Robust Design for Censored
Exponential Data

‘M.T.Mirnazari and William.J.Welch
University of Waterloo

1.1.Q.P. Research Report
RR-96-07
November 11, 1996

RR-96-07



Robust Design for Censored Exponential Data

M. T. Mirnazari and William. J. Welch
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

November 11, 1996

This work was supported by the Natural Sciences and Engineering Research

Council of Canada.



Robust Design for Censored Exponential Data

ABSTRACT

We study the design of experiments for censored life tests in which failure times
depend on several designable explanatory variables. When ce1_1sored observations are
present, information (expected, observed, etc.) depends on the unknown values of
the model parameters. Also, different realizations of the same experiment might, just
by chance, lead to quite different censoring patterns and hence different information
for the parameters of interest. We study the design of experiments in this context
by “simulated analysis”, where da,—ta are generated by simulation and analyzed. By
repeating this process, one can estimate the distribution of observed information
that would arise from a given experimental plan. This forms the basis for a criterion
to choose the design: i.e., look for a design with good information for the majority
of the simulated data sets. The criterion can also be used to augment an existing
design with extra runs. Parameter estimates from the existing data can be used to

form a prior for generating the augmented runs.

Key words and phrases: Accelerated testing, failure time, lifetime data, optimal

design, reliability improvement.



1 INTRODUCTION

In this article we study criteria for designs involving censored data in reliability
experiments.

Denote the vector of explanatory variables by x and the experimental region by
x. We observe the random variable Y = min(7, L), where T is the lifetime and
L is the censoring limit. The distribution of 7' depends on the design variables x
and on a vector of unknown parameters, 3. The design problem is to choose n
vectors x € x (not necessarily distinct) in order to efficiently estimate functions of
the model parameters, 3, of interest.

For linear regression models without censoring, design criteria include A, D, F,
and G optimality, (e.g., Silvey 1980). Observed and expected information coincide
and the information matrix is the basis for defining a design criterion. D optimality,
i.e., maximizing the determinant of the information matrix, has frequently been
used as a criterion to construct optimal designs. In the absence of censoring, the
information matrix does not depend on the unknown model parameters, facilitating
design construction.

For ceﬁsored lifetime experiments, however, the information matrix depends on
the parameters, 3. A similar problem arises in nonlinear regression, where a com-
mon approach is to obtain an efficient design for the best guess of the parameter
values. This is called locally optimal design, introduced by Chernoff (1953). Anoth-
er method is to assign a (Bayesian) prior distribution to the unknown parameters.
Ford et al. (1989) provided a comprehensive review of nonlinear design methodol-
ogy. Atkinson, Demetrio, and Zocchi (1995), Chaloner and Larntz (1989), Fedorov

(1972, Chapters 2.8 and 4.4), Silvey (1980, Chapters 6 and 7), and St. John and



Draper (1975) also considered designs for nonlinear models without censoring.

For lifetime experiments, both with and without censoring, the expected Fisher
information matrix has been the basis for obtaining optimal plans. Chernoff (1962)
constructed locally-optimal accelerated test plans in one stress factor for the expo-
nential distribution. Nelson and Kielpinski (1976) compared optimal, standard, and
compromise plans for accelerated testing with one stress factor and censored nor-
mal or lognormal data. Escobar and Meeker (1986a) gave an algorithm to compute
the expected information matrix for the smallest extreme value distribution. (For
exponential or Weibull data the logarithm of life time can be expressed in terms of
an extreme value distribution.) Escobar and Meeker (1986b, 1995) obtained test
plans for accelerated life tests with one or more experimental factors. Chaloner and
Larntz (1992) used a prior distribution for the model parameters.

The above papers deal largely with design criteria based on expected informa-
tion. With censored lifetimes, particularly if the number of runs is small, observed
information may vary considerably with the censoring pattern. Expected informa-
tion might average data realizations containing little or no information with more
informative realizations. For this reason we propose the use of observed information.
Efron and Hinkley (1978) argued in general for using the inverse of the observed in-
formation matrix rather than the expected information matrix to obtain a covariance
matrix for parameter estimates.

At the design stage, though, the data, the parameter estimates, and hence the
observed information are unavailable. Thus, to evaluate a given design we pro-
pose repeatedly generating realizations of the data and numerically determining the

distribution of observed information. The realizations have variability due to uncer-



tainty about B and due to the lifetime distribution. This procedure, which we call
“simulated analysis”, is repeated for each design considered by a design-optimization
algorithm. The design with the best distribution of observed information is chosen;
it will tend to avoid poor censoring patterns with low information. Nelson (1990,
Chapter 6.3) advocated simulating data for a tentative test plan to check its suit-
ability. We are taking this idea one step further and using simulation to choose the
design. Generating realizations requires the true values of the unknown parameters,
B. We sample B from a prior distribution. When augmenting a design the prior for
B can be based on the analysis of the available data.

