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Abstract

Methodology is proposed for the design of exponentially weighted moving
average (EWMA) control charts when data are obtained by gauging articles
into groups. Grouped data occur in industry through the use of step gauges
and other similar measurement devices. Run length results for grouped data
EWMA charts are compared with similar results previously obtained for
Cumulative Sum (CUSUM) schemes based on grouped data and with
EWMA charts for variables data. Grouped data EWMA charts are not as
affected by the discreteness inherent in grouped data as grouped data
CUSUM charts. The methodology is illustrated with an example from a
progressive die operation. Grouped data EWMA charts are simple to
implement, and are an economical alternative to variables data based EWMA

control charts when collecting variables data is prohibitive.
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1. Introduction

In the quality control context, exponentially weighted moving average (EWMA)
control charts are used to monitor process quality. EWMA charts, and other sequential
approaches like Cumulative Sum (CUSUM) charts, are an alternative to Shewhart control
charts especially effective in detecting small persistent process shifts. First introduced by
Roberts (1959), EWMA charts have a fairly long history, but only recently have their
properties been evaluated analytically (Crowder, 1987; Lucas and Saccucci, 1990). The
EWMA also has optimal properties in some forecasting and control applications (Box,
Jenkins, and MacGregor, 1974).

For monitoring a process an EWMA control chart consists of plotting:
z,=Ax,+(1-21)z,_,, 0<A<l, )

versus time ¢, where x, is an estimate of the process characteristic we wish to monitor, A
is a constant weighting factor, and the starting value z, equals an a priori estimate of the
monitored process parameter. In (1), x, may represent the sample mean, sample standard
deviation or any other empirically estimated process parameter. Writing out the recursion
in (1), the EWMA test statistic z, equals an exponentially weighted average of all previous
observations. In contrast, tabular CUSUM charts assign all past observations, since the
last time the CUSUM statistic equaled zero, equal weight (Montgomery, 1991). In quality
monitoring applications of EWMA control charts, typical values for the weight A are

between 0.05 and 0.25.

From (1), the mean and variance of z,, denoted M, and O'Z respectively, are easily

derived (Montgomery, 1991). Assuming the x,"s are independent random variables with

mean /i, and variance 0> gives

:uz, = lux 4 and

2 2 A 2t - 2 /l
o, —o;(mj[l—(l—l) ] = O'X(ﬂ) as t — oo, ()



Control limits for an EWMA control chart are typically derived based on L

sigma limits, where L is usually equal to three as in the design of Shewhart control chart

limits. The fact that the z, ‘s are not independent is ignored. Thus, the control limits of an

EWMA chart used to monitor the process mean are :

A 2
p,*Lo, =p *Lo, \ij[l -(1-2)"] 3)

where, in applications, ¢, and o, are typically estimated from preliminary data as the

sample mean and sample standard deviation respectively. The process is considered out-
of-control whenever the EWMA test statistic z, falls outside the range of the control limits
given by (3). Notice that in the limiting case with A =1 the EWMA chart is identical to a
Shewhart X control chart.

Previous work with EWMA control charts has focused on variables data, where the
measurements are continuous random variables. However, it is not always possible or
practical to use variables or precise measurement data in quality control. The widespread
occurrence of binomial pass/fail attribute data in industry attests to the economic advantages
of collecting go no/go data over exact measurements. Variables data provide more
information, but gauging, or classifying observations into one of a number of groups based
on a critical dimension, is often preferred since it takes less skill, is faster, is less costly,
and is a tradition in certain industries (Schilling, 1981, Ladany, 1976). Grouped data
occur in industry because of multiple go no/go gauges, step gauges, or other similar
measurement devices (Steiner, Geyer and Wesolowsky, 1994). A step gauge with (k-1)
gauge limits yields k-group data. Note that pass/fail binomial attribute data represents the
special case of two group data. For more information on grouped data, see Haitovsky
(1982).

