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SUMMARY

Lawless, MacKay and Robinson (1996) have introduced methods for analysing variation
in multi-stage manufacturing processes, the idea being to identify stages which contribute
most to variation in the final product. Such methods are a valuable prioritization tool in
variation reduction studies. Lawless et al. note, however, that when the data are observed
with significant measurement error, substantial biases which mislead the investigator can
result. The purpose of this article is to present methods that incorporate measurement
error. We discuss both maximum likelihood estimation and a simpler “naive” method that
is much easier to implement. The naive procedure is shown by simulation studies to provide
an effective way of estimating components of variance associated with different stages of a

manufacturing process.
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Introduction

Manufacturing processes where items are produced in large quantity consist of various opera-
tions or stages. After the final stages the items must meet certain specifications with respect
to quality characteristics, and how to control and reduce variation in these characteristics is
a crucial issue. A key to reducing variation is to understand how much variation is added at
different stages of a process, and to what extent that variation manifests itself downstream.

In arecent article, Lawless, MacKay and Robinson (1996) introduced methods for analysing
the transmission of variation in multi-stage processes. Their work is based on the idea of
measuring individual parts as they progress through stages; using a simple autoregressive
model they estimate the amount of variation that is added at each stage, and the amount
that is transmitted from upstream. This allows components of variation in the final product’s
characteristics to be associated with different stages, thus providing guidance for variation
reduction activities.

Data on quality characteristics generally involve some measurement error. Lawless et
al. (1996) do not include it in their methodology, but point out that ignoring substantial
measurement error can lead to wrong conclusions. The purpose of this article is to present
methods that incorporate measurement error, thus avoiding such pitfalls. For a model that
is an extension of Lawless et al.’s, we consider both maximum likelihood estimation and a
simpler “naive” method that is much easier to implement. We also extend previous work
by considering confidence intervals for variance components; Lawless et al. (1996) relied on

point estimates. In addition, model checking methods are discussed.

Modeling

We start with a brief review of the model in Lawless, MacKay and Robinson (1996).
Consider a k stage process in which a single characteristic Y; can be measured after each

stage 1. The final quality characteristic is Y;. The process can be portrayed as follows:



STAGE STAGE STAGE

To model this process, suppose

i ~ N(:“baf)
Yi|Vi,...,Yii1 ~ N(oi+B:Yi1,02) (1)

Note that the distribution of Y; given the history of the item up to stage 7 — 1 depends only
on Y;_;. We subsequently refer to this model as the first order autoregressive model (AR(1)).

Under this model, the variation in the final quality characteristic is partitioned as
Var(Ye) = 0 = 054 + Beoiya+ ...+ Bibiy - B30} (2)

The component of variance B267_; ... 8%,07 4 can be interpreted as the amount of variation
in Y}, that is added at stage i and then transmitted through the remaining stages. The term
074 1s the amount of variation added at the final stage. Dividing both sides of (2) by Var(Y;)
gives ) s

1= Tia n ﬁkak;I,A 4o B - Pyt

2
O O} O

(3)
This form is useful for identifying stages which contribute a significant proportion of the

variation in the final quality characteristic.

An equivalent parameterization of the AR(1) model is
Y, ~ N(“h 012)
Cov(Y;,Y) = pic1i0imi00 i>2

We note that Cov(Y;_,,Y;) equals p;_1;pi_2i_1...pi—s;i—s+10i—s0;. In this parameterization,

equation (2) can be rewritten as

Var(Y) = o3(1 - plzc—l,k) + Jlipli—l,k(l - Plzc—z,k—l) t.+ o'lﬁplzc—l,k Pl

’
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and equation (3) can be rewritten as

1=(1- Plzc—l,k) + (plzc—l,k(]' - Pi—z,k—l)) +...+ (Plzc—l,k .- -Piz) (4)

To add measurement error to the model, suppose the measured values of the characteristic
are X;,X,,..., X} where
X; =Y, +e, €; NN(O,O‘EZ‘,) (5)

We assume that the variances o2,

are known, usually from preliminary studies on the mea-
surement system.

The process (Xi,X,,...,Xk) is no longer AR(1) if & > 2. In fact, the conditional
distribution of X;|X;,..., X;_; depends on all of X;,..., X; ;.

Given observations (X7, X2,...,Xk) on n items, the goal is to estimate the proportions

of variance (3). The presence of measurement error substantially complicates this problem.