The methods described here could be aimed é,t two types of experiment. First,
the explanatory variables x could be designable engineering factors. The design
criteria proposed in Section 3 lead to designs that are efficient for estimating 3;
good estimation of these parameters leads straightforwardly to optimization of the
engineering design. There seems to be little work on experiments for this objective.
Secondly, the explanatory variables could be stress factors in accelerated testing
(e.g., Nelson 1990), where the objective is to estimate percentiles of the lifetime
distribution. While we do not directly address accelerated testing, our design cri-
teria for efficient estimation of 3 probably also lead to good plans for percentile
estimation. An example in Section 4 illustrates. The design criteria proposed could
be readily adapted to address accelerated testing directly.

In Section 2 we introduce notation and give the observed and expected infor-
mation matrices. We concentrate on the exponential lifetime distribution. Section
3 proposes design criteria and describes their numerical implementation. Section 4

provides two examples to demonstrate the methodology, including design augmen-



tation. Finally, Section 5 makes some concluding remarks.

2 OBSERVED AND EXPECTED INFORMATION

For this paper we assume that each unit is tested for a limited period of time, L,
i.e., we may have Type-I censoring of the observations. Unequal censoring times, or
other types of cenéoring, could be handled with minor adaptation.

Suppose that the failure time, T', is a non-negative, continuous random variable
with survival function F(t) = Pr(T > ¢) for 0 < t < co. The density and hazard

functions are written as

_d . P(t<T<t+A)
J(t) = -2 F(t) = lm -

and

h(t):}liinopr(tsTstth):%));

Unit 2 in a sample of size n would have failure time T;. Define the random variables
Y; = min(T;, L) and §;, an indicator taking the value 1 for an uncensored (complete)
observation and zero otherwise. The dependence of failure times on explanatory
variables x involves uﬁknown parameters 3. Thus, F, f, and h are functions of
x and B. For data y,...,yn, the likelihood function can be written (e.g., Lawless

1982, Chapter 1) as

n n

£ =TT [f (i, %, B TI1F(yirxi, B)) .

1=1 i=1
After simplification, the log likelihood can be written
£=Zlogh(yi7xi7ﬁ) + Zlogf(yiaxi)ﬁ)) ’ (1)
u =1

where the first summation is over the uncensored observations.



Let y denote the vector y;,...,y, and let X similarly denote the experimental

T

plan, i.e., row ¢ of X contains x;. Thus, the log likelihood can be written as
¢(B8,X,y). The information matrix is I(8,X,y) = —0%/8B%. The expected or
Fisher information is obtained by taking expectation with respect to the distribution
of Y. Alternatively, evaluating I at 8 = 3, the maximum likelihood estimate (MLE)
of B3, gives the observed information matrix. For details on calculating MLE’s for
censored experiments see, for example, Lawless (1982, Appendix F).

The exponential distribution with rate A has f(¢; \) = Ae=*'. To ensure a positive

rate the dependence on the explanatory variables is expressed through

A(x) = exp(g(x)"B), (2)

where g(x) = (g1(x),...,9x(x))T contains k known functions of the explanatory
variables, e.g., linear, quadratic, and interaction terms. The log likelihood becomes
n T
Z(ﬂ7X>Y) = Zg(xi)T.B - Zyieg(Xi) '61
u =1

and element (r, s) of the information matrix is

2 n ’ .
B, X, y)l,, = _%@XB,}') = gyigr(xi)gs(xi)eg(xi) B

Thus, the information matrix can be written as
1(8,X,y) = GTWG,

where G is an n.x k matrix with g(x;)7 in row i, and W = diag[y; A\(x1), - . . , yn A(%2)]-
We will refer to W as the weight matrix. The observed and expected information
matrices are

I(B,X,y) = G"WG, 3)

6



and

I(8,X) = Ey [1(8,X,y)] = G'IIG, (4)

where the estimated weights w; = yij\(x;) are based on the MLE’s of 3, and II =

diag(my,...,7,) with m; being the probability that unit ¢ fails before time L.