The development of control charting methodology for use with grouped data other

than binomial data started with Stevens (1948). Stevens proposed two simple ad hoc



Shewhart control charts for simultaneously monitoring the mean and standard deviation of
a normal distribution using three-group data. More recently, Beja and Ladany (1974)
proposed using three group data to test for one sided shifts in the mean of a normal
distribution with known process dispersion. In the realm of sequential quality control
methods, Schneider and O'Cinneide (1987) proposed a Cumulative Sum (CUSUM)
scheme for monitoring the mean of a normal distribution with two-group data. Geyer,
Steiner and Wesolowsky (1996) extended this CUSUM to the use of three-group data,
with gauges symmetric about the midpoint between the target mean and the out-of-control
mean that the chart should detect quickly. Gan (1990) proposed a modified EWMA chart
for use with binomial data. The modified form of the EWMA uses (1), but rounds off the
EWMA test statistic and calculates the run length properties using a Markov chain.
Unfortunately, this solution approach is only appropriate when the expected number of
failures in a sample is fairly large. As a result, the solution procedure typically requires
large sample sizes, especially when the probability of failure is small. Steiner et al. (1994,
1996A) were the first to consider the general k-group case. They developed methodology
for one-sided and two-sided acceptance sampling plans, acceptance control charts and
Shewhart type control charts. In addition, Steiner et al. (1996B) considered k-group
Sequential Probability Ratio Tests (SPRTs) and CUSUM procedures. These k-groups
control charts use the likelihood ratio to derive an efficient test statistic. Steiner et al.
(1994, 1996A, 1996B) also give design procedures for the various types of k-group
control charts, calculate run length properties, and address the question of optimal gauge
design. These articles show that k-group control charts are efficient alternatives to standard
variables based techniques.

This article addresses the derivation of the general k-group EWMA control chart.
Grouped data EWMA procedures bridge the gap between the efficiency of binomial
attribute procedures and that of variables based EWMA charts. An important question,

addressed later, pertains to how this loss of information in the raw data effects the



performance of the grouped data EWMA chart in comparison to variables based EWMA.
For grouped data, EWMA charts may be a better choice than a CUSUM chart since, due to
the exponential weighting of past observations, the EWMA smoothes out the inherent
discreteness. This is an advantage that allows more flexibility in the design of grouped data
EWMA charts as compared with grouped data CUSUM charts.

This article is organized in the following manner. Section 2 discusses two possible
grouped data scoring procedures and recommends unbiased estimate scores for EWMA
charts. In Section 3 and 4, EWMA control charts for the k-group case are developed; and
the run length properties of grouped data and variables data based EWMA charts and
grouped data CUSUM charts are compared. Section 5 provides an example of applying
this methodology in an industrial situation, and Section 6 briefly discusses optimal gauge
placement. The Appendix shows how the run length distribution of grouped data EWMA

charts can be approximated using a Markov chain.

2. Sequential Scoring Procedures for Grouped Data

When using grouped data in control charts the need arises to assign the grouped
observations a numerical value based on their grouping. For go no/go gauges,
observations are usually treated singly as Bernoulli random variables. However, when
observations are grouped into multiple intervals, a number of different scoring/weighting
procedures are feasible. This article considers two scoring schemes; namely, midpoint
scores and unbiased estimate scores. In industry, group interval midpoints are used most
often. However, as will be shown, midpoint weights have some undesirable properties,
and if some addition process information is available unbiased estimate scores are a better
choice.

Throughout this article, it is assumed that, although the data are grouped, there

exists an underlying continuous measurement that is unobservable. Let X represent the

underlying measurement, and let £, <7, < ... <t,_, denote the k—1 endpoints or gauge



limits used to derive the k-group data. We assume, for the moment, k —1 predetermined
gauge limits. In many applications, the grouping criterion is fixed since it is based on some
standard classification device or procedure. Section 6 addresses the relaxation of this
assumption. Assume the random variable X has probability distribution f(x;6) and

cumulative distribution function F(x;0), where 6 is the process parameter of interest. Let

w; be the group weight or score assigned to all observations falling into the jth group.
Defining #, = —eo and #, = oo, the probability that an observation falls into the jth interval is

given by

7,(0)=F(t;;0)~F(1,_;0),  j=12....k. @)

Ideally, the group weights chosen have a physical interpretation. This makes the
interpretation of the resulting control charts easier for the industrial personnel. This implies
that the weight for each group should lie somewhere between the group gauge limits.
Strictly applying this criterion precludes the use of likelihood ratio weights as suggested by
Steiner et al. (1996A) in the Shewhart control chart context.