Effects of Measurement Error if Ignored

We review the effects of ignoring measurement error (Lawless et al., 1996), since this will
motivate and set notation for what follows. To demonstrate the effect of ignoring measure-
ment error in the identification of the variance proportions (3), consider first a two stage

process in which

X, NN(,ul,Jf-l-Jfl) Xy ~ N(a, +,32H1>02A+ﬁ2‘71+‘7 ) (6)

with Cov(X;, X3) = Ba0?.
Suppose n items are tracked through the process so that we have data (zy;, z,;; j=1,
..,n) and we estimate the variance components assuming that the AR(1) model is appro-
priate, that is, assuming 0., = 0., = 0. Then the maximum likelihood estimates of the

parameters in the variance components in model (1) are (Lawless et al., 1996)

A2 Sm1m1 A Smlmz ~2 szmg
=ZmE gy tum Do

0 0y =

n Sero n
n
where Seiz; = Z Tip — ;) (x50 — ;).
k=1
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Sojw; : .
Note that as n — oo, —% — Cov(X;, X;), where “—” denotes convergence in probability,

so that
o2

&§—>a§+a§2 ﬂ2—>,62 2+1 &f—)af—l—a;
1
In the partition (3),
1= J%A :82‘7 f
o3 2 ‘72
the estimates are such that as n — oo

Bt et ot o

"2 2 2 2 2 2
(P oy 01+ 0l 03+ 0

Hence, the variation transmitted from stage 1 is underestimated. Since the estimates of

the proportions must also sum to one, this implies that the variation added at stage 2 is

overestimated. If the measurement system contributes 20% of the variation in X; and X,

then the asymptotic bias is substantial.

Suppose we expand this to a process with three stages. If we ignore the measurement

error, then we would use the estimates

~2 S-Tlml ~2 _ Swgwg A Szizg ~2 Smgmg A Sm2m3
0, = 024 = Y — B2 oy O34 = — Ps3
n n n
wlmz 2 912923
121 T2T2
Then, the proportions of variance contributed according to (3) are
~2 2
_ T34 3‘72,4 ﬁsﬂ
1=
3 o3 &3
Using the above estimates,
52 2 2 2 22 2
O34 _ ‘TsA( O3 ) O, n ﬁ30-20.€2
o2 03 ‘o3 +o%"  oi+o0o%  (0f+0%)(0F+02)
R 2
g‘AT;A 320'§A a§ 03 02 + 062 - IB2‘71(,T]—+62 )
- ( )
) 5 (= (= 2
03 o3 o3+o0; 03+ 0 o3 — B3o1
227242 2 2 2 2
37291 _, Ps 2‘71( T3 )( ) )2 91
2 o2 L o2 2 7) (= )
03 o3 o3+ o0 o3 +o0; o7+ o;

(7)

While it is clear that the proportion of variance transmitted from the first stage is underes-

timated, the direction of bias for the other two proportions is not obvious. In fact, the bias
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of the variance added at the third stage is always positive, which can be seen by writing it
in the other parameterization.

For a numerical example illustrating these results, see the sixth section.

Two Stages

In the situation described above, it is possible to develop maximum likelihood estimates to
take account of the measurement error. Recall that the distribution of ‘(Xl, X>) was given in
equation (6). X; and X, have a bivariate normal distribution, and there are five functionally
independent unknown parameters, i, o1, @z, B2, 024 in the model. Equivalently, we may

take the parameters to be E(X}), Var(X;), E(X2), Var(X:), and cov(X;, X;). The maximum

likelihood estimates of these parameters are (Larsen et al., 1986)

E(Xl) = Iy, E'(Xz) = I, V;M‘(Xl) = %’ szr(Xz) _ M
n
Con(XiXy) = Smm
n

We then get the following maximum likelihood estimates for the original parameters by the

invariance property:

A = ~2 Smlzl 2 A Smlmg
M1 = T1 0 = 0-51 162 - S 2
n ez — NOZ,
2
A = S - A2 szmz nSm1m2 2
a2—$2—182131 O24 = 2y Ye
n (Swlwl no—el)
In the other parameterization for this model (u1, o1, p2, 02, p12),
1 = T G = T 6_2_5931:1:1_0_2 &2_532982_0_2
M1 = Ty U2 = T2 1_—n €1 2__n €2
A . Smlmg
P12 =

\/(Swlml - naezl)(szmz - naezz)

Recall that we are interested in the estimates of the proportions of the variance of Y (4),

which in terms of py, ps, 01, 02 and py; is

1= (1_ﬁf2)+ﬁf2
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It is possible to get approximate variance estimates for these proportions, by observing that

the cross product matrix has a Wishart distribution (Mardia et al., 1979)

where

This gives us that (Magnus et al., 1979):

and that
Sml 1
Var Saz
Swgmz

Sm 3 S{D €
S= . e NWz(E,n—l)
Smlmg Smgmz
o ol + 0521 P120102
p120102 05 + 02

2(n —1)(07 + 07,)?

