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SUMMARY

This article discusses methods of studying variation in quality characteristics of products
that move through a multi-stage manufacturing process. The ideas are based on tracking
and measuring the characteristics of individual parts through sequences of stages. If this is
done then simple regression and analysis of variance tools may be used to study the amount
of variation that is attributable to different stages of the process, and opportunities for

variation reduction may be identified.
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1 Introduction

A fundamental strategy to reduce variation in manufacturing processes is to first identify
the sources of the variation and then to take remedial action. The identification of variation
sources is useful, both for improving the current process and for designing more robust future
processes. In processes consisting of discrete stages there may be certain stages at which
considerable variation originates and other stages that effectively absorb variation introduced
upstream (i.e. at previous stages) in the process. In order to target variation reduction
activities it is therefore important to understand how variation is added and transmitted
across the stages of a process. This article discusses methodology for doing this and, in
particular, for attributing the variation in key process or quality characteristics to the various
stages in a process.

A pair of examples taken from automobile manufacturing will illustrate the main ideas.
Following a description of the examples, the second section presents formal models for varia-
tion transmission and the third discusses the two examples further. A fourth section discusses
the effect of measurement error, and a fifth concludes with some remarks on extensions to

the methodology.

Example 1: Crankshaft Machining

We consider the final two stages in the machining of automobile crankshafts, portrayed in
Figure 1. Crankshafts are ground by one of four grinders and then passed to a lapper which

removes some additional metal (approximately 25 x107* inches). The key characteristic we



focus on here is a particular journal diameter y, measured from nominal, in units of 107*
inches. The objective is to reduce variation in y.

We assume that a study can be carried out whereby the journal diameter on a crankshaft
may be measured before and after being processed by the lapper; we denote these measure-
ments as x and y respectively. In addition, we define a covariate z such that z = j if a part
is ground by grinder ;.

We may partition variation in y into components by using the conditional variance for-
mula

Var(y) = Var {B(y]a, 2)} + E {Var(ylz, )} . 1
The expectations on the right side of (1) are with respect to & and z. Data described in

Section 3 suggest the relationships
E(ylz,z =j) = a+ Bz, Var(y|z,z) = o>
Then (1) gives
ol = ol + ol (2)
The first term on the right hand side represents variation that is transmitted from upstream,
through the lapper; the second term represents variation added by the lapper. If 8 were
close to zero then the lapper would effectively screen out variation from upstream sources,

represented by o2 = Var(z). Note that, if desired, 02 can be partitioned into within and

between - grinder components:



where p; = E(z|z = j),07 = Var(z|z = j), po = Xj_y pj/4, and we assume that each

grinder processes 1/4 of the crankshafts.

Example 2: Hood Fits

This example is taken from the assembly of automobiles. We consider four operations
widely spaced in the assembly process that relate to the installation of hoods. The four
operations are: 1) install or “hang” the hood, 2) paint the hood (and the rest of the car), 3)
install hardware such as the hood latch, and 4) adjust or “finesse” the hood for better fit.
These operations will simply be denoted as HANG, PAINT, HARDWARE, and FINESSE.
There can be physical movement of the hood or adjacent fenders at all of these operations,
including PAINT, where thermal effects from the bake ovens are possible.

The quality characteristic is flushness of the hood to the surrounding fenders. We will
consider four measurements, two along each side of the hood, one near the front and one near
the rear. By convention, a plus sign on the deviation indicates that the hood is high relative
to the fender, and a negative sign indicates that the hood is low. The nominal condition is
zero deviation at all locations, corresponding to a perfectly flush hood.

We are interested in changes in mean levels from one operation to the next since such
changes will affect the tolerances at upstream locations required to attain the desired results
at the end of the line. If mean changes were the only concern, then one could simply sample
cars (not necessarily the same ones) following each of the four operations. In addition to

mean changes, we will also be interested in determining where variation is added to the



process and the degree to which it is transmitted through the process. Such information can
be useful in directing resources for problem-solving.