Furthermore, often the group weights are used not only in a control chart, but also
to estimate the current process mean and variance so that we can calculate process capability
measures. Typically the process mean and variance are estimated as the sample mean and
variance of the group weights. As a result, it is of interest to consider the properties of
these estimates. Ideally the sample mean and variance are unbiased estimates of the true
process parameters. However, this is not possible with group data for all true parameter

values. For any weighting scheme w;, the expected value of the process mean estimate

and process standard deviation estimate at the parameter value 6 are respectively:

iw 7;(0), and

]:

Var(w) = 6° = i( ) 7, (0)- E(ii )2 3)

j=1

E(w) = £

—

.



where 7;(0) is given by (4).

These parameter estimates can be substantially different from the true process
values. Naturally, any bias in parameter estimation adversely affects process capability
calculations and our understanding of the process.

The midpoint approach is a very simple scoring procedure and is often used in
industry. Each observation falling into a particular group is assigned a score equal to the
group interval midpoint. Assuming gauge limits ¢, Midpoint group weights are given as:

(3t,—1,)/2 forj=1
wi = <(t_, +1,)/2 for2<j<k-1 (6)
(3t,_,—1,.,)/2 forj=k

The midpoint scheme is attractive because it is very simple, and the scores retain a
clear physical meaning. In addition, the midpoint scores can be determined without
knowledge of the underlying process distribution. However, calculating the sample mean
and variance of the midpoint scores can yield biased estimates of the true process mean and
variance. Using (5) with group weights defined in (6) we may derive the expected bias in
the estimates of the process mean and variance. Figure 1 shows the results for a range of
true process mean values and ¢ = [-2,-1,0,1,2]. The Figure illustrates that, using the
midpoint weights when the process is in-control, the sample mean is an unbiased estimate
of the process mean (when the gauge limits are placed symmetrically), but the standard
deviation is typically overestimated.

The midpoint score approach has an additional difficulty because intervals that
extend to —eo or o do not have true midpoints. In the definition (6), end-groups are
assigned scores based on the most extreme gauge limits and the distance to the second most
extreme scores on either side. Clearly, although this approach seems reasonable if the

groups are of equal width, other definitions are possible.



The unbiased estimate weights are derived so that, when the process is in-control,
the expected sample mean and variance are unbiased estimates of the process mean and
variance. However, these two conditions do not specify unique weights. As a result, the
recommended unbiased estimate weights also have the smallest sum of squared bias terms
at 41, and u_,, where p, and p_, are process mean values on each side of the null that we

wish to detect quickly. Thus, the unbiased estimate weights are derived as the w

weights that

minimize{(E (w(“)

ul) - /.11)2 + (E(w(”)

) -ha) | )

subject to E(w(“)

.uo) = Ho» Var(w(“) ,uo) = 0;.

For example, when = [-2, -1, 0, 1, 2] and choosing u, = .5 the unbiased estimate

weights are —2.8, —1.4, —.4, .4, 1.4, 2.8. These weights are different than the midpoint
weights 2.5, -1.5, -5, .5, 1.5, 2.5.

Expecteed Bias in the
Sample Mean

0 0.5 Process Mean 1 1.5

Expected Bias in the
Sample Variance

-0.1 1 1
0

0.5 Process Mean 1 1.5

Figure 1: Expected Bias in the Parameter Estimates
solid line - unbiased estimate weights with ¢, = .5, 4, =-.5

dashed line - midpoint weights
t=[-2,-1,0,1, 2]



Figure 1 shows the expected bias of the midpoint and unbiased estimate weights for
various values of the true process mean i when the underlying process is normally
distributed with variance equal to unity. In-control, i.e. at £ = 0, both methods yield
unbiased estimates of the process mean, however the estimate of the process variance is
biased for the midpoint approach.