3 DESIGN CRITERIA AND NUMERICAL IMPLEMENTATION

As noted in Section 1, expected information has often been used as a design criterion.
For a design X, the D-optimality criterion based on the expected information matrix
is defined as
o(X) = Eg |By [1(8,X,)]["* (5)
and called Dexp-optimality below. Normalizing the determindnt by raising it to the
power 1/k means that the criterion doubles if a design X is replicated to give 2n
runs and the same data occur again. Thus, relative efficiencies can be interpreted
in terms of equivalent numbers of observations. Note that the inner expectation
with respect to the lifetime distribution can be obtained from (4). In general, the
outer expectation with respect to a prior or weight function for 8 is computed
numerically. Chaloner and Larntz (1989) used a similar criterion (on a log scale)
for obtaining optimal approximate designs for logistic regression models with no
censored observations. (In this article, we will be concerned only with exact, i.e.,
integer replication, designs including censored observations.)
We propose a criterion based on simulated analysis that takes account of un-
certainty in B and in the data, rather than taking expectations with respect to Y.
We generate m samples, (8,¥,),---,(Bm>¥m), Where the dependence of y; on X

and on B, is omitted in this notation. Here, y is a vector of length n, but if we are
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augmenting no previous observations we need simulate only the n —ng new observa-
tions. For simulated sample or realization j, we compute the observed information,
I (Bj,X, ¥;), given in (3). The D-optimality criterion for this sample (and design
X) is

Dj = |I(Bj’x’y]‘)|1/k7 (6)

where k is the number of parameters in the vector, 3.
The distribution of D; values over the m samples needs to be reduced to a scalar
quantity for design optimization. One possibility, called Daye by Mirnazari (1995),

is to take the average value,
p=Lyp, (7)

This estimates the criterion
®(X) = EgEy|1(B;, X, y,)I'*.

Compared with Dexp in (5), Dave reverses the order of taking the determinant and
the expectation with respect to Y. Moreover, it uses observed information.

In practice, only one experiment is to be performed, and an experimenter would
like good information for all, or at least most, realizations. Borrowing Taguchi’s
(1986, Chapter 8) larger-the-better loss function for robust product and process

design, we suggest minimizing
1 1

™ L 2
over possible designs. This criterion will tend to give a distribution of D; values
with large average and small standard deviation. It heavily penalizes designs with

any very poor realizations, i.e., with D; ~ 0.



Some numerical experimentation showed, however, that it may be impossible to
find a design that avoids D; ~ 0 for all m realizations. To avoid domination of the
criterion by a few very poor realizations, we sort Dy,...,Dp to give Dy > +-+ >

Dy and minimize
101

_Z-Dz—’ (8)

m' 21 D

where m’ < m. In the examples of Section 4 we take m’ = 0.95m. Thus, we aim to
find a design such that the best 95% of realizations have good average information

with small variability around the average. We call this criterion D as it seeks

rob>
a design robust to variability from uncertainty in 3, from the lifetime distribution,

and hence from the censoring pattern.

We now summarize the steps in computing the D} -optimal designs:

1. Simulate m random samples. (Numerical trial and error suggests that m = 100
is adequate.) Sample j has k parameters, 3, sampled from a possibly corre-
lated prior distribution or weight function and n independent Uniform[0, 1]
random variables, u. Although the generated data will change with the design
during design optimization, the same random B and u vectors will be used
to generate the exponential lifetimes. This avoids problems that would occur
with the design optimization algorithm if different random perturbations affect
the criterion each time it is computed. The m samples (8, u1),..., (B, Um)
are computed as a Latin hypercube sample (McKay, Conover, and Beckman
1979). Compared with pure Monte Carlo this gives a more systematic cov-
erage of the prior distribution for 8 and of the uniform distribution for data

generation.



2. Simulate the data. For each sample j we use the. design X and the vec-
tors B; and u; to generate n observations. Observation ¢ has rate A(x;) =
exp(g(xi)T,Bj) as in (2). Lifetime ¢; is given by — log(u:;)/A(x:), where u;; is
element ¢ of u;, and y; = min(ti,L). If no observations are already available

from a previous experiment, only the n — ng new observations are simulated.

3. Fit the parameters by maximum likelihood. For simulated data set j we find
the maximum likelihood estimates, ,5' ;- Currently, we use a conjugate gradient

algorithm (Press et al. 1992, Chapter 10.6).

4. Compute the criterion. For sample j we compute the determinant of the ob-
served information matrix, D;, from (6). The D}, criterion is then computed

using (8).

5. Optimize the design. Steps 2-4 are carried out for every design, X, tried
during minimization of the design criterion. We currently use a modified
Fedorov exchange algorithm (Cobk and Nachtsheim 1980). This numerical
optimizer is not guaranteed to find the best design; we typically make three

optimization tries from different random starts and choose the best.