For this type of analysis, it is necessary to “track” vehicles through the plant, taking
measurements on the same vehicles at each operation, in order to estimate the statistical
relationships from one operation to the next. This requires following a sample of cars, making
sure that each car is met and measured at the designated operations. These measurements
were taken with a special hand-held tool. Variation due to the measurement system is a
concern that we will discuss in more detail later.

As in the first example, let y denote the measure of interest, in this case, the flushness
from nominal in millimeters at one of the locations. We have four operations here so y; will
denote the flushness at the ** operation, ¢ = 1,...,4, corresponding to HANG, PAINT,
HARDWARE, and FINESSE. Ignoring covariates other than the corresponding flushness

measurement at the previous operation, the linear model discussed in the next section has

E(yilyi-1) = o + Bryi1, Var(yeyi—1) = O'zt

and

o} = Bio} + a2, (4)

2

for t =2, 3, 4, where o7 denotes the variance of y;. Here, o,

represents the variation added
at the t** operation. The amount of variation observed at operation ¢ that is transmitted

from the previous operation is 8707 ;. Hence, the regression coefficient, B;, governs the

degree of transmission of variation.



2 A Variation Transmission Model

We assume to start that a quality characteristic y is measured at each of T' process stages,
and denote the measurement at stage ¢ as y;. The following simple model is adequate in

many situations:

y ~ N(m,ol) (5)

vy = o+ By te, t=2,---,T (6)

where e; ~ N (0, agt). More specifically, this is a first order autoregressive model in which
the distribution of y; given y;_1,Y:_2, -+, y1 depends only on y;_,. This assumption can often
be justified in the context of a sequential manufacturing process. The process at stage ¢ only
“knows” what is presented to it from stage ¢t — 1 in the form of work in process. Its only
“memory” of previous stages is through that work in process, which must pass through
stage t — 1. The process is assumed stable in the sense that the model (5) and (6) is valid
over time.

Let us denote E(y;) by p: and Var(y,) by of. It follows from (1) and (2) that for

t=2,---,T
e = o+ Biphe-1
o-t2 = tzo-t2—1 + O.Zt' (7)

This corresponds to formula (1) in Section 1. The first term on the right hand side of
(7) represents variation transmitted to y; from stage ¢ — 1, and the second term represents

6



variation added at stage t. As such, they indicate possibilities for reducing variation in v,
by (i) reducing o.,, (ii) reducing o;_1, or (iil) making G; closer to zero.

We are interested in making ¢4 small, since it represents variation in y at the final stage.
We can consider o4 in terms of variation added at stage T plus variation transmitted from

stage T'— 1, via (7). In addition, by using (7) recursively we get

07 = BrBr 1075 + Broc, , +o¢, (8)

and, continuing back to stage 1 (and writing o7 = 0?2 ),

0% = (BrPr-1--- ,32)2 ‘731 + (BrBr—1--- 53)2 022 +- 4 ﬂ%azT_l + UZT. 9)

This decomposes the variation in y; into components attributable to each stage t = 1,---, T,

and may be used to suggest which stages we might concentrate on in order to reduce o%.
It should be noted that the utility of (9) is dependent on the validity of (5) and (6),

especially when there are several stages in the process. In section 4 we discuss this point

further and make suggestions concerning the use of (9).

2.1 Estimation of Variation Components

It is assumed that a study can be carried out in which (y1,y2,- -, yr) may be measured
on a representative set of n parts or units. That is, we assume that a random sample
(Yi1, -y yir) @ = 1,- -+, n, of measurements from the model (5) and (6) are available. In that

case it is easy to estimate the parameters p1, 07 and oy, B;, 0, (t = 2,---,T): the maximum



likelihood estimates are

. _ . J _\2
K1 = Y U% = _Z(yil - ?Jl)
ni:l
. St-1 . oA
T &4 =7, - By t=2,--,T

b= g
52 Sit — BuSec1s  t=2,---,T

Q
Il

where 7, = ;yit/n, S = 2 (Yie — 7,)" /n and Si_1; = 2-:1 (yi,t—l - ~?;7t~1> (yit —7,) /n. The

1=

estimated version of (2.3) is then

A2 _ A242 ~2
0y = P01 T 0O,

(10)

where 62 = Sy;. We use the maximum likelihood estimates 67 and 6?2, so inserting estimates

into (7), (8) or (9) gives an exact partition of the total observed variation.