Group weights defined as the conditional expected value of an observation that falls
into a particular group, as given by wﬁc) = E(X ‘ X e j™ group, u = ,uo) were also
considered. However, conditional expected value weights have large negative bias when
estimating both the process mean and process variance. As a result, conditional expected
value weights are not considered further in this article.

Calculating the unbiased estimate weights requires knowledge of the underlying

process distribution, or at least information about the group probabilities at both 1, and
4,. The unbiased estimate weights are desirable when the group weights are used to

directly estimate process measures such as process capability. Figure 2 gives an example
of how the optimal weights derived according to (7) change with different values of i, (=-

1_,) when = [-2, -1, 0, 1, 2].

Weights and Gauge Limits
o

- 1 1 1
6.2 0.4 0.6 08 pu 1 1.2 1.4 1.6

Figure 2: Unbiased Estimate Weights for ¢ = [-2, -1, 0, 1, 2]



Since group weights are often used in both control charts and in process capability
calculations the unbiased estimate scoring approach is recommended if a good
understanding of the underlying distribution is available. Otherwise, the group midpoint
approach provides reasonably good results. However, the solution methodology that will
be used to derive group data EWMA control charts works with any scoring procedure so

long as each observation that falls into a particular group is assigned the same weight.

3. EWMA Control Charts with Grouped Data

The proposed EWMA control charts for grouped data are based on Expression (1),
where x, equals the average group weight assigned a sample. When monitoring the
process for mean shifts the group weights can be given by any weighting procedure that
retains the group ordering, such as one of the possibilities discussed in Section 2. Using
grouped data there are only a finite number of possible average group weights, where the

number is based on the number of groups utilized and the sample size. As such there are a

finite number of possibilities for x,. The test statistic z, in (1), however also depends on
the previous value z,_,. As a result, the repeated use of formula (1) smoothes out the
discreteness inherent in the observed values. This section addresses the questions of
grouped data EWMA control chart design and performance.

The performance of EWMA control charts is usually discussed in terms of the run
length. Crowder (1987) used an integral equation approach to derive the run length
properties of EWMA control charts based on variables data. Crowder gives tables of run
length results for various combinations of the parameters A and L in (1) and (3).
Unfortunately, Crowder’s approach can not handle the discreteness inherent in the grouped
data EWMA case. An alternative solution procedure, presented in the Appendix, involves
modeling the situation with a Markov chain. In the control chart context, the Markov chain
solution approach was first developed by Page (1954) to evaluate the run length properties

of a cumulative sum (CUSUM) chart. Grouped data with its inherent discreteness appears

10



well suited to the Markov approach, since the Markov framework requires a discretization
of the state space. The proposed Markov chain solution methodology can also provide
approximate solutions for EWMA control charts based on variables data, and the proposed
method was used to verify the results reported in Crowder (1987).

Table 1 gives Average Run Length (ARL) values for the EWMA charts based on
variables (continuous) data, and EWMA control charts for different grouping criterion,
given by t. The EWMA charts are designed to detect shifts in the mean of a normal process
with in-control mean of zero and variance equal to unity. The process shifts are given in
standard deviation units (o, / \n =1/+/n). The group data EWMA charts are designed to
match the in-control ARL of the variables based EWMA as closely as possible, but due to
the discreteness of the group weights an exact match is not always possible. The run
lengths shown in Table 1 are all derived assuming the EWMA starts in the zero state when
the process shift occurs. Steady state results provide a more realistic approximation.
However, as shown in Lucas and Saccucci (1990), the zero state and steady state run
lengths are very similar. Figure 3 plots the results from Table 1 on a log scale. Note that
the results in Table 1 are generated for the unit sequential case, i.e., n = 1. For larger
sample sizes the grouped data results are slightly better, since there is less discreteness, but

the difference is not substantial for small sample sizes.

