The numbers of failures for
cars in the five classes are 92,266,245,109, 111, respectively. From the cus-
tomer survey of 607 cars and the car sales data, we estimated the censoring
time distributions Gi(7) = P(7; < 7lz; = k), k =1,...,5 through

12000
T

Gr(7) = P(min[1.5 — s;,1] > 7)P(U; < |z; = k)

for the age case and
Ge(t)=1(r < 12000)/P(min[1.5 -8, 1] > %)dP(U,- < ulz; = k)

for the mileage case; from the survey data alone we estimated P(k) = P(X; =
k). The numbers of cars from the survey sample falling into the five groups
are 96,271, 148,53, 39, respectively. Finally, we imputed a value of u;, and
thus z;, for each car that experienced a failure under warranty by dividing
the mileage at failure by the age at failure. We then estimate Fi(t) = P(T; <
tlz; = k) as

t
ng
Fk(t) = Z '~—‘i"'k—, t=1,..., Tmaz,k; (21)

where n,p = #{i: t; = s,z = 20,7 > s}, My = MP(29) with M = 8,394,
and Tz k = sup{7 : ék(r) > 0}, k = 1,...,5. Estimates of ﬁ‘k(t), k=
1,...,5 are presented in Figures 3(a) and 3(b) for the cases where failure
time is measured as car age and car mileage, respectively. Bearing in mind
that the estimates are not very precise, in part because the estimates of é’k(T)
and P(k) are based on rather small samples, Figure 3 suggests that failure

times measured in miles do not depend much upon the mileage accumulation
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(Figure 3 is inserted here)

Figure 3: Estimates of Failure-Time Distributions with Different Usage Rates

(a) “time” = age, (b) “time” = mileage.

rate, but that failure times measured as car age do. This suggests that
mileage is the more relevant time scale for this type of failure. Lawless et al.
(1995) reached a similar conclusion by using parametric models for failure

that incorporate both age and mileage as factors.

7 Recurrent Events and Multiple Failure Modes

Products under warranty are usually repairable systems in which there are
multiple types of failure which may occur more than once. The problem
discussed in this paper can be studied in this broader context, and methods
based on maximum likelihood and on moment estimation may be developed.
We will merely mention the main ideas, which are discussed elsewhere.

The modeling of recurrent events often uses Poisson or renewal processes
(Ascher and Feingold 1984; Lawless 1995). More generally, the mean and rate
functions for the recurrent events or failures are of interest. They are defined
as follows: let N;(t) denote the number of events occurring on unit ¢ over
the time interval (0,¢]. Then A(t) = E{N;(t)} is called the mean function
and A(t) = dA(t)/dt is called the rate (or rate of occurrence) function. If
the recurrent events follow a Poisson process then A(t) is also the intensity
function.

In the case of recurrent events the “censoring” time 7; refers to the time
period (0, 7;] over which unit ¢ is observed. Hu and Lawless (1996a) discuss
maximum likelihood estimation uner a Poisson model when censoring times
are missing for units not experiencing any failures. They also present a
moment estimator for A(¢) that is analogous to the ones given for failure

time distributions in Section 2.2 and 2.3, and is of exactly the same form as
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(4),

/\SM(t) MG(t) =1,..., Tmaz,

where now, however, n; is the total number of recurrent events observed
at time ¢ across all product units. Hu and Lawless (1996a) give variance
estimates for Asps(t) and Asar(t) = Asar(1) + ... + Asa(t) and discuss their
properties.

Multiple failure modes may also be dealt with. For simplicity we consider
two modes A and B and the case of failure times; recurrent events can also
be considered. Let T/ and TP represent the times to failure of modes A
and B, respectively, let f4(t) = P(T# = t) and f5(t) = P(T? = t) denote
the marginal probability functions, and let fap(s,t) = P(T# = s, TP = 1)
denote the joint probability function of T/ and T2. Under the assumption

of independent censoring times 7;, the following are unbiased estimates of

fA(t) and f5(2):

; i) B(t)
1) = —==
where nA(t) = SM, (TA = t,~ > t) and nP(t) = T, (TP = t, 7 > ¢),
and once again we assume G(7) = P(7; > 7) is known. It is also possible to

give a simple moment estimator of f4g(s,t):

AB(S t)

fas(s,t) = MGV )

(23)

where n4B(s,t) = YM I(TA = s,TP = t,7; > sV t) and s V ¢ denotes the
maximum of s and . However, in applications where the probability of a
failure of any given mode is fairly small over the observation period, the
probability of getting failures on two or more modes is usually very small,
and so (23) may not be very precise. In many situations it may be adequate
simply to consider the different failure modes separately, in which case the
estimates (22) are all that is needed. Variance estimates are then given by

the expressions for fSM(t) in Section 4.2. If, however, we wish to gain insight
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into how failure times for different modes are related, (23) can be used. If
this is too imprecise to be useful then one can adopt a parametric model to
get more precise (but model-dependent) estimates.

The preceding discussion of multiple failure modes assumes that when a
failure of one type occurs it does not preclude failures of other types. In some
situations the failure modes may be competing, so that this does happen.
Suzuki et al. (1996) discuss estimation for multiple failure mode problems in
detail.

8 Comments and Recommendations

When censoring times are missing, standard methods of estimating lifetime
distributions are not available. However, if the censoring time distribution
G(7) is known or estimated from additional data then either maximum likeli-
hood or moment estimation may be used to obtain nonparametric estimates.
The methods in this paper depend on the validity of the assumed G(7), and
it is important in practice to be confident that G(7) is suitable. We also rec-
ommend the use of confidence limits for the lifetime distribution that account
for uncertainty in G(7). When G(7) is estimated, the method of Section 4
can be employed. If standard errors for the estimate of G(7) are not avail-
able, we recommend varying G(7) in a sensible way around the estimate and
examining the range of confidence limits obtained.

The estimates in Section 2 also require that the censoring times be inde-
pendent of lifetimes. This can be a problem for some applications. As shown
in Sections 5 and 6, we can often handle dependent censoring by utilizing
a covariate z such that lifetimes and censoring times are roughly indepen-
dent conditional on z. In the case of automobile warranty data the mileage
accumulation (or usage) rate fulfills this function.

If censoring times are available for units that fail then inferences about

the lifetime distribution may be obtained by considering the distribution of
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t; given that t; < 7; for failed units. This gives the truncated data likelihood

function

b= tI<I~ 1{' ((:ii)) 24

instead of (1). It is well known that for parametric models f(t;8) the like-
lihood (24) gives much less precise estimates of § than do methods which
use information about the censoring times for unfailed units (Kalbfleisch and
Lawless 1988; Hu and Lawless 1996b). Thus, the use of (1) to estimate 8 with
a parametric model would be much preferred to (24). The same holds true
for nonparametric estimation of f(t); Kalbfleisch and Lawless (1991) discuss
nonparametric estimation based on (24) but the methods of this paper are
to be preferred. The price, of course, is that a good estimate of the censoring
time distribution G(7) must be obtained.

Finally, in contexts such as manufacturing one may sometimes wish to
make estimates for a finite population of units. The estimates of f(t) given
here can be used to do this. In principle, finite population corrections to
variance estimates can be made but given the large size of the typical popu-

lations, it makes no practical difference if these are ignored.
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