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Summary

Data bases regarding warranty claims for manufactured products record claims experi-
ence and information about concomitant factors. If constructed and maintained properly,
warranty data bases may be used for a variety of purposes that include the prediction of
future claims, the comparison of claims experience for different groups of products, the es-
timation of field reliability, and the identification of opportunities for quality and reliability
improvement. This paper reviews some methods of analyzing warranty data and of address-
ing these objectives. Some extensions of previous work and suggestions for future develop-
ment are included. Examples involving warranty claims for automobiles and refrigerators

are considered.
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1. Introduction

Manufacturers of products which are sold with warranty coverage usually collect fairly com-
prehensive data on warranty claims and costs. This includes the time and place of man-
ufacture of the product, the date of sale, and the time and type of problem which lead
to the claim. Covariates concerning product usage or other factors may also be recorded.
If constructed and maintained properly, warranty data bases may be used to predict future
claims, to compare claims experience for different groups of products, and to study variations
in claims relative to factors such as time and place of manufacture, or usage environment.
In some circumstances warranty data may also be used to estimate the field reliability of
products and to identify opportunities for the improvement of quality and reliability.

The analysis of warranty data was historically a rather neglected topic, although there
were many papers on the mathematical modelling and design of warranties (e.g. Blischke
and Murthy 1996). Although some of the problems associated with warranty data are similar
to problems involving aggregate claims in insurance and other areas (e.g. Taylor 1986), it is
only recently that many warranty data issues have been studied. Starting with Suzuki (1985
a,b), there has been a good deal of development over the past 10-15 years (e.g. Kalbfleisch,
Lawless and Robinson 1991, Robinson and McDonald 1991, Kalbfleisch and Lawless 1996).
The objectives of the present paper are to review and extend this work, and to indicate areas
for further investigation.

Certain features of warranty claims data create interesting statistical problems. For
illustration we briefly introduce two examples which will be discussed further in Section 4.
The first involves North American automobiles. In this case the manufacturer knows the
dates of sale for all cars sold up to a given time, and has a record of warranty claims made
for each vehicle. However, because warranties have dual time and mileage limitations (e.g. 2
years and 24,000 miles), the manufacturer is not aware of exactly how many vehicles are still
under warranty at a given time. In addition, delays may occur in the recording of claims in

their warranty data base, so the manufacturer may not be aware of a substantial number of



recent claims at any given time.

The second illustration involves refrigerators. In this case the warranty coverage is for a
fixed period after sale. However, at a given time the exact number of units sold and most of
the dates of sale are not known by the manufacturer, since retailers and purchasers are not
compelled to submit this information. Dates of sale and other information are obtained on
most units only when a claim is made.

This paper focuses on two important areas. The first is age-based (or age-specific) analy-
sis of warranty claims and costs, in which claims are related to the time since a product was
sold, or entered service. This forms the basis for the estimation, prediction and comparison
of claims across different product groups or across time, and is developed and illustrated
in Sections 2-5. The second topic concerns the estimation of failure distributions or rates
from warranty data, and is discussed in Section 6. If the causes of claims are diagnosed
and reported accurately and there is accurate information about concomitant variables, the
methods described there may be used to assess field reliability and make comparisons with
engineering predictions and reliability goals. They can also provide ideas for reliability im-
provement and aid in the design of warranty, maintenance and parts replacement programs.

Complex products experience warranty claims for many different reasons, and in practice
claims are often subdivided by type and studied separately. In this paper we typically
consider a generic single type of claim, but it should be clear that multiple types can be
considered. Relationships between different types of claims are not discussed in any detail,
but we comment on this topic in Section 7, which concludes the paper. Other topics that are
left out of the main body of the paper for the sake of brevity are also mentioned in Section
7. Very simple statistical tools such as Pareto charts showing the relative cost, frequency,
or importance of different types of claims are not discussed in the paper, but are clearly

valuable.



2. Age-Based Claims Analysis

For most products the rate of occurrence of warranty claims varies with the time since the
product was sold or entered service; we refer to the time since sale as the “age” of the
product. It is consequently informative to analyze claims as a function of age, bearing in
mind that other factors may also need to be examined. Methodology in this area has been
given by Kalbfleisch, Lawless and Robinson (1991), Robinson and McDonald (1991), and
Kalbfleisch and Lawless (1996). In this and the next section we review their techniques, give

some extensions, and note topics that deserve further study.

2.1 Notation and Assumptions

We focus first on the frequency of claims, and consider costs later. Suppose that product
units ¢ = 1,2,---, N are sold over calendar days 0,1,---,7 and let N(d) > 0 denote the
number of units sold on day d. Assume that the data include all claims reported to the

manufacturer by calendar day T. Let d; denote the day of sale for unit 7 and define

nT(a) = number of claims at age a for unit i, reported by day T.

Age is measured in days. The upper limit for a is determined by the warranty plan and by
convention claims made on products either before or on the day of sale are considered made
at age 0. It is also convenient to define aggregate claim counts; we let n”(d, a) be the total
reported number of claims at age a for those units sold on day d, or

n’(d,a) = Y ni(a) (a>0,d>0,a+d<T).
i:d;=d

We also define n*" (¢,a) = nT (¢t — a,a), which is the total claims on day ¢ for units sold on
day t — a.
We assume that there is a conceptual population of units for which those observed are

representative, and define



Ma) = expected number of claims for a unit at age a (a =0,1,---)

Ala) = Ea: M(u) = expected number of claims per unit up to age a
u=0

It should be noted that all units sold are not necessarily under warranty up to the same age;
with automobiles, for example, there may be both age and mileage limits on coverage. The
A(a)’s represent the expected number of claims per unit sold, and not the expected number
per unit still under warranty at age a. In addition, if a failed unit is replaced with a new
one under a warranty, the age of the unit continues to be the time since sale of the original
unit. These definitions are most relevant for the analysis of aggregate claims and costs.
There are often delays in reporting claims to the manufacturer, so that the reported
number of claims by day T is less than the actual number. To handle this we assume the

distribution of reporting delays is stable over time, defining
f(r) = Pr (a claims is reported r days after it occurs) r=0,1,2,---

and F(r) = f(0) +---+ f(r). The term “reported” here refers to the point at which the
record of the claim is entered into the data base used for analysis. Extensions to deal with
non-stationary reporting delays are straightforward but will not be considered.