Table 1: Average Run Length for Two-sided Grouped Data EWMA Charts, X ~ N(0,1)
continuous t=[-2,-1,0,1,2]] t=[-1,0,1] t=[-1,1]

N A=25 A=10| A=25 A=10, A=25 A=10| A=25 A=10
* | L=2.998 [=2.814 | [=2.991 [=2.802 [=2.821 [=2.763 | L=2.981 [=2.837

.00 500 500 498 500 511 498 515 487
+.50 48.2 31.3 51.9 33.7 53.4 35.4 63.3 40.7
+1.00 11.1 10.3 12.1 11.0 13.1 12.1 14.9 13.0
+1.50 5.46 6.09 6.01 6.55 6.96 7.66 7.42 7.81
+2.00 3.61 4.36 4.14 4.79 5.10 6.06 5.25 6.06
+3.00 2.26 2.87 3.11 3.45 4.13 5.12 4.14 5.12
+4.00 1.73 2.19 3.00 3.07 4.01 5.01 4.01 5.01

11
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Figure 3: ARL plots comparing grouped data EWMAs with variables data EWMA
A =.10 on the left, A =.25 on the right

Table 1 and Figure 3 show, as expected, that the grouped data EWMA charts are
not as effective as a variables based EWMA for detecting process mean shifts. This
decrease in efficiency is due to the information lost when grouping the data. However, the
loss of efficiency in detecting fairly small process mean shifts (say of the order of one
standard deviation unit) is quite small. For very large process shifts, on the other hand, the
grouped data charts perform poorly since there is a maximum weight value that any
observation can take. In applications, EWMA charts are typically used to detect fairly small
process shifts. This suggests that grouped data EWMA charts are a viable alternative when
collecting variables data is prohibitively expensive or impossible.

All EWMA control charts have two design parameters; namely A and L, as defined
in (1) and (3). Often EWMA charts are designed by specifying a desired in-control run
length and the magnitude of the shift in the process that is to be detected quickly. Lucas
and Saccucci (1990) provide a lookup table of optimal parameter values for the variables
data case. The same general procedure is suggested for grouped data charts. However,
due to the inherent discreteness, the desired ARLs may not be precisely attainable.
Changes to L do not necessarily change the ARL of the EWMA, since not all state values
are attainable. Using Table 4 in Lucas and Saccucci (1990) good initial values for A and L

can be found. Generally, small A values are good for detecting small process shifts, but
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are poor for larger shifts, and vice versa for large 4. Using the solution methodology
presented in the Appendix, n and L are adjusted until the desired in-control and out-of-
control ARLSs are closely met. Large values of L lead to large ARLs, while increasing the
sample size n decreases the out-of-control ARL and the problem discreteness. A step-by-

step design procedure is given below:

Design Procedure for Grouped Data EWMA Control Charts

1. Find the suggested optimal A and L values for the variables data based EWMA
from Crowder (1987). Set the sample size n equal to unity.

2. Keeping A fixed, adjust L until the desired in-control ARL is attained. The
methodology presented in the appendix can be used to find the in-control ARL for
each combination of A and L .

3. Determine the out-of-control ARL at the current values of n, A and L .

4. If the desired out-of-control ARL is exceeded, increment n, and repeat this

procedure starting at Step 2.

4. Comparison with CUSUM Procedures for Grouped Data
Both EWMA charts and CUSUM charts are designed to detect small persistent
process shifts. Past researchers (Lucas and Saccucci, 1990) found that there is very little
difference between EWMA and CUSUM procedures in terms of ARL for detecting
persistent process mean shifts. In this section, the performance of grouped data and
variables based EWMA charts and CUSUM charts for detecting a process mean shifts are
compared. The in-control process is assumed to be normally distributed, and without loss
of generality, the in-control process mean and variance are set to zero and unity
respectively. Since EWMA charts are inherently two-sided, they are compared with a two-

sided tabular CUSUM. A tabular CUSUM procedure to detect increases in the process

mean consists of plotting: Y, = max(O, Y_ +x —k), where Y, = 0, and k is a design

13



parameter that specifies an indifference region (Montgomery, 1991). The CUSUM
concludes the process mean has shifted upwards whenever Y, > h, where A is another
design parameter. A two-sided tabular CUSUM is created by simultaneously monitoring
two one-sided CUSUM, where the aim of one is to detect upward mean shifts, while the
aim of the other is to detect downward shifts (Montgomery, 1991). For both the EWMA
and CUSUM charts based on grouped data we used the conditional expectation weights as
discussed in Section 2, though similar qualitative results have been derived for other
weighting schemes.