2(n — 1)p120102%

(o1 +02)

2(n —1)piz0i03

2(n — 1)p120102%

(0F +32)

(n = D{(of + 02 )*

(03 +02,) + piroioz}

2(n - 1)p120'10'2*

(o3 +02,)

2(n — 1)pi,010;

Hence we can conclude that

where

2(n — 1)p120'10'2*

(03 +02,)

Var((1—p2%,)) =~ FxV « FT

(n —1)*pTy0103

2(n — 1)(o2 + 0‘32 2

—2(n — 1)p120107

Fo= [

(n — 1)*ply0103

{(n —1)of — a2 }*{(n -

1)o}

]

— %}

(n—1)of — o2 H(n — 1)of — o2 }*" {(n — 1)of — o2 H{(n — 1)of — 02}’

and V is the variance-covariance matrix given in (8). Approximate variances for the compo-

nents of variance can be found analogously, and are given in Agrawal (1997).



Three or More Stages

Maximum likelihood estimation

Maximum likelihood estimates do not have closed form expressions for models with more than
two stages. The number of functionally independent parameters in an AR(1) k-stage process
observed with measurement error is 3k-1 (two parameters for the initial stage and three more
for every additional stage). The number of independent parameters in a general multivariate
normal, however, is k + ﬂ%l (k parameters for the mean, and M%l variance-covariance
parameters). In the case when k=2, these values are the same and the parameterization (p1,
01, ay, B, 0a1) is equivalent to (E(X1), Var(Xy), E(X;), Var(X;),Cov(X,, X3)). For k > 2
the general multivariate normal has more parameters, and a one to one mapping between
the two sets of parameters does not exist.

If, in the three stage case, we presume the existence of an underlying AR(1) process (1)
for Y1,Ys,,Ys, but that what we observe is X;, X, X3, given by (5), we can parameterize the

joint distributions of these variables as follows:

Y: M1 U% P120102 P12p230103
Y, | ~MVN|p=| p, |, Xy = P120102 o3 p230203
Ys K3 P12pP230103 P230203 03
and
X1 M1 ol + 0521 P120102  P12P230103
Xy | ~MVN p=| p, |,8x= p120102 05+ 0'522 230203 (9)
X3 Y3 | P120230103  P230203 a§ + 0523

In this case, the proportions of the variance of Y3 can be expressed as

Var(Ys) = (1 — p3s) + p3s(1 — ply) + p3apts (10)

where the first term is the proportion of variation added at the third stage, the second term

is the proportion of variation added at the second stage and transmitted to the third stage,



and the third term is the proportion of variation transmitted from the first stage of the
process.

The goal here is to estimate these three proportions based on independent observations
(z1j, T2j, T35), J = 1,...,n. This involves estimating the eight unknown parameters in the
distribution (9).

The multivariate normal likelihood of (X, X5, X3) can be expressed as (Johnson et al.,

1988)
L(ll" Zw) = (27‘_)3”;'22'"/2 exp{—trace[E;I(i(Xj - f?)(Xj - i)T)]/2
/27 - TS — )}

=1
where x; = (z;5, T2;, 3;)T. If we write

S(Elm] Sﬂ’lmz Smlm:i
— =\T __ —
(xj - w)(xj - m) - Sa:laxz S:l:g:):z 53:233 - Smm

1
Smlmg Sa:z:t:s 5933973

n
=

then the loglikelihood can be written as

(1, B.) = —(3n/2) log(2) — (n/2) g |Za| — (1/2)trace{E5* 510} — (n/2)(5 — )T 55" (5 — )
(11)

It is known (Johnson et al., 1988) that for any %, this likelihood is maximized with respect

to u by fi; = &;, (1 = 1,2,3). It remains, then, to determine the values of the three variance
parameters and the two correlation parameters that will maximize the likelihood. There is
not a closed form algebraic expression for any of these parameters, and the estimates must
be determined numerically. This is computer intensive and time consuming. If confidence
intervals for variance components are also desired, additional computation will be needed.

In the next section, we present a simpler method that performs very well.