Simple age-based analysis, described in subsection 2.2, is founded on the estimation of
A(a) and A(a) for homogeneous populations of product units. Later, extensions to deal
with explanatory variables are considered. Thus for the time being we ignore restrictions
concerning day-of-the week or other calendar time effects in the occurrence and reporting of

claims.

2.2 Analysis of Claim Frequencies

We assume that

E{n{(a)} = \(@)F (T — d; — a) (2.1)

and, for now, that the F'(r)’s are known. Kalbfleisch et al. (1991) describe their estimation.

In many applications reporting delays longer than two months are rare, and most claims are
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reported within a month. When no reporting delays occur, we set F(r) = 1 for all r > 0;
then many of the estimates and expressions below simplify considerably.

Under (2.1) the expected values of n*’ (t,a) and n7(d,a) are respectively u*7(t,a)
N(t = a)Xa)F(T —t) and p''(d,a) = N(d)\(a)F(T — d — a). An obvious moment estimate
for A(a) is

= 2.2
5a) = Ty (22)
where
T T-a
n"(a) =Y nT(t,a) = > _n"(d,a) (2.3)
t=a d=0
is the total number of age a claims reported up to day 7', and
T—-a
RT(a) = > N@)F(T —d—a). (2.4)
d=0

The estimates (2.2) and the corresponding estimates
~ e .
o)=Y Aw) (2.5)
u=0
are very useful; examples are given in Section 4.

Variance estimates for A(a) and confidence limits for A(a) are desirable when com-
paring different groups of products, for example, units manufactured over different peri-
ods or at different locations. The estimates (2.2) and (2.5) are maximum likelihood es-
timates under a Poisson model with the counts nT(d,a) independent, but extra-Poisson
variation is typically evident. Assuming that checks of residuals n”(d,a) — 4% (d,a), where
i7(d,a) = N(d)A(a)F(T — d — a), do not indicate any problem with the assumed form of
pT'(d, a), variance estimation can be approached in several ways. Kalbfleisch et al. (1991)
and Kalbfleisch and Lawless (1996) use specifications for Var{nT(d,a)} that incorporate
extra-Poisson variation. An alternative approach, taken here, is to specify a model at the
product unit level.

One line of attack is to use (2.1) and robust methods of variance estimation developed

by Lawless and Nadeau (1995). A straightforward extension of the results in their Section 2
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yields the estimate

N (min(T—d;,a) nT (u) — 3 U —d; —u 2
\Tar{]x(a)}=§{ > () A(Jﬁg i )} . (2.6)

This estimate is robust in the sense that it does not require any strong assumptions about
the claims processes for product units. Approximate 2(o — .5) confidence limits for A(a)
of the form A(a) % 2o Var {f\(a)}l/z, where 2z, is the standard normal o quantile, generally
have good coverage properties with this method when N is moderately large. However, (2.6)
requires claims data on individual units, and not just aggregate claim frequencies n7(d, a); if
N is very large it requires considerable, though trivial, computation; finally, it is not easily
adapted to deal with the prediction of claims, as discussed in Section 4.

We sketch an alternative approach which uses only aggregate claims. Denote

ni(a) = number of claims on unit ¢ at age a (reported or not)

i (a) = ni(a) —ni(a),
so that 77 (a) is the number of age a claims on unit i not reported by day T. Note that
E{ni(a)} = Ma) and E{nT(a)} = Ma)F(T — d; — a), where F(r) = 1 — F(r). We assume

as well that reporting delays on claims on distinct days are independent, and
nl(a)[ni(a) ~ Binomial (n;(a), F(T —d; —a)). (2.7

We further denote
ow = cov {n;(a),n;(b)}. (2.8)
Writing Fj, = F(T — d; — a) and F;;, = 1 — F,, we then have
cov {nf(a),n] (})} = FiaFuoa +I(a ="b)(a)FiuFi, (2.9)

cov {nf(a),nf (0)} = FuFuoa — I(a=0b)Aa)FFs. (2.10)

From (2.9), variances for the A(a)’s and A(a)’s are readily obtained. Define

N T—max(a,b)
R7(a,b) =Y FuFs= S N(d)F(T—-d—a)F(T—d-b)
i=1 d=0



T—max(a,b)

R (a,b) = fj FoFu= Y N(@FT-d-a)F(T—d-b).

d=0
Then, assuming independence of claims and reporting across units ¢ = 1,---, N, we have
Cov {S\(a) S\(b)} = ——l——i Cov {nT(a) nT(b)}
’ RT(a)RT(b) & AT
RT(a,b)0w + I(a = b)A(@)R" (a,a) (211)
RT(a)RT (b) '
Var{A@)} = ) Cov{i(a),A(b)} (2.12)
a=0b=0

Various specifications for o4, can be entertained. For example, if we were to consider
a mixed Poisson model (Lawless 1987) where we associate with each unit an unobservable

random variable with mean 1 and variance o2

, we would obtain 0,5, = A(a) +02X(a)?, 0o =
a?X(a)A(b) for @ # b. An approach that assumes less is to simply allow the og’s to be
arbitrary variances and covariances. In any case, we need to estimate the unknown param-
eters o, in order to obtain estimates for (2.11) and (2.12). Quadratic moment estimating

functions can be used for this purpose: for example, under the model given above, where
o = 0> A(a)A(b) + I(a = b)A(a), (2.13)

we could consider estimating functions of the form

;Zw(d, a) {[nT(d, a) — p*(d, a)]2 —9(d, a; 0)} =0, (2.14)

where 9(d, a; 0) = Var {n”(d,a)} = N(d)F(T — d—a)?\(a)20® + N(d) F(T — d— a)}(a), and
the w(d, a)’s are weights. The practical aspects of estimating variance parameters has not
been examined in any detail, though theoretical properties of quadratic estimating functions
are clear. The choices w(d,a) =1 and w(d, a) = 9(d, a;0)~! are often used.