2.2 Extensions to Include Covariates

Covariates can be introduced into models (5) and (6) for several reasons.

Suppose at stage ¢, an input covariate z; is measured that perhaps contributes to the

added variation at that stage. The model can be modified to
Yy = ¢ + Bryi—1 + 1T + €

where if ~; is relatively large, the standard deviation on ej should be much less than that of

e;. In this instance, the added variation at stage ¢ can be reduced by reducing variation in

the input z;.



A second application of covariates is to model the effect of parallel processing streams.

Suppose at stage t there are two parallel operations. Consider the model

ye = zi(as + Beyeo1 + ) + (1 — z)(of + Biys—1 + er)

where 2, indicates the processing stream (z; = 0,1) and e, e; have standard deviations o,, o7,
respectively. In this model, the transmitted and added variation may be stream dependent.

We can write

Var(y:) = E(Var(yi|z)) + Var(E(y:|2)). (11)

The second term on the right side of (11) is due to the variation in targeting of the two
streams. If this component is found to be large, then it can be reduced by ensuring the two
streams have the same mean value given y;_;. The first term can be partitioned as usual for
each z into added and transmitted components.

Aside from discussing example 1 further in the next section, we do not consider covariates

in detail, but it is clear that they can be employed usefully.

3 Examples

We illustrate the ideas of the preceding section by considering the two examples introduced

in Section 1.

Example 1. Crankshaft Machining

Over a period of several days 96 crankshafts were randomly selected from production and



their journal diameters measured before and after passing through the lapper; 24 crankshafts
came from each of Grinders 1, 2, 3 and 4. The data are portrayed in Figure 2; = is the
diameter before lapping and y the diameter after lapping, measured in units of 10™* inches.
The line for each plot is a least squares line, discussed below.

The scatter plots in Figure 2 are reasonably consistent with the model introduced in
Section 1, where z (= 1,2,3 or 4) indicates which grinder a crankshaft was processed by,
and

E(y|z,2) = a + Bz, Var(y|z,z) = o’ (12)

The fit of the model is discussed bfieﬂy later. Let z;; and y;; denote the diameters for
crankshaft ¢ from grinder j (j = 1,2,3,4; ¢ = 1,...,24) before and after lapping and define
T = 3;22;i/96, § = ;2 ;¥;:/96. Then we have the normal distribution maximum
likelihood estimates &Z =2 iy — y)2/96, 62 = i iy — z)?/96, B = G4y/62 and
62 = 62 — 3262, where &,y = ¥, (250 — 2)(y;: — §)/96. These estimates lead to the
partition of variation in (2) as

) =Bt + a2,

which here gives

11.68% = (1.0262)(10.68%) + 4.04%. (13)

The partition (13) indicates that little of the variation in the final diameter y is added by
the lapper: most of it is due to variation in the pre-lapper diameters = that is transmitted

through the lapper. If we break &2 into within and between grinder components we find,

10



analogous to (3), that 10.68% = 9.22? + 5.39%. Most of the variation in y is therefore due
to variation in the crankshafts that come out of each grinder. Note that if we had not
measured the diameter z of each crankshaft before lapping but had observed which grinder
the crankshaft came from, then we would be able to determine that not much of the variation
in y was due to differences between crankshafts processed by the four grinders. However, we
would not know that most of the variation was transmitted from upstream, as opposed to
being added by the lapper.