Naive estimates

Simple estimates for a k-stage process can be obtained by using the two stage maximum like-

lihood estimates obtained earlier for each pair of consecutive stages. In the parameterization
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used in Section 5.1, this leads to the following estimates for the three stage case:

N,
Nz =2 _ Pmizi 2 -
i = Zj, o; = — ol 1=1,2,3

Sz.'m.'+1

\/(Sm;m,‘ - naz;)(smi+lmi+1 - n06?+1)

Proving consistency of these estimators is straightforward. Details are given in Agrawal

(1997).

i=1,2

Piit1 =

In simulations, it was found that the distributions of the estimates of the square roots
of the individual variance proportions could be well approximated by normal distributions.
This is also true for the estimates of the square roots of the variance components. Hence, it
is useful to find confidence intervals in this metric. Calculating the asymptotic variance of
these quantities can be done analogously to the method for the results shown in the previous
section. See the appendix for the approximate variances of the square root of the proportions
of variance at each of the three stages. Similar formulas for the approximate variances of the
square root of the components are given in Agrawal (1997). An approximate 98% confidence

interval can be computed using the formula

estimated proportion + 2.33\/ VAar(estimated proportion) (12)

where Vﬁr(estimated proportion) is found using the approximate formula and replacing the
true values of the parameters by their estimates.

Parametric bootstrap calculations can also be used to get approximate confidence inter-
vals. Omnce estimates for the parameters of the model have been found, these values can be
used as the “true” values in generating N “bootstrap” samples of size n, the original sample
size. Estimates of the variance components can be computed from each of the N samples, and
confidence intervals calculated from them. For example, to get a 90% confidence interval, we
could take N=99, and select the 5th and 95th values of the ordered estimates as the lower
and upper limit for each variance component. For more details on parametric bootstrapping

to compute confidence intervals, see Efron and Tibshirani (1986).



Simulation Results

We would like to know how the naive estimators compare to the maximum likelihood esti-
mators. In addition, we want to know how well confidence intervals for variance components
perform in terms of giving close to the stated coverage. These questions were addressed in
a simulation study in which a three stage process was considered. This section will describe
how that study was carried out and its results.

Since the values of the variances at the three stages do not change the properties of the
estimators, they were set to always be one. For the same reason, the means at all three
stages were set to zero. The variables that were manipulated were p;z, p2s and o;. In this
simulation, the measurement error was set to be the same at all stages, since this often occurs
when the same characteristic is measured at each stage of the process. Three levels for each
of pi12 and py3 were used, \/0_2_,\/0—5 and v/0.8. These values were chosen because they
provide a wide range of different values being added and transmitted through the process.
Hence, values of the first variance proportion in (10) range from 0.2 to 0.8, while values of
the second and third variance proportions range from 0.04 to 0.64. In this case, the values of
the proportions are the same as the components. Please see Table 1 for the exact quantities.

Two levels of o, were chosen, 0.1 and 0.3. At the high level of measurement error,
the ratio o, /o; is 30%. This level of measurement error would be unacceptable in some
applications in industry; anything higher would call for a different measurement system.
Note that even at the low measurement error le-vel, and in the case of three stages, the bias
in estimation resulting from ignoring the measurement error can be substantial. Bias here
refers to the difference between the mean of a variance proportion estimate in large samples,
as given in (7) and the true value of the variance proportion. Table 2 reproduces the variance
proportions of Table 1 for each scenario and shows the bias that results if measurement error
is ignored.

These combinations of factors were used for an 18 run simulation. At each run, 99
samples (X1, X3, X3) of 99 units were created using the given‘ set of values of p;,, p23 and

o, as true parameters. For each sample, both the maximum likelihood estimates and the
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naive estimates were found, and the three variance components were calculated. Then, 99
bootstrap samples were created using each set of estimates as the )real parameters. The
lowest and the highest values of the estimated variance components from these bootstrap
samples were used to specify 98% confidence intervals for the components for each sample.
Only 99 bootstrap samples were done here to keep the time limitations of the simulation
feasible. In an industrial setting, computing 1000 bootstrap samples would be recommended.

The results of the simulation are given in Tables 3-6. Table 3 shows the average value of
the maximum likelihood estimates and the naive estimates for each run, for the first variance
proportion. Also included are the standard deviation estimates of the run. Tables 4 and 5
show the same for the second and third variance proportions, respectively. Table 6 gives the
coverage frequencies of the bootstrap-based confidence intervals for both the maximum like-
lihood estimates and the naive estimates for both the first variance component (“Raw”) and
the first variance proportion (“Proportion”). Recall that this theoretical coverage frequency
is 98%. No major discrepancies in coverage frequency are seen. The figures for the second
and third variance components and proportions were similar.

These results indicate that the performances of the naive estimates and the maximum
likelihood estimates are virtually indistinguishable. In fact, the estimates are very close to
each other in most cases. This can be seen in Figures 1-3, which show the naive estimates
plotted against the maximum likelihood estimates for each of the variance proportions and
for six runs: both levels of measurement error for p;; and p23 both at their low levels, p;, and
p23 both at their medium levels, and p;; and py3 both at their high levels. The line on these
plots is the Y=X line. These plots represent a sample of such plots for all the runs. Figure 1
illustrates the two runs in which the least difference between naive and maximum likelihood
estimates was observed, whereas Figure 3 represents the runs in which this difference was the
highest. An interesting feature that can be seen is that regardless of the p1; or pa3 values, the
naive estimates are closer to the maximum likelihood estimates when the measurement error
is low, as compared to when it’s high. This is expected, since we know that the estimators

are the same when there is no measurement error.