The use of (2.6) or of (2.13) combined with (2.14) tend to give similar variance estimates
for A(a) in many situations. A simpler approach given by Kalbfleisch and Lawless (1996)

also gives similar results in many cases. This makes the assumptions that Var{nT(d, a)} =

8



02uT(d,a) and that n”(d,a)’s are mutually independent. These assumptions are not very
plausible when enough units suffer reporting delays, but appear to work reasonably well.

They give the simple result

Var {A(a)} =o? i };1@(2)

u=0

(2.15)

The variance parameter o2 can be estimated from equations of the form (2.14) with 4(d, a; o) =
0247 (d,a). Experience suggests that the weights w(d,a) = 07*47(d, a)? work well, though
the choices w(d, a) = 1 and w(d, a) = 9(d, a; 0)~! are also often used. Dean (1992) compares
methods in a simpler context involving independent univariate counts.

The variance estimates given here assume that the N(d)’s and F(r)’s are both known.

Uncertainty about their values is discussed in Section 3.2.

2.3 Analysis of Costs

Age-based analysis of warranty costs may be handled by a simple extension of the methods
above. We stratify claims into groups £ =1,2,---, K according to cost and let C(k) be the
(average) cost of a claim in group k. Let Ax(a) denote the expected number of claims of cost

C(k) for a unit at age a. Then, corresponding to (2.2), we have the estimate

Ak(a) = (2.16)

T—a

where, in an obvious notation, nj,(a) = 3 Nk (d, a) is the number of claims of cost C(k)
d=0

and age a reported up to time T. The cumulative warranty cost per unit up to age a is

estimated by
K

CC(a) = > C(k)Ax(a) (2.17)
k=1
where Ak(a) = Xa: S\k(u) It is assumed that the same reporting delay distribution applies
u=0

to claims of different costs. This assumption can be relaxed but generally has little effect.



Confidence limits for CC(a) can be obtained by utilizing variance estimates analogous
to those given for A(a) in Section 2.2. Assuming that occurrences of claims of different costs

are independent, we have
K
Var {C’C(a)} =" C(k)*Var {Ak(a)} .
k=1

where Var{f\k(a,)} may be estimated by expressions such as (2.6).

It is possible that the occurrence of certain types of claims may not be independent, for
example, when two or more parts are physically linked in the product. The effect of this
on the variance of age-specific cost curve estimates cC (a) is generally slight. However, if
desired, a variance estimate that is robust to non-independence of claims may be obtained
by using the approach of Lawless and Nadeau (1995), which gave (2.6). Obviously @(a)

in (2.17) can be written as

C0(a) = 2_% ée(u) = ;)}%((%

where tc(u) is the total cost of all reported claims which occurred at age u. The variance of

CC(a) can be estimated by

N {min(T—dha) te; (u) — c"c(u)F(T —d; — u) }2 (218)

Z Z RT (u)

i=1 u=0

where tc;(u) is the total cost of all reported claims on unit i at age u.

3. Refinements to Age-Based Analysis

The methods in the preceding section deal with the ideal situation in which the dates of
sale are known almost exactly for all products, as well as the day of occurrence for claims.
Often the data are grouped over longer time intervals and the daily numbers of units sold are
unknown. In fact, for most products the manufacturer knows when units are shipped to a

customer or retail outlet but does not know when they are sold. (Dates of sale are, however,
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obtained for products that experience a warranty claim.) In this section we consider grouped
data and uncertainty about sales or reporting delays. We also discuss the incorporation of

covariates or calendar time effects into age-based analysis.

3.1 Grouped Claim Frequency Data

Sometimes claims are grouped by age and time intervals. If the age intervals and time
periods are of different lengths or are fairly long, it is best to recognize this in the analysis.
Extending the notation in Section 2.1, we write
(P, A) =YY n(t,a)
teP aeA
where P and A represent a time period and age interval, respectively. Suppose now that
claims are grouped into age intervals A; = [aj_l,aj) with ap =0 < a1 < ag < ---. In this

case we estimate the expected number of claims for that interval,

A(A) = ;1 Aa). (3.1)
A natural estimate of (3.1) is
A(4;) = ZT((X))’ (3.2)
where
nT(4;) = tz:;n*T(t,Aj)
RT(4) = — f R(a). (3.3)

aj = Qj-1 g=a;_,

To motivate (3.2) note that n” (A;) is the number of claims reported on units of all ages

a € Aj, and that

aj—l

E{n"(A)} = Y Xa)R"(a). (3.4)

a=a;j-1
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Assume (with little practical consequence if a; — aj_; is not too large) that the A(a)’s are
constant over [a;_1,a;), and then (3.4) reduces to A (4;) RT (4;).

If sales data are available only in aggregate form for different time periods, then we need
to estimate the “exposures” (3.3). The simplest approach is to estimate the daily sales N(d)
from the available data and plausible assumptions about sales patterns, so that (2.4) can be
used. Dealing with uncertainty in the N(d)’s is discussed in subsection 3.2.