The ARL results are given in Table 2. The variables based CUSUM chart with h=5
and k =.5 has an in-control ARL of 430, and an out-of-control ARL at a one sigma unit
shift in the mean of 10.2. These ARL values are used as the standard. The variables based
EWMA chart is designed to match these standard ARL values. The grouped data cases are
designed so that their in-control run lengths match the target 430. For the grouped data
CUSUM charts, ARL values are determined using the methodology presented in Steiner,
Geyer and Wesolowsky (1996). The run length results are matched by altering the value of
h. However, due to the inherent discreteness of grouped data, the desired in-control ARL
of 430 is not precisely obtainable. To make the ARLs easier to compare, the grouped data
CUSUM ARLs, presented in Table 2, are theoretical values estimated using linear
interpolation between the two closest cases. In the EWMA grouped data case the value of
L was altered to yield the desired in-control run length. For the EWMA grouped data chart
more flexibility is available and the desired in-control run length was obtained without
using interpolation. This design advantage of grouped data EWMA charts is discussed in

more detail later.
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Table 2: Average Run Length Comparison between Two-sided Grouped Data EWMA
Charts and Two-sided Grouped Data CUSUM
continuous t =[-2,-1,0,1,2] t=[-1,0,1] t=1[-1,1]
CUSUM EWMA | CUSUM EWMA | CUSUM EWMA | CUSUM EWMA
‘/;ll /o k=.5 A =.2045 k=.5 A =.2045 k=.5 A=.2045 k=.5 A =.2045
*Ux ph=50  [=2915 | h=448 [=2897 | h=4.074 [=238 h=3.691 =278

.00 430 430 430 430 430 430 430 430
+.50 37.0 39.3 41.6 42.3 42.3 43.6 47.8 S1.5

+1.00 10.2 10.2 11.1 11.0 11.7 12.0 13.2 13.5
+1.50

5.7 5.4 6.0 5.9 6.8 6.7 1.5 7.1
+2.00 4.0 3.7 4.2 4.1 5.3 5.0 5.7 5.2
+3.00 2.5 2.3 3.1 3.1 4.5 4.1 4.7 4.1
+4.00 2.0 1.8 3.0 3.0 4.4 4.0 4.5 4.0

Results in Table 2 show that for grouped data as well as variables data there is very
little difference between the EWMA and CUSUM charts in terms of run length
performance. It appears that the CUSUM chart is slightly better at detecting process shifts
smaller than the shift the chart was designed to detect, while EWMA charts are slightly
better for larger process shifts. However, this pattern is reversed for smaller values of A .

Although there is little difference between grouped data EWMA charts and grouped
data CUSUM charts in terms of ARL, there are other reasons why an EWMA chart may be
preferable. First, EWMA charts are two-sided by design, whereas a two-sided CUSUM
chart requires either the use of the awkward V-mask, or two one-sided tubular CUSUM
charts (Montogomery, 1991). As a result, if two-sided monitoring of the process is
required, variables based or grouped data based EWMA charts are easier to implement.
Second, in the grouped data case, over time the EWMA test statistic smoothes out the
inherent discreteness in the average group weight, whereas a grouped data CUSUM test
statistic remains a simple linear combination of the initial group weights. As a result,
grouped data EWMA charts are more flexible in their design than grouped data CUSUM

charts, especially when the sample size is small. Figure 4 illustrates this point very
effectively. Figure 4 shows the discreteness in the resulting in-control ARL for grouped
data CUSUM and EWMA charts when the design parameters 4 and L are changed for fixed

parameters k=.5 and A =.2. As the parameter values % and L increase, the ARL of the