11



Overall, the data suggest that in the three stage case, the naive estimates can be sub-
stituted for the maximum likelihood estimates in any situation likely to be encountered in
practice. There is little justification for spending time computing the maximum likelihood
estimates, when the naive estimates can be found faster and without the use of optimization
methods.

Other simulations were done to check the coverage frequencies of the confidence intervals
given in equation (12) for various values of the true parameters. For a given set of true
parameters, 1000 data sets of sample size 99 were generated. For each data set, the naive
estimates of the square root of the variance components and bproportions were found. Their
approximate variances were calculated using these estimates, and a 98% confidence interval
was computed using equation (12). Then, the coverage frequency for that set of real pa-
rameters was found by counting how many of the 1000 intervals actually contained the true
parameters. See Tables 7-9 for these values. Overall, the coverage frequencies achieved were
very close to 98%. This suggests that the approximate variance formulas given in equations
(15), (16) and (17) (see the appendix) are useful in finding confidence intervals, which further
strengthens the argument for using the naive estimates.

It seems that both the bootstrapping and the approximate variance formulas are satisfac-
tory methods of finding confidence intervals for the sample size considered here (n=99). For

small sample sizes, however, one might expect the bootstrap method to be more accurate.

Model Checking

It is important to check whether observed data are consistent with an AR(1) process with
known measurement error. As indicated in (9), this model implies that the observed mea-
surements follow a multivariate normal distribution.

As a first step in evaluating the multivariate normal assumption, the normality of the
univariate marginal distributions should be checked. This can be done graphically using QQ
plots (see Johnson et al, 1988, p.146). If the marginal distributions do not seem normal,
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then the multivariate normal assumption can be rejected. If they do seem normal, however,
the assumption of the linearity of the conditional means should be verified. Given data on
X1, X, ..., Xk, this can be done by plotting X; against X for all i and j, with i # j, and
determining whether a linear model is adequate. Again, if this assumption is contradicted,
the multivariate normal assumption should be rejected. Other, more formal tests can be
applied to test for multivariate normality (Looney, 1995).

If measurement error is considered negligible we can check the AR(l) assumption by
examining the regression of X; on X;_ 1, X;_,, etc. More generally, we can test the adequacy
of the AR(1) model or the AR(1) with measurement error model via a likelihood ratio test,
as follows. Under a general multivariate normal structure, the maximum likelihood estimates

are
Soa

n

p=X B= (13)

[9] and so the maximized loglikelihood takes the form

~ n Smm n 1 S:z:a: -
(@) = —Flog| =] — ZFlog(2m) — Strace{(Z2%) ™ Sus}
n Sze, Mp Np
= - _ e _ TP
" 10g) 222 " "P1oy(3m)

Under the constraint of being an AR(1) process with measurement error, the maximized

loglikelihood takes the form

1 .
(&) = —g-log|2m| — Strace{$i; .0} - %log(%) (14)

where ¥, is of the form given in (9), and an estimate of it has been found by optimizing

(11). From the theory of the likelihood ratio test,

—2(@) — U) ~ X,

In simulations for the case k=3, it was found that the distribution of the statistic given
above could not be distinguished from x?, for sample sizes as small as 30. This was true
even when /(&) was approximated by evaluating (14) using naive estimates. This means that
a simple approximate test can be carried out for the AR(1) model with measurement error

without needing to compute the maximum likelihood estimates for the model.
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Using the above likelihood expression, the deviance residuals can be examined to see if

any observations are particularly influential. See, for example, Williams (1987).

Piston Example

A piston is'a part in an automobile located in the engine cylinder, the basic framework of
the engine. The piston is essentially a cylinder closed at the top and open at the bottom,
where is it connected to a rod. The piston moves in a vertical motion in the engine cylinder,
pushing out exhaust on the upstroke and intaking fuel on the downstroke (Crouse, 1970).

A study was done on 96 pistons as they were passing through a production line. Each
of the 96 pistons studied had many observations recorded on it, but we will consider only
three. These are the diameter of the piston at a height of 4 mm, at each of three stages. The
three stages were the final machining stages of the piston production line. It was believed
that these stages were not changing the diameters of interest at all. All diameters were
measured in millimetres, and it is known that the measurement error standard deviation
here is approximately 5 * 107* mm, or 0.5 microns, at each stage. This gives an estimated
ratio of a./a3 = 22%.

