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SUMMARY

Latent variable regression methods are becoming increasingly popular in process indus-
tries due to their dimensionality reduction capabilities. In particular, when there are mul-
tivariate input - output relationships present, the partial least squares regression (PLSR)
seems to offer a viable alternative to extensions of univariate control charts such as the She-
whart X, CUSUM or the EWMA for monitoring purposes. PLSR tends to result in bias
predictions, similar to ordinary least squares. However, its power as a diagnostic tool well
compensates for this drawback. This paper gives an overview of the PLSR method and its
use in monitoring the operating performance of a crusher used in a mineral processing plant.

Key words and phrases: Predictions, latent variables, Non-linear-iterative-Partial Least
Squares.

1 Introduction

Most mineral processing industries now use computers in their operations and hence large
amounts of data are collected routinely. This data contains a wealth of information that could
be used on-line or off-line to monitor the performance of the operations and to improve upon
it. The data also provide a measure of the current state of a process, which can be useful in
implementing process control procedures. Often, such procedures seek combined engineering
and statistical data based knowledge of the processes. Another use of data would be to build
suitable models giving direct or indirect input-output relationships to better understand the
process behaviour.

The classical approach to handling process control through univariate-control charting

techniques such as the Shewhart, CUSUM, EWMA, suffer from several drawbacks. In the
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presence of complex relationships among process variables, as in mineral processing indus-
tries, these simple graphical methods offer very little to be of any use as performance indi-
cators. This is partly because of the difficulties involved in identifying the true state of a
process from a display of several variables.

In addition the existence of complex correlations among variables prohibit the use of
univariate control charts based upon independent assumptions. Most variables in mineral
processing industries are correlated as they vary jointly with one another. Usually, the ore
properties such as the hardness and the initial particle size affect the feed rate, the pressure
exerted by the crushers and the amount that goes through the bypass etc. are correlated.
Missing data and excessive noise also create further problems, making it difficult to extract
accurate information. In Engineering process control, plant engineers use phenomenological
assumptions to find solutions to these problems.

In this paper the complementary approach based on a statistical technique known as
the Partial Least Squares Regression is discussed. This method is a multivariate statistical
method which projects information on to low dimensional subspaces containing only the
relevant information about the process.

2 Method of Partial Least Squares Regression (PLSR)

In mineral processing applications, there are input as well as output variables present and
we need to find models which are capable of not only expressing the variability within input
or output variables but which are also most predictive of the output.

Ideally multiple linear regression seems to be the simplest method which satisfies these
requirements. However, it does not offer a meaningful solution in the presence of noisy
correlated data. Even the recent extensions of multiple linear regression methods such as
ridge or regularization do not answer the question of dimensionality reduction and the PLSR
method seems to be most promising under these circumstances. The PLSR method creates
a set of orthogonal latent vectors from a block of input variables usually associated with
process parameters (X block) that maximises the covariance between those vectors and a
block of output variables associated with product quality (Y block) (Hoskuldson (1988)).

In brief, the partial least squares regression seeks decompositions of the X and Y matrices
as

X = tppttappt-ce +taps + Ea

and Y = tiq¢1+tagat----- +taga+ Fa

where X (nx k) and Y (n xm) are matrices containing the explanatory and response variables,
t,’s are the N-vectors of latent variables; p,’s are K-vector loadings, F4 and F)4 are residual
matrics and ¢,’s are scalars.



The problem of finding the scores and the loadings is of primary interest and in PLSR,
these are determined by choosing subspaces of the column space of X sequentially and then
projecting y onto these subspaces (Helland (1988)). These subspaces are constructed by
linear combinations of columns of X, represented by Xw;, where w; is a vector of weights.
To initialize the procedure the first weight w; is computed to yield the maximum sample
covariance between Xw; and Y i.e., we maximize the quantity wj X'XYY’Xw,, subject to
the usual constraint that

wijw; = 1.

The maximum is obtained when w; is the largest eigenvector of the matrix X'YY’X, and
the first PLSR latent variable ¢, is given by

tl = X'wl.

This choice of w; would give the maximal reduction in the residual covariance matrix of

Y:
YV Xwwi X'Y

wi X' Xw,
To obtain further weights and latent variables the procedure is continued by replacing X
and Y by their residual matrices

Y'Y

tit;- tit;‘
Xipy1 = (I— t’-t-) X; and Yy = (I— t’-t~> Y;

for1=1,2,...,A—1 where X; = X and Y; =Y (Burnham et al (1996)).

The optimality results for PLSR predictions have not been discussed in the literature.
However, it has been shown that (Goutis (1996), Frank and Friedman (1993)) the overall
length of the vector of PLSR coefficients is less than those of the ordinary least squares.

Several applications of PLSR have appeared in a number of recent articles, (S. Wold
(1987), Hoskuldson (1988), MacGregor (1991)) which also provide some mathematical de-
tails' concerning the procedure. In practice, one can use the NIPALS (non-linear iterative
partial least squares) algorithm to perform (Hoskuldson (1988)) the above computations, as
described below.