15



chart should also increase. Figure 4 shows that the number of possible ARL values is
much greater for an EWMA grouped data chart. This is a clear advantage when designing
grouped data EWMA charts since typically sequential control charts are designed to have
certain ARL characteristics. In Figure 4, for the grouped data CUSUM, the slight
decreases observed in the ARL of the grouped data CUSUM as & increase represent some

small errors in the approximation of the ARL.
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Figure 4: Comparison of the Discreteness in the In-control ARL of Grouped Data
CUSUM and EWMA Charts with ¢ = [-1, 0, 1]

5.  Metal Fasteners Example

This section illustrates the application of a grouped data based EWMA chart to an
industrial situation. In the manufacture of metal fasteners in a progressive die environment,
the opening gap dimension of a metal clamp, called a robotics clamp, was considered

critical. See Figure 5. This problem was previously considered in Steiner, Geyer and

Wesolowsky (1994 & 1996A).
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Opening Gap
Dimension

/

Figure 5: Robotics Clamp

Obtaining exact measurements of the gap dimension on the shop floor was
prohibitively difficult and expensive. The metal used in the clamp is fairly pliable, and as a
result, using calipers distorts the opening gap dimension. Another alternative, an optical
measuring device, is expensive and not practical for on-line quality monitoring. As a
result, the only economical alternative on the shop floor is to use step gauges, where
clamps are classified into different groups based on the smallest diameter pin that the
clamp’s opening gap does not fall through. The step gauge employed consisted of three
pins of diameters 53, 54, and 55 thousandths of an inch. Using the given step-gauge,
units are classified into 4 intervals with corresponding interval midpoint weights of 52.5,
53.5, 54.5, 55.5.

From previous measurements it is known that the process mean is currently stable,

producing clamps with an average open gap dimension of 54.2 thousandths of an inch (u )

and standard deviation of 1.3 (o,). We wish to monitor the stability of the mean width of

opening gap. In Steiner et al. (1996A) a grouped data Shewhart control chart was
proposed that has an in-control ARL approximately equal to 370, and an out-of-control
ARL, at a mean shift of one half a standard deviation unit, of approximately 15.5 and 12.7
for positive shifts and negative shifts respectively. This was accomplished with a sample

of size 12 units. Since this is a fairly small process shift we would expect to do better with

an EWMA chart.
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Using the design methodology suggested in Section 3, with a fixed sample size of
12, we derive an EWMA chart with A = .1, L = 2.54, and n = 12. This grouped data
EWMA chart has an in-control ARL of 370 and out-of-control ARLSs of around 7.8 and 5.6
for positive and negative mean shifts of half a standard deviation unit respectively. These
values are significantly better than the corresponding Shewhart chart with the same sample
size. Figure 6 shows the resulting EWMA chart using the Steiner et al. (1996A) data. The
process was in-control for the first 10 samples, and shifted down approximately one

standard deviation unit starting at observation 11. The EWMA chart shown in Figure 6

signals at observation 12.

545 T T T T T T

RS A ]

543+ .
d EWMA control limits
54.2

54.1

EWMA test statistic

54

53.9

53.8

Sample 8
Figure 6: EWMA Control Chart

6. Optimal Grouping Criterion

The run length results and comparisons presented in this article assume fixed group
intervals. This is often a reasonable assumption due to the use of standardized gauges.
However, in some circumstances the placement of the group limits may be under our
control. In that case, the question of optimal group intervals for the grouped data EWMA
arises. Finding the best gauge limits requires a definition of optimal. One possibility is to

find the gauge limits that yield the shortest out-of-control ARL at a given mean shift while
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having an in-control ARL of at least ARL,. This an attractive definition of optimal gauge
limit, but requires a solution for different in-control ARLs and different out-of-control
shifts. Another approach to finding the best gauge limits is to determine the grouping
criterion that gives the best estimate of the process mean while the process is in-control.
This is an attractive option since usually the process will remain in-control most of the time,
and there is connection between good estimation and effective hypothesis testing. The best
gauge limits for estimation are found by maximizing the expected Fisher information
available in the grouped data. The expected Fisher information provides a measure of the
efficiency of the grouped data compared with variables data. Steiner et al. (1996A) derive
the best estimation gauge limits for grouped data in the normal mean and standard deviation

cases, and Steiner (1994) derives the optimal limits for the Weibull parameter cases.