Engineering knowledge of the process indicated that the normal AR(1) model with mea-
surement error should adequately describe it. Various model checks were used to determine
the adequacy of this model. While fhe QQ plots at each stage did not reveal any significant
departures from normality, the deviance residuals of three pistons proved to be particularly
influential. Scatter plots of pairs of measurements also showed these three points as outliers.
Hence, these outliers were removed from the subsequent analysis, although some investiga-
tion should be done to seek causes for why these particular pistons may have differed from
the rest.

The goal of this study is to determine how the variation at the final stage of the process
can be attributed to variation transmitted from upstream. When the measurement error

is ignored, the proportions of variance contributed according to the AR(1) model are 0.256
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at the third stage, 0.244 at the second stage, and 0.500 at the first stage. Using the naive
estimates introduced in section five and the known measurement error variance, however, we
find instead that the proportion of variance contributed is 0.181 at the third stage, 0.206 at
the second stage and 0.613 at the first stage.

Both the bootstrap technique and the approximate variance method described earlier
were used to find 98% confidence intervals for these proportions. In the first case, 1000
bootstrap samples were simulated using the naive estimates as the real values, and new
estimates for the proportions were computed. The 10th and the 990th ordered values were

then found to give the following confidence intervals

Prop. from 3rd stage: (0.088,0.300)
Prop. from 2nd stage : (0.105,0.322)
Prop. from 1st stage: (0.466,0.750)

In the case of the approximate variance method, the naive estimates were substituted into

equations (15),(16),(17) (see the appendix) and (12) to give the confidence intervals

Prop. from 3rd stage: (0.092,0.299)
Prop. from 2nd stage: (0.115,0.323)
Prop. from 1st stage: (0.475,0.769)

The two sets of confidence intervals agree well. The main conclusion is that the first stage
contributes most of the variation.
The analysis done using the maximum likelihood estimates yielded the same conclusions
as that done with the naive estimates. |
Finally, it should be mentioned that the likelihood ratio test given in the previous section

was carried out, and was found to yield
[(0) = 1423.91

under the assumption of the AR(1) model with measurement error. Under the full model,
1(Q) = 1424.83
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Using the approximating chi-square distribution on one degree of freedom, this gives a p-
value of 0.173, indicating no reason to reject the measurement error model. The likelihood
ratio test was also done for the AR(1) model without measurement error, and was found to
give a likelihood of 1421.54, which when compared to the full model gives a p-value of 0.010,
suggesting that this model does not describe the data adequately.

Future Work

We have seen how variance transmission can be studied in a multi-stage process, and how
measurement error in the data can be taken into account in the analysis. In the three stage
case, there is no advantage in using the maximum likelihood estimates instead of the naive
estimates. This presumably holds for the case of four or more stages as well, and future work
could be directed at determining this.

There are several issues left to be looked at in connection with variation transmission
analysis. For instance, it is often time consuming and expensive to track items through a
process, whereas it is much easier to take measurements on a large sample of items after any
given stage. Could such “cross-sectional” data be useful in variation transmission analysis?
The naive estimates introduced here can be extended in an obvious way to this situation.

Other important issues are how to deal with missing data, and how to incorporate mul-
tivariate data. Fong and Lawless (1996) have proposed the use of the Kalman filter for

estimation in multivariate models.

Appendix

The purpose of this appendix is to give the approximate variance estimates of the square
root of the proportion of variance contributed at each stage. These approximate variance
estimates are computed by finding the parameters of the Wishart distribution of the cross

product matrix, and using these in a first order Taylor series expansion of the function. The
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variance of the square root of the first proportion is

Var(y\/1— pis) =

where

Uy

U2

Us
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V13
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V23

V33
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— — 1
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Ty = 2(71,—1)/)120'10'2(0'%—]-0'521)

Tss = 2("*1)(Uf+0e21)2

Finally,
T11 Ti2 ®13 Ti4a Ti15 1
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and where the z;;s are given as above.
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Table 1: Actual values of the three variance components and the proportions in the simula-

tion runms.

p12 | Component | pas = V0.2 P23 = V0.5 p23 = V0.8
V0.2 First 0.80 0.50 0.20
Second 0.16 0.40 0.64
Third 0.04 0.10 0.16
V0.5 First 0.80 0.50 0.20
Second 0.10 0.25 0.40
Third 0.10 0.25 0.40
V0.8 First 0.80 0.50 0.20
Second 0.04 0.10 0.16
Third 0.16 0.40 0.64




p2s | p12 | Comp. | Actual | 0, =0.1 | o, =0.3
Bias Bias

First 0.8 | 0.00394 | 0.0317

v/0.2 | Second | 0.16 | -0.00238 | -0.0200
Third | 0.04 | -0.00156 | -0.0117

First 0.8 | 0.00394 | 0.0317

V0.2 | /0.5 | Second | 0.1 | -3.88e-05 | -0.00251
Third | 0.1 | -0.00390 | -0.0292