Figure 2 shows the least squares (maximum likelihood) line y = y+ B(z—z) superimposed
on the scatter plot for each grinder. The data are reasonably consistent with the model (12);
there is evidence of very mild departures, especially for grinder 3. However, if we fit models
that accommodate these small departures, for example by allowing separate regression lines
for each grinder, the partition of variation changes very little and the overall conclusions
are unchanged. Hence, we prefer to retain (12) as a useful and quite accurate summary of
variation in the data.

Example 2. Hood Fits

This section contains an analysis of data from the hood fits example. The discussion will
center around three sets of graphs given in Figures 3-7.

The sequence or line charts in Figure 3 contain plots of the flushness versus plant oper-
ation for each of the four measurement locations. Each connected set of points represents
one car. The most obvious observation is that the hood is moving up relative to the fenders

at the rear during processing. The statistics indicate that the movement is approximately

11



1.5mm on each side, most of it accounted for at FINESSE. The end result is that near
nominal fits are attained on average on the left side, but hoods remain 1.66mm low on the
right. While seemingly trivial, we have found this type of finding to be extremely important
in practice. It would indicate here, for example, that to remove the FINESSE operation, it
would be necessary to change tolerances so that hoods are installed higher at the rear than
is the current practice.

As mentioned earlier, it is not necessary to track vehicles to determine this type of change
in mean. There are, however, more complex questions that require tracking vehicles. Where
" is the variation coming from? Is it being passed through the system or is it being added at a
few key operations? The line charts provide a glimpse. Parallel lines between stages indicate
transmission of variation. With parallel lines the mean may change, but the variation at
the end is the same as at the beginning. Lines that splay out indicate a magnification of
variation, while converging or crisscrossing lines indicates some degree of adjustment. When
there is adjustment at an operation, large values are made smaller, and small values are
made larger. With these general guidelines in mind, it seems clear in this example that there
is a great deal of transmitted variation at the rear of the hood and a lesser amount at the
front. However, this can be displayed more clearly with scatter plots.

Figure 4 contains scatter plots of the deviations following the PAINT operation against
the corresponding deviations following the HANG operation. Three of the four regression
slopes, including the two corresponding to the rear of the hood, are near one, indicating a

high degree of transmitted variation. The residual standard deviations can be interpreted as

12



indicating the amount of variation added at PAINT. Figure 5 displays the scatter plots for
the next pair of consecutive operations, PAINT and HARDWARE. The results are similar
except the added variation (scatter) is larger at the front than before. Figure 6 shows the
scatter plots for the final two operations, HARDWARE and FINESSE. Again, the regression
slopes are near one at the rear. These scatter plots bear out the general conclusion of a
high degree of transmitted variation at the rear of the hood. This means that variation that
exists after the hood is hung is being passed on to the end of the line. We conclude that
end-of-line variation at the rear of the hood could be reduced if variation at HANG were
reduced.

But the front of the hood is a different story. There is strong transmission of variation
through HARDWARE on the left side, but it is much weaker on the right side (Figures 4
and 5). Also, there is essentially no transmission of variation throﬁgh FINESSE on the left
side (Figure 6). It is operating as a pure adjuster — the output being completely independent
of the input. For all operations, the added variation, as measured by the residual standard
deviation, is greater at the front than at the rear.

It helps to quantify the results when they are mixed, as these are. The variance de-
composition (9) into components corresponding to individual operations can be used for
this purpose. The variance components for the hood data were calculated according to the
procedure outlined in Section 2.1. A stacked bar chart is a convenient way to display the
results. The height of each bar is the total variation immediately following that operation.

The components of variation make up the elements of the stack. The convention followed

13



here is to place the component corresponding to the first operation at the bottom, and then
proceed upward in order, so that the top component corresponds to the variation “added”
at that operation. One should bear in mind that the chart portrays variances, but that the
effects on the standard deviation of yr are of primary interest.