At Step 3, due to the particular censoring pattern, there may be some problems
with maximum likelihood estimation of B for some designs and data realization-
s. Often the likelihood is maximized and flat as some of the 3 parameters go to
infinity. This causes no practical.problems. The numerical optimizer meets the con-
vergence tolerance for large, finite values of the particular B parameters, where the
determinant of the observed information matrix is close to zero. The D, criterion

penalizes designs with more than a few realizations having this behaviour, and the
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optimizer will seek better designs.

At Step 4, other criteria based on a simulated analysis could be substituted.
For example, instead of D; in (6) we could compute the estimated variance of a
percentile of the lifetime distribution. To obtain consistently good variances across
realizations, the m variances would be combined in a way similar to D}, in (8).

For comparison, in Section 4 we also present designs based on expected informa-
tion. To compute Dexp in (5), the expectation over 3 is estimated by averaging m
samples from the prior as in Step 1. The same m samples are used for computing
Dexp and D}, to make the comparisons fairer. The u samples are not required,
nor is maximum likelihood estimation carried out in Step 3.

The computations presented here were made using software of Welch (1996).

4 EXAMPLES

Two examples are provided here. The first illustrates the differences between prop-
erties of D - and Dexp-optimal designs. The second demonstrates augmentation
of a design for an accelerated life test. The reader is also referred to Mirnazari (1995,

Chapter 3) for examples using the Daye criterion in (7).

4.1 Comparison of the D}, and Dexp Criteria

Consider an experiment with two explanafory variables from [—1,+1]? and n = 8
runs. The rate function (2) is assumed to be A(x) = exp(fo + Biz1 + P2z2). To
investigate the effect of censoring, we try L = 50, 75, 100, and 200.

We take independent normal priors for the three parameters with means and

standard deviations as follows: (B, has a N (—4%, 6—12-) distribution, while 8, and 3,
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are N(1,3). These choices, in conjunction with the L values tried, give fairly low
to fairly high censoring probabilities. At the prior means, for L = 50 the censoring
probability ranges from 0.017 (at z; = z; = 1) to 0.928 at (z; = z2 = —1), whereas
for L = 200 it ranges from 0.000 to 0.740.

The designs produced by the DroB and Dexp criteria are shown in Figure 1.
The design points have been “jittered” ,- i.e., moved a small random distance, so that
replicates are not overplotted.  For both criteria, m = 100 samples were taken.

For D we accumulated the m’' = 95 best realizations when computing (8). It

rob»
is seen that both criteria avoid the z; = £ = —1 corner where there is the largest
probability of censoring. For all values of L, the Dexp-optimal designs are supported

only at the other three corners. In contrast, for L = 75 and L = 50 the D__; -optimal

rob
designs have support at the same three corners and at further locations with less
censoring. Evaluation of alternative designs shows that the Dexp-optimal designs
are not unique. For example in Figure 1, the design for L = 50 has only two points
at (-1, +1). Putting three points at each of (-1, +1) and (41, -1) with the other two
points at (+1, +1) gives the same Dexp criterion value. We have not experienced
similar nonuniqueness for Dave or D, },-optimal designs.

For each value of L, Figure 2 compares the properties of the two designs. Their
distributions over all m = 100 prior-data realizations for the determinant of the
observed information matrix in (6) are compared via a smoothed density plot and
via a Q-Q plot. Note that the distribution of the normalized determinant, D, is
bimodal for the Dexp-optimal designs when L = 100, 75, or 50. There is a proportion

of very uninformative realizations, presumably because of poor censoring patterns.

The D },-optimal design avoids many of these poor realizations. The two designs

12



(a) D_rob designs
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Figure 1: Optimal designs for two explanatory variables with eight runs and censor-

ing limit L = 200, 100, 75, or 50: (a) D,,},-optimal designs and (b) Dexp-optimal

designs.



(a) Density plots
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(b) Q-Q plots
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have similar average determinants, but the larger-the-better criterion motivating
D_,p, produces less variability around the average.

While this is just one example, it illustrates some typical qualitative features.
In general our experience (see also Mirnazari 1995) shows that in comparison with

Dexp, the D, 1,-optimal designs tend to have:

e Support points favouring subregions of x with the least probability of censor-
ing. When many observations are censored a very poor determinant results;
D, .}, optimality penalizes designs with more than a few poor determinants.
Thus, D,},-optimal designs tend to have realizations with fewer censored ob-

servations.

More support points.

A unique design contrary to the lack of uniqueness for the Dexp-optimal de-

signs.

Greater sensitivity to the censoring limit, L. (Often the same Dexp-optimal

design is generated for a wide range of L values.)

High efficiency when evaluated under the Dexp criterion. Conversely, Dexp-
optimal designs perform poorly when evaluated under D} unless there is

little censoring.