1. Set u equal to a column of Y.

2. Obtain w by w’ = v/ X/u'u (i.e. regress columns of X on u).
3. Normalize w to unit length.

4. Calculate the score vector by t = Xw/w'w.

5. Obtain ¢’ = t'Y/t't by regressing columns of Y on t.
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Calculate a new vector u by u =Yq/q'q.
Check for convergence, if yes, to 8 if no to 2.

X loadings: p = X't/t't.

© ° =N o

Regression: b= u't/t't.

10. Calculate the residual matrices:

E = X —tp' and
F Y — btq

Il

11. Repeat steps after replacing X and Y by E and F.

3 PLSR monitoring methods and diagnostics

Fundamentally, the PLSR monitoring method uses Shewhart charting techniques but plots
latent variables against each other rather than a quality measure against time. To be prac-
tically useful, the process variability should be described with three or less latent variables
to allow simple charting. Also, a data sample when the process is “in-control” is needed
as a reference data set, to determine control regions. If these data are reasonably accu-
rately measured then the latent variables may be considered to follow a multivariate normal
distribution and confidence intervals can be formed. (Kresta et al, 1991).

As we gather new observations, then the corresponding latent variables t,#,, etc. can
be calculated and they can be plotted in the in-control plots. Points that fall outside the
in-control regions indicate a departure from the “normal” operating mode. Also the weight
plots can be used in conjunction with the latent variable plots to understand out of control
directions. Furthermore, squared prediction errors defined by

SPE, =Y (Y -Y))",
i=1
where m is the number of Y variables, can be plotted against the latent variables. An
observed increase in the value of the SPE, indicates a change in the X variables, not ex-
plained by the reference set. As discussed in MacGregor et al., 1994, these simple diagnostic
capabilities are some of the attractive features of the PLSR method that have captured the
attention of the practitioners.

4 The Processing Plant and Data

The mineral processing plant under investigation is in Western Australia (Yatawara et al
(1996)). The study here was done mainly to develop an efficient monitoring mechanism for
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the rolls crusher of the operation. As shown in Figure la, Ore is conveyed from a storage bin
into a surge bin above two cylindrical crusher rollers that are powered by individual electric
motors. The Ore is drawn into the crushing gap by the opposing rotation of the rollers. As
the Ore is fed through the rollers they are forced apart and an opposing hydraulic pressure
is applied to maintain the gap width between them. Instruments are located to measure
the important parameters of the operation (Figure 1b)). The HPRC 1A and 1B differ only
in that the powered rollers for 1B have variable speed drives to allow for variation in total
Ore feed through the crushing plant area, and this instrument is represented by the variable
VSPDI1B.

The other variables are: Feed 1X - the (inferred feed rate calculated from conveyor speed
(tonnes per hour)), Gap 1X - the gap width between the rollers (millimeters) Pres 1X1 and
Pres 1X2 - opposing hydraulic pressures for each roller (Bar), PWR1X and PWRI1XF - power
draw for each roller motor (kilowatts). Note: X = A or B.

There is a conveyor that splits some of the Ore from the stream to the HPRC feed bins
and is directed around the HPRC plant and onto conveyor CV53. This is the bypass Ore
and is preset to a value depending on the total plant feed target and the current operating
conditions of the HPRC and is called BYPASS (tonnes/hr). The screening plant divides the
Ore stream into 3 sizes > 18 mm (cv5); between 3 mm and 18 mm (cv3); and < 3 mm. The
< 3 mm material is called “degrit” and is considered as the critical Ore size for downstream
plant efficiencies.

The data for the study were taken from 4 days, consisting of 1440 observations taken at
1 minute intervals on each day. Since the measurements are taken from 3 locations a lag
correction was introduced, by treating CV53 as the reference point. Day 4 data set appeared
to be the best candidate for a reference set and all other days were suitably calibrated (see
Figure 2). The annotations for each days data are given in the following table.

1/8 | 1A in poor condition due to it being nearly fully worn. Segment change
imminent. 1B operating moderately well.

3/8 | 1A off line for segment change 1B operating relatively poorly until later
in day, variable ore dayshift

12/9 | The ore was relatively soft and the pressures were reduced on 1B to try
a new mode of operation

13/9 | 1A hardly operated during the day because of a segment change but
1B appeared to be operating well '

Table 1 Annotations for Data Sets

5 Application of PLSR for HPRC Data

The application of PLSR to process monitoring requires a reference data set to establish
“in-control” boundaries. The data provided came from four different days, with differing



operating conditions, none of which showed stability. However by comparison, set four was
found to be the most suitable as a reference data set. The analysis was conducted in two
parts to demonstrate that a control chart could be produced when either both crushers
or only one crusher is operating. These are referred to as dual and single crusher studies
respectively. The dual crusher study was not useful for examining the diagnostic capability
of the PLSR method because crusher 1A was often faulty. Hence the results presented are
mainly from the single crusher study with one (degrit) or two (degrit and crushed) response
variables.