Variance estimates for A (A;)’s can be developed by using approaches described in Section
2.2 combined with the assumption that the A(a)’s are constant within age intervals A;. A

crude approach based on assumptions leading to (2.15) gives

A A(4)
_ 2 J
Var {A (Aj)} =0"2r )’ (3.5)
with A (A;)’s independent for j = 1,2,---. The variance parameter o2 can be estimated by

using estimating equations similar to (2.14), with sums over d and a replaced by sums over

time and age intervals:
. * ~ ¥ 2 ~ ¥
S Y wld) {[7 (B, 4) - A7 (B A)) - AT (R A} =0 (36)
L J

where w(l, j) are weights and

i (A A) = A S S (- )R - o)

aj — Qj-1 g=a;_, teP;
3.2 Estimated Sales and Reporting Delay Probabilities

As noted previously, daily sales totals N (d) often have to be estimated. In addition, reporting
delay probabilities F'(r) are typically estimated from historical data. Variance estimates for
f\(a) and other quantities given above have ignored these sources of variation.

If values of N(d) and/or F(r) are estimated then the effect on estimates of A(a) is that
the exposures RT(a) given by (2.4) are estimated; let us denote them by }N'{T (a) to indicate
this. A detailed analysis that recognized how the N(d)’s and F(r)’s were estimated would in
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principle be feasible in some situations, but rather cambersome. Appealing alternatives are
to perform a sensitivity analysis or to use simulation to assess the effect of estimates sz (a)
on estimation of A(a). With the former approach we select a few sets of ﬁT (a)’s that cover
what is considered plausible, and compute A (a)’s and associated variance estimates and
confidence intervals for each. This gives a range of estimates, and conveniently expresses
our uncertainty. This is a common approach for dealing with unknown sales totals N(d);
for example, a manufacturer might select scenarios that assume each unit is sold a specified
number of days after it is shipped.

The latter approach above is a little more formal. Suppose that the estimates _IN{T (a)
are approximately unbiased and independent of the claim counts n?(d, a). Then for (2.5) we

~ ~T
have, letting Rr= {R (a),a=1,2,-- '}>

Var {i(a)} = B {Var (I\(a)| f?,r)} + Var ;*@)E];(—(Zf . (3.7)

The first term on the right side of (3.7) can be estimated by using estimates such as (2.6),
(2.12) or (2.15), evaluated at values \ (a), sz (a). The second term on the right side can be
estimated by placing a distribution on ﬁT (u)/RT (u) values and using simulation, replacing
A(a) with A(a). This approach has yet to be explored in any detail and, of course, methods of

NT
determining a distribution for values R (a)/R”(a) need to be provided for specific contexts.

3.3 Covariate or Calendar-Time Effects

Claim frequencies may be related to factors such as manufacturing conditions or usage envi-
ronments, and covariates or calendar-time effects may be incorporated into age-based analysis
to deal with them. If only a few separate conditions are of interest the simplest approach is
to estimate expected claims separately for each condition, as illustrated in Section 4.1 where
claims for automobiles manufactured in different time periods are compared. More generally,

covariates can be used to represent various factors, and regression models employed.
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Covariates may be introduced at an individual unit level or at an aggregate claims level.
In either case log linear models (e.g. McCullagh and Nelder 1989, Chapter 6) are convenient.
For example, to incorporate a calendar time effect (e.g. a seasonal factor) at the aggregate

claims level we might consider
E{n*(t,a)} = N(t — a)Ma)h(t; B)F(T — 1),

where h(t; 3) models the calendar time effect. The parameters A(a) and 8 may be estimated
using quasi-likelihood, say by employing estimating functions based on a model whereby the
n*T(t,a)’s are mutually independent Poisson random variables. Standard software will read-
ily handle this, but use of the Poisson-based variance estimates for the ;\(a) ’s and £ is not
recommended, since the counts are generally neither approximately Poisson nor independent.
Robust sandwich-type variance estimates can be developed, provided that one decides which
groups of responses are to be considered independent. For example, rather than assume that
the n*T(t,a)’s are mutually independent, it might be preferable to assume only that sets
{nT(d, a);a=1,2,-- } are independent for d = 1,2,---. An alternative is to adopt a para-
metric variance specification, e.g. independent n*T (¢, a)’s with Var{n*T(t, a)} = o2yl (t,a),
as in McCullagh and Nelder (1989, Chapter 6).

In terms of individual units, regression models of the form
E{nf(a)} = Ma)F(T - d; — a)e % (3.8)

are valuable. The vector z;(a) is a covariate which may vary across different ages for the
unit, for example if it involves calendar time effects. Given assumptions about Var{nf(a)},
model fitting is straightforward though when the number of units is large, aggregation of
counts is helpful. Models for aggregate counts such as n*7(¢, a) follow from (3.8).

When units of age are small (e.g. days) models such as (3.8) have many parameters and
special methods to deal with this are helpful. The methods of Lawless and Nadeau (1995)

allow easy calculation of robust variance estimates for f\(a) and (3 provided one has access to
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claims on a unit by unit basis. An alternative is to use some form of smoothing with respect

to the A(a)’s, or to make parametric assumptions about the A(a)’s, as in Section 3.4 below.

3.4 Piecewise Constant Claim Rates

A convenient but mild assumption to reduce computational burden is to assume that the

A(a)’s are piecewise constant. In particular, let us suppose that
Aa) = Aj aj-1 < a < aj, (3.9)

where 0 = gy < a1 < ag < --- < ay are pre-specified values. In this case it is easily
seen that robust estimates for the );’s under the assumption that the n”(d, a)’s have means

N(d)X(a)F(T — d — a) are )
2 TLT Aj -
MR T

o J (3.10)

where A; = [a;-1,0a;), and

n' (4;) = Ed: >_n"(d,a)] (ae4;)

RT (4;) = g STN@)F(T —d — a)l (acdy).