Summary

EWMA control charts are widely applied in industry. However, all previous
analysis of their run length properties considered only variables data or binomial data. This
article discusses the design and performance of EWMA control charts for grouped data.
Grouped data are a natural compromise between the low data collection and implementation
costs of binomial data and the high information content of variables data. EWMA control
charts based on grouped data are shown to be nearly as efficient as variables based EWMA
charts and are thus an attractive alternative when collection of variables data is not feasible
or very expensive. Also, EWMA grouped data charts are more flexible in their design than

grouped data CUSUM charts.

Appendix

In this appendix the expected value and variance of the run length of grouped data
EWMA control charts are derived. The solution procedure utilizes a Markov chain where
the state space between the control limits is divided into g-1 distinct discrete states and the

out-of-control condition corresponds to the gth state. The states are defined as:
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s=(5,.8....8,,) = (LCL+y, LCL+2y, ..., UCL-2y, UCL-y),

where y =(UCL— LCL)/g and UCL and LCL are the control limits as given by (3).

The transition probability matrix is given by

[ Piys Pras - ’plgj
Dais o 5D R ,I-R)1
P = .21 .Zg - ( ) , (Al)
: : 0,..0, 1
_pgl’ ’pgg_

where I is the g by g identity matrix, 1 is a g by 1 column vector of ones, and p, equals

the transition probability from state s, to state s;. The last row and column of the matrix P

correspond to the absorbing state that represents an out-of-control signal. The R matrix
equals the transition probability matrix with the row and column that correspond to the

absorbing (out-of-control) state deleted.

The group probabilities 7,, a=1,...,k, as defined by (4), and the group weights

w

a’

a=1,...,k, as given by (5) or the solution to (6), set the transition probabilities in the

matrix R. Using the defined states s as a discretization, the transition probabilities p; are:

r, if sj—z<;twa+(1—l)si <s].+z

P, = 2 2, for j=12,..g-1  (A2)
0 otherwise
> m, forallasuchthat Aw, +(1-1)s, = 5,_, + Y OR Aw,+(1- A)s; <5, ——
pig = 2 2

0 if no such a exists

The expected run length and the variance of the run length are found using the

matrix R. Letting ¥ denote the run length of the EWMA, we have

o)
-
—

\<
IN
=
Il

(7-R')1, and thus
Pr(y=1) = (R™-R)1 fort>1. (A3)



Therefore, E(y) = itPr(y=t) = i(m) = (I-R)'1. (A9

t=1

Similarly, the variance of the run length ~ Var(y) = 2R(I-R)’1, (A5)

where (A4) and (AS) are g by 1 vectors that give the mean and variance of the run length

from any starting value or state s;. The mean and variance of the run length that
correspond to the starting at z, are easily found by finding the i such that
s, —y/2<z,<s,+y/2. If the control limits are symmetric about z, the corresponding

state is s, .

This Markov chain solution approach approximates the solution, with the accuracy
of the approximation depending on the number of states (g) used. Larger values of g tend
to lead to better approximations. However, unfortunately due to discreteness, the ARL
value does not smoothly approach the true value as g increases. As a result, the regression
extrapolation technique suggested by Brook and Evans (1972), to find the average run
length of a variables data based CUSUM scheme approximated by a Markov chain, is not
applicable here. However, fairly close approximations of the true run length properties can

be obtained by taking the average result obtained using a few fairly large values of g. For

example, the results presented in this article estimate the true value E(y) __ and Var(y) _

g=oo

by averaging the results derived with g = 100, 110, 120, 130, 140, 150. Verification of
this approach using simulation suggests that the derived estimates for the mean and
variance of the run length differ from the true value by less than 2-3% in most cases of

interest, with the approximation becoming worse as the size of the process shift increases.
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