Figure 7 displays the bar charts for the hood data. It confirms and quantifies the previous
conclusions. Variation is being passed through at the rear, but there is no corresponding
transmission of variation at the front beyond HARDWARE. At the front nearly all of the
variation following FINESSE is due to that operation (left = 100%, right = 80%). This
means that to benefit in an overall way from reducing variation at HANG, we would need
to eliminate (or change) the FINESSE operation. As noted previously, targets would have
to be adjusted to change mean levels.

We can focus on the third bars in Figure 7 to understand the impact of removing the
FINESSE operation. We might conclude that to reduce variation below current levels at the
front, we would need to improve both the HANG and HARDWARE operations. Obviously,
in practice this would have to be discussed in terms of the engineering understanding and

impact on the process.

4 Important Points Related to the Assumptions

The analysis described above depends on the approximate validity of the model (5) - (6).

Diagnostic checks based on regression fits and residuals should therefore be part of the

14



analysis. In this section we mention two important points related to the assumed model.
The first point concerns measurement error. So far we have assumed that y; is measured
exactly, but this is typically not the case. To see the effect of measurement error, suppose

that instead of y; we observe

:’:’t =Y: + 6757 (14)

where the 6;’s (t = 1,---,T) are independent N (O,agt) variables, and are independent of
the y;’s. If we proceed with our analysis by treating the ¢;’s as the y;’s then we are in effect

using the incorrect model, and it may easily be shown that (e.g. Fuller 1987) in large samples

62 — ot + 0% = var (j) (15)
2 ~ ~
A g —15
@ N zﬂt t_12 _ cov (yt~1 yt), (16)
i1+ 05, var (yt—-l)

where “—” denotes convergence in probability. Thus Bt tends to underestimate f;; this is
the well known measurement error attenuation effect.

We need to consider (7) and (10) along with (15) and (16) in order to see the effect of
the measurement error on the variance decomposition, and hence on our assessment of the
possibilities for reducing variation.

Table 1 summarizes the effects of ignoring measurement variation on the estimates of
the three components of variation at a given stage: variation transmitted from the previous
stage, variation added at the stage, and measurement variation. Transmitted variation is
underestimated by the same proportional factor affecting the regression slope. The estimate

of added variation is biased upward by measurement error, as we would expect. But there is
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an additional positive bias equal in magnitude to the negative bias for transmitted variation.

If 05,_, is sufficiently small that o7_,/ (af_l + agt_1> exceeds, say, .9 then the effect of
measurement error may be deemed relatively unimportant. However, if there are several
stages in the process and we use (9) to attribute variation to the different stages, then for
earlier stages the underestimation is much more severe, because of the presence of terms
involving products of the B;’s. For example, the proportional bias factor associated with the
amount of variance transmitted from stage s, or earlier, to stage T, is [I222,, 02/(02 + o2.),
which becomes smaller as s becomes smaller, indicating a greater degree of underestimation
for “far upstream” stages. Consequently, (9) should be used with caution if T' is very large.
If the measurement error variances o7, are known then it is possible to make adjustments to
the analysis, the simplest approach being to employ (15) and (16); we will not pursue this
here.

A second caveat concerns the validity of the model (5) and (6) more generally. Occasion-
ally there may be situations where, even if measurement error is insignificant, the distribution
of y; may depend on not only y;—1 but also earlier measurements. In this case the variance
decomposition (7) is still valid when the measurements are approximately jointly normally
distributed, and it provides insight into the transfer of variation from stage ¢ — 1 to stage ¢.
However, multi-stage formulas (8) and (9) do not usually provide much insight and it may
even be difficult to assess the effect of changes to stage t — 1 on the stage ¢t measurements,
given the complex relationship between the different measurements. Diagnostic checks on

the dependence of y; on only y;—; may be made by regressing y; on y;_; and upstream mea-
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surements. We recommend that when checks indicate that the first order autoregressive

model is unsatisfactory, the joint distribution of (y,---,yr) be examined carefully.