This reproduces (3.2) as an estimate of A (4;).

The numerator in (3.10) is the total number of claims in age interval A; reported by
time T. When there are no reporting delays the denominator is the total number of days
in service spent in age interval A; across all units; when there are reporting delays, days in
service are discounted. Variance estimates can be obtained as in Section 3.1.

In some industries it is common to estimate warranty or field failure rates based on a
model (3.9) with J = 1, i.e. it is assumed that the rate is constant with respect to age.
That is usually an inappropriate assumption, but a model with J as small as 2,3 or 4 may
suffice. For many products, for example, it is adequate to define age intervals to cover early

(or “infant mortality”), medium term, and late term failures.
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The assumption of piecewise constant A(a)’s is likewise a great simplification for regression
models as discussed in Section 3.3. In particular, if J is small the calculation of robust
variance estimates for the Xj’s and regression parameter estimates ,3 is easy, at least when
unit-level data are available (Lawless and Nadeau 1995). Further development for aggregate

claims would be useful.

4. Examples

We use two examples to illustrate aspects of age-based claims analysis.

4.1 Automobile Warranty Claims

We consider data on claims for a single system on a particular car model. The warranty
coverage at the time was for the minimum of 12,000 miles or one year from sale. More
detailed discussions of the data are given by Kalbfleisch et al. (1991) and Kalbfleisch and
Lawless (1996).

The data included claims reported up to day T = 547 after the first vehicle was sold.
By then there were 36,683 cars sold and 5,701 claims had been reported. Sales are reported
almost immediately by the car dealers, so the sales total N(d),d =0, 1,2, -- were all known.
Reporting delays were typically between 20 and 60 days, and reporting delay probabilities
F(r) were estimated from previous claims experience. Expected claim frequencies \(a) were
obtained using (2.2) with R”(a) given by (2.4). An important use of the A(a)’s and A(a)’s
is to compare claims for vehicles manufactured in different time periods or locations. Figure
1 shows estimates A(a) for cars manufactured in each of 6 two-month periods, starting with
mid-July to mid-September (Period 1) and going to mid-May to mid-July of the following
year (Period 6). There were roughly the same number of cars produced in each period. The
plots indicate that average claims per vehicle are similar for all periods except number 3

(November-January), for which claims are considerably higher. Figure 1 also shows approxi-
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mate pointwise 95% confidence limits for A(a) for Period 3, calculated as A(a) £1.96V (a)V/2,
where V(a) is an estimate of Va.r{f&(a)}. The variance estimate was calculated using (2.6),
but with no allowance for the fact that the reporting delay probabilities are estimated. Vari-
ance estimates based on (2.5) give close to the same confidence limits as those shown in the
figure. Confidence limits for the other five periods may be calculated similarly; they overlap
each other considerably but do not overlap the limits for A(a) of Period 3.

Regression methods as outlined in Section 3.3 can be used if formal tests concerning
the six production periods are wanted. For example, we may define a covariate vector
z; = (21, ++,%s) where z; = 1 if vehicle ¢ was produced in Period j and 0 otherwise.
Using the multiplicative model (3.8), we consider the hypothesis H : 8 = 0; as Figure 1
indicates, a multiplicative model seems appropriate. We can test H using the Wald statistic
W = ,23’V(B)‘1,B, where V(,fi) is an estimate of the asymptotic variance of 3. Lawless and
Nadeau (1995) find an observed value W = 85.6, with a robust variance estimate for 3
developed in that paper. Under H, the distribution of W is approximately X%s)’ so there is

very strong evidence against H.

4.2 Refrigerator Warranty Claims

An appliance manufacturer ships refrigerators to retailers who then sell them. The man-
ufacturer tracks warranty claims with units stratified according to month of production.
However, the exact number of units sold and the dates of sale are not known by the manu-
facturer because retailers and purchasers are not compelled to submit this information. At
best, a fraction of purchasers mail in a warranty card that indicates the place and time of
sale, along with the serial number of the product.

The warranty on major components extends for two years from the date of sale. When a
claim is submitted the date of sale of the unit and its month of production (from the serial
number) are obtained as part of the verification process. There are generally delays of up to

a month between the time of a claim and the time it enters the warranty data base.
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Consider units produced in a particular month, and let A(a) denote the expected number
of claims per unit at age a (days). Given that N(d) units are sold on day d, the expected
number of age a claims reported by day T is A(a)RT(a), where RT(a) is given by (2.4).
However, the N(d)’s are unknown so we proceed as in Section 3.2. In this case we can
estimate N(d) = M P(d), where M is the number of units produced in the month and P(d)
is the fraction sold on day d, from information about the distribution of the time lag between
delivery to the retailer and date of sale. In many cases manufacturers do this by making
the very naive assumption that all units are sold some fixed time (say 1 month) after being
shipped to the retailer. However, it is usually possible to do better, especially for products
with seasonal variations in sales.

Data are often grouped by month or week, so we have a scenario like that in Table 1.
The sales numbers V;; are estimated by the manufacturer, and they allow estimation of the
weekly sales totals. When data are grouped by week, as here, it is generally adequate to
treat weeks as the basic time unit (i.e. replace “days” with “weeks” in the methodology
presented earlier); there is little be be gained, and a considerable increase in computation,

in using the formulas for grouped data in Section 3.1.

Table 1. Estimated Sales Patterns

Week Sold
Week Shipped Number Shipped 1 2 3 4 5 6
1 M, Ny Nig Nz Nig Nz Ny
2 M, Nyg  Naz  Nayy Nz Ny
3 Ms N3;  Nzz N33 Ny
4 M, Nygy  Nyg Ny

N1 N@) NG N4 NG N6

N;; = number of units shipped in Week 7 and sold in Week j.