First 0.8 | 0.00394 | 0.0317

v/0.8 | Second | 0.04 | 0.00230 | 0.0150
Third | 0.16 | -0.00624 | -0.0467

First 0.5 | 0.00985 | 0.0792

v/0.2 | Second | 0.4 | -0.00595 | -0.0500
Third | 0.1 | -0.00390 | -0.0292

First 0.5 | 0.00985 | 0.0792

V0.5 | 4/0.5 | Second | 0.25 | -9.71e-05 | -0.00627
Third | 0.25 | -0.00975 | -0.0729

First 0.5 | 0.00985 | 0.0792

/0.8 | Second | 0.1 0.00576 | 0.0375
Third | 0.4 | -0.0156 | -0.117

First 0.2 0.0158 0.127

V0.2 | Second | 0.64 | -0.00952 | -0.0800
Third | 0.16 | -0.00624 | -0.0467

First 0.2 0.0158 0.127

v0.8 | 4/0.5 | Second | 0.4 |-0.000155 | -0.0100
Third | 0.4 | -0.0156 | -0.117

First 0.2 0.0158 0.127

/0.8 | Second | 0.16 | 0.00921 | 0.0600
Third | 0.64 | -0.0250 | -0.187

Table 2: Bias of proportions when measurement error is ignored.




p23 | p12 | Estimate o. =1L c.=H Real Value
L | L Mle 0.792 (0.072) | 0.790 (0.092) 0.8
Naive | 0.792 (0.072) | 0.790 (0.092)
M Mle 0.790 (0.079) | 0.789 (0.079) 0.8
Naive | 0.790 (0.079) | 0.790 (0.080)
H Mle 0.783 (0.076) | 0.792 (0.078) 0.8
Naive | 0.783 (0.076) | 0.793 (0.080)
M| L Mle 0.503 (0.072) | 0.491 (0.087) 0.5
Naive | 0.503 (0.072) | 0.490 (0.087)
M Mle 0.499 (0.074) | 0.487 (0.079) 0.5
Naive | 0.499 (0.074) | 0.486 (0.080)
H Mle 0.499 (0.075) | 0.500 (0.094) 0.5
Naive | 0.499 (0.075) | 0.501 (0.096)
H|L Mle 0.204 (0.039) | 0.196 (0.057) 0.2
Naive | 0.204 (0.039) | 0.196 (0.056)
M Mle 0.205 (0.042) | 0.190 (0.058) 0.2
Naive | 0.205 (0.042) | 0.189 (0.058)
H Mle 0.205 (0.043) | 0.197 (0.054) 0.2
Naive | 0.205 (0.044) | 0.195 (0.054)

Table 3: Average of 99 values of first proportion estimates for each run. The figures in
brackets represent the standard deviation for these values. (Note: o, = L and H represents
o = 0.1 and 0.3 respectively. p;2 and p3 = L, M and H refer to p;; and pys = \/0._2, V0.5
and \/(E)



pa23 | p12 | Estimate o. =L c.=H Real Value
L | L Mle 0.163 (0.054) | 0.167 (0.074) 0.16
Naive | 0.163 (0.054) | 0.167 (0.074)
M Mle 0.104 (0.040) | 0.101 (0.045) 0.10
Naive | 0.104 (0.040) | 0.101 (0.045)
H Mle 0.044 (0.017) | 0.041 (0.021) 0.04
Naive | 0.044 (0.017) | 0.041 (0.021)
M| L Mle 0.396 (0.063) | 0.402 (0.074) | 0.4
Naive | 0.396 (0.063) | 0.402 (0.074)
M Mle 0.253 (0.049) | 0.256 (0.052) 0.25
Naive | 0.253 (0.049) | 0.256 (0.052)
H Mle 0.100 (0.022) | 0.094 (0.027) 0.10
Naive | 0.100 (0.022) | 0.094 (0.027)
H|L Mle 0.634 (0.064) | 0.645 (0.076) 0.64
Naive | 0.634 (0.064) | 0.646 (0.076)
M Mle 0.401 (0.052) | 0.393 (0.073) 0.40
Naive | 0.401 (0.052) | 0.391 (0.073)
H Mle 0.163 (0.034) | 0.158 (0.049) 0.16
Naive | 0.164 (0.034) | 0.157 (0.050)

Table 4: Average of 99 values of second proportion estimates for each run. The figures in

brackets represent the standard deviation for these values.