5 Concluding Remarks

This article has discussed how to study variation in key quality characteristics as discrete
parts move through a multi-stage process. The idea is to tfa,ck and measure the characteris-
tics of individual parts through the stages of the process. In many situations this allows us to
determine how much variation is added at different stages, and how much of that variation is
transmitted downstream. To use the methodology it is necessary to identify a characteristic
for study, to have a capable process for measuring the characteristic, and to have the ability
to follow individual parts through the process. It is important that measurement error be
small and that the first order autoregressive model described in Section 2 provide a rea-
sonably accurate representation of the measurements. Checks of these assumptions should
therefore be included as part of the application of these methods.

Whether measurement error is suitably “small” can be assessed through the results in
Section 4. If o5, /0y is less than say, .1, then there will be relatively little harm in ignoring
the measurement error when the number of stages is only two or three, for example. If
desired, estimates of 3;’s and o,’s and corresponding partitions of variance can be adjusted
using formulas (15) and (16). More formal methods of dealing with measurement error

are discussed elsewhere (Agrawal, Lawless and MacKay 1996). These authors also present
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methods for obtaining confidence limits on components of variation, such as the terms in
(9)-

For most processes there will be several characteristics of interest; for example, the hood
fitting process discussed earlier had many key measurements, of which we considered four.
The characteristics can be studied individually, as in Example 2 of Section 3. However, this
does not take account of the way that the multiple characteristics interact and in some cases
this may lead to important opportunities for variation reduction being missed. Correlated
measurements may also make separate first order autoregressive models for single character-
istics inappropriate. Methodology for variation analysis based on multivariate autoregressive
models will be discussed in a separate article. Model fitting techniques that accommodate
both measurement error and missing observations with autoregressive models (Fong and
Lawless 1996) may be applied.

The discussion in this article has emphasized methods for studying the transmission of
variation across stages in a process. The reason for doing this is to identify opportunities
for reducing variation. We have not specifically discussed targeting of the characteristics,
but this is easily done. Similar ideas may be used more generally to study the relationship
of upstream variables zy, ..., zx to one or more quality characteristics y on a finished part.
The idea is to assess variation in (z1,...,xx) and how it affects y. In general, the variables
may be of various types (categorical, continuous...) and relationships may be non-normal
and nonlinear, so rather different models than the ones used in this paper may be needed.

These ideas will be considered elsewhere, but some analogies with the work of Taguchi and
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others (e.g. Taguchi, Elsayed and Hsiang 1984) on the analysis of variation in products and

systems are apparent.

A cknowledgement

This research was supported by General Motors and by grants to the first two authors from

the Natural Sciences and Engineering Research Council of Canada.

References

Agrawal, R., Lawless, J.F. and MacKay, R.J. (1996). Analysis of variation transmission
for manufacturing processes in the presence of measurement error. Submitted for

publication.

Fong, D.Y.T.,and Lawless, J.F. (1996). The analysis of process variation transmission with

multivariate measurements. Submitted for publication.
Fuller, W.A. (1987). Measurement Error Models. New York: John Wiley and Sons.

Taguchi, G., Elsayed, E. and Hsiang, T. (1989). Quality Engineering in Production Systems.

New York: McGraw Hill.

19



Source Actual Estimated Bias

Transmitted 2o}, B2o? | R, —Ba? (1 — Ry)
Added o, oh+ol+@oli(I—R)  of+ G0l (l—R)
Measurement o3, 0 —o3,

where R; = 07:2_1/(0132—1 + o-gt—l)

Table 1: Bias of Components of var(y;) when Ignoring Measurement Variation
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Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Figure 7:

FIGURE LEGENDS

Grinder and Lapper Stages in a Crankshaft Machining Process
Crankshaft Diameters Before and After Lapping

Flushness at Four Plant Operations

Flushness after HANG and PAINT Operations

Flushness after PAINT and HARDWARE Operations

Flushness after HARDWARE and FINESSE Operations

Flushness Variation by Source at Four Plant Operations
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