As discussed in Section 3.2 we may wish to assess the effect of uncertainty in the RT(a)

values on estimates A(a) or associated confidence intervals.
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5. Prediction of Claims

Forecasts of warranty claims and costs are of considerable importance to manufacturers.
Age-based claims analysis provides a convenient approach, but we switch the focus from
expected claim counts for a hypothetical infinite population of units, as in Section 2 and
3, to the specific finite population that is manufactured over the period of interest. For
example, automobile makers may wish to estimate the average per vehicle warranty cost for
the vehicles produced in a given model year, or to forecast warranty expenses for a model
year on a month by month basis, starting at the time of production of the first vehicles. The
finite population approach below may also in some situations be preferred for the estimation
or comparison of average or total claims, as illustrated in Section 4.

Kalbfleisch et al. (1991) presented methods of prediction which we outline and extend

T
here. Consider a finite population of N = > N(d) units sold over the time period (0, 7),
d=0
where N(d) is the number sold on day d. The actual average number of claims per unit at
age a is
1 T
m(a) = = Y _n(d,a) a=0,1,2---
N5
a
and M(a) = Y. m(u) is the average number of claims per unit up to age a. Using notation
u=0
similar to that of Section 2.3, we also have
1 a T
My(a) = 5 > 3" ngy(d, w)
u=0 d=0

as the average number of claims of cost C(k) up to age a, per unit sold, and
K
CM(a) = 3 C(k)Mi(a)
k=1

as the average total cost per unit. If data on claims to time T are available then the m(a)’s
are only partially known, because n(d,a) is as yet unobserved if d + a > T, and N(d) is
also unobserved if 7 > T. Some claims may also be unobserved due to reporting delays.
Thus, estimation of the m(a)’s M(a)’s or Mj(a)’s reduces to prediction of the n(d,a)’s and

n(k)(d, a)’s based on data currently available.
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In the notation of Sections 2.2 and 2.3, and considering one type of claim, we have

m(a) = {Zn (d, a) +Z da)}

d=0

= & {;nf(a) +Eﬁf(a)}. (5.1)

=1

A natural point estimate of m(a) is

{Zn da)+ZN F(T - d—a)}

Since nT(d,a) = A(a)RT(a), f(r) = 0 for r < 0, and N(d) = 0 for d > 7, this reduces to

where A(a) is based on the data observed up to time T. Thus we also take M(a) = A(a).
If we wish to predict claims for ages a that are greater than T, estimates (a) have to be
based on sources other than the current data.

To obtain prediction limits for M(a) we require estimates of Var{M () - M (a)} =
Vi (a); approximate 2(o — .5) limits are given by M(a) & 2,Vas(a)Y/2, where z, is the stan-
dard normal a quantile. Kalbfleisch and Lawless (1996) and Kalbfleisch et al. (1991) provide

variance calculations under specific assumptions. We note that
Var {m(a) —m(a)} = Var {EﬁT( ZN F(T — d—a)}
- —Var {ZﬁT (d,a) — (N = R"(a)) i(a)}. (5.2)

To evaluate (5.2) we need Var{n?(d,a)} and Cov{ nT(d,a), Aa )}, and to further obtain
Cov{m(a) — m(a), m(b) — m(b)} for a # b we also need Cov{nT(a), nT(b)} and Cov{nT(a),ﬁT(b)}.
These are straightforward but tedious to write down under various variance models. For ex-
ample, under the model (2.7)-(2.8), they may be obtained directly from expressions (2.9)

and (2.10). Note that if all units sold have reached age a and if no further reporting delays

are possible, then m(a) = 7(a) and the right side of (5.2) equals zero.
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As in the case of Var{f\(a)} in Section 2.2, a crude variance model yields very simple
estimates analogous to (2.15) that appear to work well in many situations. The (rather
implausible) assumptions are that Var{nT(d, a)} = 02N(d)F(T—d—a)\(a), Var{ﬁT(d, a)} =
02N (d)F(T —d—a))(a), and that the n”(d, a)’s and 77 (d, a)’s are all mutually independent.
Then it is easily shown from (5.2) that

Var {m(a)  (a)} = o {M} \(@)

and that
Var {M(a) — M(a) =} = Z;)Var {m(u) — m(u)}.

This estimate was given by Kalbfleisch and Lawless (1996), who also provide a corresponding

result for grouped data:
N — RT (4))
5 A — A = 2] VI A A .
Var () = m (4} = o* { S D )
The development above provides methods for the age-specific prediction of claims for a
finite population of units. One may also wish to predict total claims and costs over calendar

time. The number of age a claims at day t is just n*(t,a), with
E{n*(t,a)} = p*(t,a) = N(t — a)\(a). (5.3)

The total claims at day ¢ is
¢
n*(t) = Y _n*(t,a).
a=0

A point estimate (prediction) for n*(t) is given by using 7*(t,a) = N(t — a)A(a), for a day
t in the future; values N (¢t — a) may also have to be estimated. If ¢ is a day in the past,
but not all claims on day ¢t may yet have been reported, then a point estimate is based on
n*(t,a) = n*T(t,a) + N(t — a)F(T — t)A(a). Prediction intervals may be developed through
estimation of Var{n*(t) — n*(t)}.

Prediction of costs may also be handled through these methods, as indicated at the

start of this section. When the objective is to provide forecasts of costs over calendar time,
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however, it is simpler to consider expected cost curves analogous to (5.3), i.e. to let C*(¢)

be the total cost of claims on day ¢, and to take

E{C*(t)} = Zi%N(t — a)cc(a), (5.4)

where cc(a) is the average warranty cost per unit at age a. We may extend (5.4) to include
covariates or calendar time effects.