P23 | p12 | Estimate o. =L oc.=H Real Value
L | L Mle 0.045 (0.027) | 0.043 (0.025) 0.04
Naive | 0.045 (0.027) | 0.043 (0.026)
M Mle 0.107 (0.043) | 0.110 (0.044) 0.10
Naive | 0.107 (0.043) | 0.109 (0.044)
H Mle 0.173 (0.062) | 0.167 (0.064) 0.16
Naive | 0.173 (0.062) | 0.167 (0.066)
M| L Mle 0.100 (0.040) | 0.107 (0.045) 0.10
Naive | 0.100 (0.040) | 0.108 (0.045)
M Mle 0.247 (0.062) | 0.257 (0.066) 0.25
Naive | 0.247 (0.062) | 0.258 (0.068)
H Mle 0.401 (0.068) | 0.406 (0.084) 0.40
Naive | 0.401 (0.068) | 0.405 (0.086)
H | L Mle 0.162 (0.060) | 0.159 (0.067) 0.16
Naive | 0.162 (0.060) | 0.159 (0.066)
M Mle 0.395 (0.067) | 0.417 (0.080) 0.40
Naive | 0.395 (0.067) | 0.419 (0.080)
H Mle 0.632 (0.054) | 0.645 (0.071) 0.64
Naive | 0.631 (0.054) | 0.648 (0.074)

Table 5: Average of 99 values of third proportion estimates for each run. The figures in

brackets repfesent the standard deviation for these values.




p23 | p12 | Estimate | Raw Raw | Proportion | Proportion
g.=L|o.=H o, =L o.=H

L |L Mle 98 91 96 95
Naive 97 91 98 91
M Mle 97 98 95 98
Naive 98 97 97 98
H Mle 91 97 95 98
Naive 92 94 97 97
M| L Mle 96 96 96 95
Naive 94 94 99 98
M Mle 97 95 99 96
Naive 97 95 99 97
H Mle 97 91 98 95
Naive 97 91 95 97
H|L Mle 96 95 97 95
Naive 98 96 98 96
M Mle 95 93 95 96
Naive 97 94 97 99
H Mle 97 96 95 97
Naive 98 97 98 97

Table 6: Coverage frequency for first variance term for each run. Note that these figures are
not given in percentages - they are the actual number of intervals that cover the real value

out of 99 trials. (Nominal confidence coefficient is 98%.)



P23 | P12 Component Proportion
oo.=L|{o.=H|o.=L |o.=H
96.9 96.8 95.8 96.9
97.0 97.2 97.2 96.5
96.9 97.2 97.1 97.4
96.5 97.7 98.1 97.3
96.9 97.3 98.1 96.7
96.8 97.1 98.3 96.9
96.2 97.3 97.2 97.8
96.6 97.9 96.6 97.8
97.2 97.7 98.1 98.4

g o 2 8 2 B 0 oo
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Table 7: Coverage frequencies of confidence intervals using approximate variance formulas for
the square root of the first variance component. Numbers are percentages of 1000 simulations.

Theoretical coverage frequency is 98%.



P23 | P12 Component Proportion
oe=L|o.=H|o.=L|o.=H
97.3 98.1 97.3 98.0
97.6 97.6 98.0 98.1
97.6 97.8 98.2 98.1
97.4 97.7 97.4 97.1
97.8 97.2 97.7 96.8
96.8 97.0 96.5 98.1
96.6 97.0 97.1 97.7
96.6 96.7 96.7 97.0
96.8 97.7 97.5 98.3

mom 2 £ E R & & oo
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Table 8: Coverage frequencies of confidence intervals using approximate variance formulas
for the square root of the second variance component. Numbers are percentages of 1000

simulations. Theoretical coverage frequency is 98%.



P23 | P12 Component Proportion
oc.=L|o.=H|o.=L|o.=H
96.3 96.9 96.7 96.9
97.6 98.1 97.6 97.9
98.0 98.4 97.5 98.3
96.8 97.3 97.6 97.9
96.3 97.0 97.7 96.7
98.4 97.1 98.3 97.4
96.8 98.3 96.6 97.6
97.4 96.7 96.9 97.3
98.0 97.1 97.5 97.6
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Table 9: Coverage frequencies of confidence intervals using approximate variance formulas
for the square root of the third variance component. Numbers are percentages of 1000

simulations. Theoretical coverage frequency is 98%.
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Figure 1: Runs for p;; and pa3 = +/0.2. The top row show the run at o. = 0.1, whereas the

bottom row shows o, = 0.3.
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Figure 3: Runs for p;, and p,3 = /0.8.
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