The F values associated with the PLSR algorithm for both studies indicate either 2 or 3
latent variables as significant (see Figures 3 and 4 in the Appendix). The t-value plots and
the weight plots (see Figures 5 and 6) indicate that the single response variable model with
three latent variables produced a better reference area. Also these plots show some evidence
of two distinct clusters indicating two modes of operation. The SPE charts seem to show
that some observations in the reference data are not predicted by the model. Both plots
show significant “drifts” of the observations into the third quadrant. Thus using this model
as a reference, the PLSR algorithm was run on the data sets 2 and 3 and the corresponding
plots (see Figures 7 and 8) were compared with those of the reference set. A summary of
the results for the data set 2 is given below.

Plot t; X t3 WGT, x WGETs
Observations | two small clusters, one above GAP1B increase or decrease
and one below the reference

area

FEED1B increase or decrease
VSPDI1B increase or decrease
Plot 11 X 1o WGT, x WGT,
Observations | large group of observations PRES1B1 and PRES1B2 increase
along the diagonal projecting

well into the third quadrant

FEED1B decrease
PWRI1B and PWRI1BF
decrease
GAP1B  decrease
Plot to X 13 WGT2 X WGT3
Observations | same group and observations as PRES1B1 and PRES1B2 increase
before projecting in the nega-
tive t, direction

FEED1B decrease
BYPASS decrease

The results indicate an increase in PRES1B1 and PRES1B2, when compared with the ref-
erence data set. A check of the summary statistics for the Reference Set and for Day 2 data
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shows that the mean pressure during Day 2 is higher than for the reference data and the
coefficient of variation is lower, indicating a consistently higher pressure for Day 2. By check-
ing the mean value of the other variables, and placing more importance on those variables
that also have low coefficients of variation (because they are consistently higher or lower
than the reference values) it can be seen that FEED1B and GAP1B are also significantly
and consistently lower for Day 2 data as predicted by the weight plots.

Reference Data

Variable | Minimum | Maximum | Range | Mean | Std Dev | CV
FEED1B | 201.63 954.54 752.91 | 800.77 | 98.51 | 12.30
BYPASS 0.00 774.10 774.10 | 269.79 | 164.28 | 60.89

GAP1B 21.31 37.78 16.48 | 29.30 4.27 14.59
PRES1B1 | 28.88 41.10 12.22 | 34.56 2.70 7.83
PRES1B2 | 30.30 40.21 991 | 34.89 2.27 6.51

PWRIB | 411.69 962.55 350.85 | 851.46 | 44.57 5.23
PWRIBF | 133.59 929.04 795.46 | 820.60 | 49.36 6.01

VSPD1B 87.08 94.99 7.92 | 94.97 0.37 0.39
Day 2 Data
Variable | Minimum | Maximum | Range | Mean | Std Dev | CV
FEEDIB | 119.84 659.30 539.46 | 541.20 | 39.58 7.31
BYPASS 0.00 753.27 753.27 | 273.12 | 129.34 | 47.35
GAPI1B 16.92 20.74 3.83 | 18.21 0.91 4.97
PRES1IB1 | 34.10 37.79 3.69 | 35.39 0.82 2.32
PRES1B2 | 35.23 39.70 447 | 36.45 0.88 2.42
PWRI1B | 645.01 1043.99 398.98 | 890.15 | 93.27 | 10.48
PWRI1BF | 620.79 982.48 361.69 | 844.99 | 88.48 10.47
VSPD1B 87.08 94.99 7.92 | 94.97 0.40 0.42

Table 2: Summary Statistics for the Non Standardised Data for the Single Crusher Study

6 Conclusion

The dual crusher study has shown that the PLSR method can be successfully applied to
HPRC data, for performance monitoring. However, the diagnostics were much better when
the weight charts were plotted from a single crusher analysis. The diagnostic tools provided
by PLSR are not able to specify a cause for an “out-of-control” signal in the process, but
they do indicate those process variables that contribute most weight to a particular shift in
the observations on the latent variable planes. This information can assist an experienced
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plant operator to identify actual operating faults. Clearly the PLSR control charting model
will be effective only if the reference data set is obtained from a known “in-control” period of
operation. A real reference data set might produce a model different to what was developed
in this study, where “constructed” reference sets were used. One obvious characteristic seen
in the latent variable plots for reference data is the two clusterings. As pointed out by Kresta
et al. (1991), this might indicate different modes of operation. Further investigation would
also be required into the effects of different Ore types (soft or hard) on the PLSR model.

Although the PLSR model developed here considered past process data, the model can
be adapted to an on-line monitoring system. In this way one can identify the time point at
which the process begins to deviate from the normal operating mode. An obvious problem
associated with the display of the control chart with the PLSR seems to be its complexity as
compared to univariate shewhart plotting. However, for all practical purposes it would be
sufficient to display only the previous p-observations, where p is determined as the period of
interest (see Kresta et al. (1991)).
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Figure Ia: Schematic of the HPRC Plant Showing Process Measurement Instruments
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Figure 1b:  Schematic of the Ore Crushing Process
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Histogram of DEGRIT for Crusher 1B for Each Data Set
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