Prediction methodology and, in particular, methods of setting prediction limits, deserve
investigation. These should have the property that as all of the units in the target population
(e.g. automobiles sold over a specific time period) enter service and age, prediction limits for
total claims or average claims per unit shrink. Early in the sales period one has to rely on
informed guesses about sales and age-based claims, and a Bayesian framework for prediction
of costs is therefore attractive. Robinson and McDonald (1991, Section 4) examine these

issues. Chen et al. (1996) also discuss warranty claim forecasting.

6. Estimation of Field Reliability

Reliability and durability are important dimensions of the quality of a product. Manufac-
turers obtain information about field reliability from a variety of sources that include field
tracking or followup studies, customer surveys, and warranty data. Robinson and McDon-
ald (1991) and Lawless and Kalbfleisch (1992) provide some general discussion. Because
followup studies and surveys are relatively expensive there is considerable interest in using
information from warranty data to estimate replacement or failure rates and to provide ideas
for reliability improvement.

A fundamental problem is that warranty claim records often do not identify the source of
a problem correctly or accurately enough to be useful for engineering reliability assessment.
This must be overcome by an effective identification and reporting process. Even then, there
remain some interesting inferential problems. In particular, data are generally missing for

units that do not experience a failure under warranty: dates of sale, usage information, and

22



covariate information are typically obtained when a unit experiences a warranty claim, but
are not available for units with no claims. Such information is not missing completely at
random, and biased inference may result if it is not dealt with properly.

Most warranties cover the early life of a product and usually provide little direct infor-
mation about longer term reliability or durability. Early life reliability is important as a
dimension of quality and as a key factor in determining the costs of a warranty plan, but
extrapolations well beyond the range of existing data must be treated cautiously.

We now discuss these issues in the context of failure time distributions and recurrent

events, and indicate some methods of analysis.

6.1 Estimation of a Failure Time Distribution

Our objective here is to estimate the early portion of a failure time, or time-to-event, distri-
bution. This is rather different than in the aggregate warranty claims analysis of preceding
sections, because we wish to assess unit-to-unit variability and to identify factors that ex-
plain some of that variability. For example, with multiple or recurrent events it is of interest
whether events occur across units in a fairly homogeneous way, or whether a small fraction
of units account for the vast majority of events. In addition, we may want to examine usage
or other factors in relation to failure.

To start, let T" denote the time to “failure” for a product unit; time here could be
either chronological (calendar) time or some type of usage time, such as miles driven for
automobiles. Suppose that T is recorded if failure occurs while the unit is under warranty;
for convenience we ignore reporting delays. If N units have entered service up to the current
date, let ¢,---,t, denote the failure times of units reported to fail, and let 7,41, -+, Ty
denote the censoring times for the remaining units. Note that 7; depends on the date of sale
of the unit, the current date, the terms of the warranty coverage, and possibly the usage
of the unit. For example, if a warranty covers a product for A days after purchase, then

7; = min (A, D;), where D; is the number of days between the purchase date and the current
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date.
Suppose that T' has probability density function f(¢;60) and survivor function S(¢;6) =

Pr (T > t;6) where 6 is a vector of parameters to be estimated and for simplicity we ignore

covariates. If 7,41, -+, 7n are known then the familiar censored data likelihood function
n N
LO) =17 @s;0) IT S(76) (6.1)
i=1 i=n+1
allows estimation of 6 (e.g. Lawless 1982, Chapter 2). However, 7,41, -+, 7y are generally

unknown for most or all of the product units not having failed under warranty. For example,
with products such as appliances most customers and retailers do not report dates of sale
for each unit; manufacturers honour a warranty claim if the date of sale can be validated
when the claim is made. With time scales such as mileage for cars and for more complex
warranty plans, censoring times are not available even if the date of sale happens to be known.
Likewise, covariates recorded when warranty claims are made will usually be missing for units
with no claim.

If the 7;’s in (6.1) are missing, some alternative must be sought. One approach is to use
only ¢y, -, t,, conditioning on the fact that ¢; < 7; in each case; this assumes that 7,---, 7,
are known, which is usually the case. However, this approach is informative only about the
conditional distribution of T', given that T' < T,ax, the largest censoring time observed. It is
quite uninformative about the unconditional distribution of T (Kalbfleisch and Lawless 1988,
Hu and Lawless 1996a) and for recurrent events (see Section 6.2) is very susceptible to model
misspecification (Hu and Lawless 1996b). It is thus desirable to incorporate information
about N and 7,41, -+, 7n. This has been studied in a sequence of papers beginning with
Suzuki (1985ab), and two main approaches have been proposed.

The first approach is to randomly select a followup sample F' of m units from the N —n
that have not failed under warranty and to obtain censoring times (and any covariate values)

for each unit; the data from this sample are used to “estimate” the second term on the right
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side of (6.1). For example, the weighted pseudo log likelihood function
N —n

> "log S(;6) (6.2)

T (6)=Y log f(t:0) +
i=1 icF

wherein we estimate 6 by maximizing 7 (6), has been shown to be very effective (Suzuki

1985ab, 1987, Kalbfleisch and Lawless 1988, Hu and Lawless 1996a). Strictly speaking (6.2)

requires knowledge of the exact value of N, the number of units in service by the current

date. However, this method performs well if N is known reasonably accurately.

The second approach is to estimate the distribution of the censoring times 7y, -, 7y for
the population of units in service. The motivation for this is to notice that if 7,14, ,7n
are not observed then the observed likelihood function is, instead of (6.1), proportional to

n N
Li@) =110 ] Pr (Ti>m), (6.3)
i=1 i=n+1
where both T; and 7; are random variables. If T; and 7; are independent and 7; has distribution

function G;(7) then
Pr (T, >n) = /Ooo S (7;0) dG;(7).

We allow G;(7) to vary across ¢ = 1,---, N because there may be observable covariates that
are informative about 7;. For example, the date of manufacture affects the date of sale of a
unit, and hence 7;; for automobiles, the date of sale conveys information about 7; in the case
where the “time” scale for failure is mileage.