4.2 Electrical Insulation Example

Nelson (1972, 1975) gave a set of data from an experiment on the breakdown of
an insulating fluid subjected to various elevated test voltages, v. The data are also

reported in Lawless (1982, Chapter 4.3). The main purpose of the accelerated life
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test was to estimate the distribution of the breakdown time at v = 20KV. Nelson
(1975) used a power law model, i.e., a Weibull distribution with shape parameter
o and scale parameter p(v) = cvP. Taking the explanatory variable z = log(v), his
analysis of the data showed that the Weibull shape parameter is close to 1 and hence
an exponential model is appropriate.

In the original experiment all 76 items on test failed, i.e., there was no censoring.
To introduce censoring, the topic of this article, we consider a limit of L = 50. This
would have given data with 17 units censored out of 76. Fitting an exponential
model to the censored data and plotting residuals (adjusted for censoring) versus
the exponential ordered statistics (Lawless 1982, Chapter 6) gives a roughly straight
line, confirming the exponential model suggested for the original data.

We now consider augmenting the 76 (censored) observations with a second-stage
experiment putting a further 24 items on test. The rate function (2) is assumed to

be log(A(v)) = Bo + B log(v). The experimental region is the same as that for the

Standard

Parameter Mean deviation
Bo -80.85 6.04
B 22.17 1.71

Table 1: Prior means and standard deviations for the second-stage experiment.

first-stage experiment, i.e., v = 26,28, ...,38. Table 1 gives the means and standard
deviations of the normal prior for the second stage based on the parameter estimates
and standard errors from the first-stage analysis. When generating the m = 100

Latin hypercube samples from the prior distribution we also took account of the
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correlation of -0.999768 between 3, and f;. Iman and Conover (1982) described a
method for obtaining a target covariance structure; iterating their procedure gives a
sample correlation of -0.999843. For the 100 data realizations, the lifetimes for only
the 24 new runs were simulated.

The design found using the D}, criterion has 22 new runs at v = 38 , one run
at 30, and one run at 32. This is in contrast to the first-stage design which had
fewer runs at v = 38 than at 30-36. The distribution of the simulated D; values
[see (6)] is shown in Figure 3(a). The corresponding value for the first 76 (censored)
runs is 3.85, shown by an asterisk. The 24 new runs make more improvement in the
determinant than would be expected from the change in sample size, presumably
because the designs for the new and old runs have very different patterns..

Using least squares estimates of the parameters, Nelson (1975) estimated the
first percentile and the mean life time at z,0 = log(v = 20). Standard errors
are calculated from normal approximations. From the model, the log of the first

percentile of the life distribution is

log(to.01) = log(u) + log[— log(0.99)]

while the log of the mean at zq is

log(p) = log(1/)) = =B — z20f1.

These quantities can be estimated using the maximum likelihood estimates, Bo and
B, for each of the 100 data sets simulated for the D, -optimal design. The standard

error of the estimated log mean lifetime can be obtained from

Var((log(k)) = Var(g(z)7B) = g(2)"V(B)g (<),

17



(a) Density of the normalized determinant
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indicate values for the first 76 runs only.

18



where g(z) = (1,72)T and V(B) is the asymptotic covariance matrix from the
inverse of the observed information matrix. A similar method gives a standard
error for log(’tgm). Figure 3(b) shows the estimated (smoothed) density plot for
the standard error of log(\u) from the m = 100 samples. Analysis of the first-stage
76-run design (with censoring) gives a standard error of 1.07. Only two of the
m = 100 simulated 100-run data sets give a standard error slightly larger than 1.07
(due to changes in the parameter estimates). Most realizations substantially reduce
the standard error. Finally, as shown in Figure 3(c), the standard error of log(\p) is
nearly linearly related to the normalized determinant, D, for the 100 realizations.

Thus, using the standard error in the design criterion instead of D would make little

difference here.

5 CONCLUSIONS

For small experimental plans, censoring introduces substantial variability. By
chance, a censoring pattern might arise that has little or even no information for
parameter estimation. This uncertainty is in addition to the dependence of the in-
formation matrix on the parameters being estimated. We have proposed simulating
data sets that might arise and carrying out analyses based on observed information.
By searching for a design that does well for most realizations, the experimental plan
can obviate some of the uncertainty at the design stage.

Specifying a prior for the unknown parameters is easier in a follow-up experimen-
t, where an empirical prior from the first-stage can be used. In design augmentation,
expected-information criteria would mix observed information from the first-stage

with expected information from the second. An approach based on observed infor-
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mation for all runs seems even more compelling here.

Further work on design for censored Weibull lifetimes will be reported elsewhere.
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