If N and the G;(7)’s are known, we can estimate 6 by maximizing (6.3). Usually, however,
the G;(7)’s are estimated, or known only approximately, and in that case we should allow
confidence intervals to reflect this. Hu and Lawless (1997) provide methods for parametric
models f(¢;6) and Hu, Lawless and Suzuki (1997) consider nonparametric estimation. The
latter authors note that in the discrete time case where ¢t = 0,1,2,---, and where 7; and T;

are independent,

)= —2— (6.4)

M=
&

-
Il
—



estimates f(t) = Pr(T = t), where d(t) is the total number of failures observed at time ¢,
and Gj(t) = Pr(r; > t). This gives the simple estimate F(t) =]N‘ 0)+---+ ? (t).

The methods based on (6.2) extend easily to deal with covariates that are missing for
unfailed units but which may be observed for the followup sample. Those based on (6.3)

may also be extended, but this is slightly more complicated (Hu and Lawless 1997).

Example: Car Warranty Data

Lawless, Hu and Cao (1995) discuss an example involving warranty data on about 8400
automobiles in some detail, and we merely summarize the results. Figure 2 shows pointwise
.95 confidence interval estimates of the survivor function S(t) = Pr(T > t), where the
time scale ¢ is mileage; since the warranty coverage was for 12 months or 12,000 miles,
estimates up to only ¢t = 12,000 miles are shown. Three sets of intervals are portrayed: the
“nonparametric” is based on (6.4) and estimates of G;(t); the “parametric” is based on (6.3)
and estimates of G;(t), in which a parametric Weibull distribution was used for T, with
mileage accumulation rate as a covariate; the “truncated data only” used only the units
with observed failures. Lawless et al. (1995) found that failure time (with time = mileage)
is more or less independent of the mileage accumulation rate, and Figure 2 shows that the
parametric and nonparametric estimates are in good agreement. It also indicates that the

truncated failure data on their own are very uninformative, as discussed above.

6.2 Multiple or Recurrent Event Processes

Product units may experience several claims, or we may wish to break claims into groups or
types. In this case we consider n;(t), the number of events of some specific type for unit 7 at
“time” t. As in Section 6.1, “time” may be age or some measure of cumulative usage. For
simplicity we discuss one type of event and take time to be discrete.

For engineering purposes the process {n;(t),t = 0,1,2,---} is of interest. Data consist

of the times at which events occur or, equivalently, the values of n;(t) for t = 0,1,2,- -,

26



and possibly some covariates x;. As in Section 6.1, 7; is the censoring time for unit ¢, and
unless a unit has one or more events before time 7;, values in «; and 7; itself are usually
unknown. One approach is to specify a model for the process {n;(t),t > 0}, for example,
that the n;(t)’s are independent Poisson random variables with means A;(t; 8); then we could
estimate @ through pseudo likelihood approaches analogous to those giving (6.2) or (6.3).
Because of the considerable heterogeneity in the usage of products, and their environments, it
may be necessary to incorporate covariates or random effects in the models. Model checking
is hampered by the typically sparse data and the need to estimate censoring times (and
possibly covariate distributions) from supplementary data.

An alternative approach is to model and estimate E{n;(t)} = Xi(¢; @) without further
strong assumptions as to the nature of the process {n;(t),t > 0}. This leads to nonparametric

estimators similar to (6.4) in the case where \;(¢;0) = A(t):

X () = 2, (6.5)
> Gi(t)

i=1
provided that 7; and the event process are independent and that estimates of the survivor
functions G;(t) for 7; are available. This has been studied by Hu and Lawless (1996b), who
present an example involving the car warranty data of Section 6.1. The values X (t) may
be smoothed or used as they are to provide estimates A (t) =, X\ (u) of the expected
number of events up to time {. Parametric models and extensions to deal with covariates
may be based on the estimating function approach of Lawless and Nadeau (1995) and the
fact that E {n}(t)} = \i(t; 0)Gi(t), where n}(t) = n;(t)I(; > t).

Further study of methods for recurrent events would be valuable, including the assessment
of heterogeneity across units. It is of considerable interest, for example, whether a small
fraction of units generate most of the events. In the absence of observable explanatory

variables, mixture models based on unobservable random effects may be considered.
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7. Concluding Remarks

The methods of Sections 2-6 deal with warranty data in a wide variety of situations. We
conclude with some comments on enhancements and additional problems.

The warranty schemes for a product may render reliability estimation and analysis like
that in Section 6 more difficult in some cases. For example, if warranty limits involve usage,
then assumptions made in Section 6 about censoring times being independent of failures
may be violated. If failure rates for automobiles depend on the mileage accumulation rate,
then censoring times on either the “age” or “mileage” time scale are not strictly independent
of failure times. Lawless et al. (1995) and Hu and Lawless (1996b) tackle this problem by
treating usage factors as covariates, conditional on which failure and censoring times may
be assumed independent. Since for field reliability analysis usage is generally an important
factor, models both for the dependence of failure on usage and for variations in usage across
the field population of product units are important. Further study of this area would be
valuable.

For certain types of products, other methods for analyzing repeated claims than those
in Section 6.2 may sometimes be useful. For example, if a claim results in a product or
component being replaced with a new one, renewal process models are sometimes used. The
case of so-called “free replacement warranties” has received a good deal of attention; see
Frees (1986, 1988) and various chapters of Blischke and Murthy (1996), which discusses
many types of warranties.

Monitoring warranty claims is an ever-present issue for manufacturers. The methods of
age-based analysis provide tools for doing this, but procedures for when to take action in the
face of apparently elevated claims require study. Multiplicity problems due to large numbers
of product lines or product components are not easily dealt with.

Interactions or relationships between different types of claims are sometimes of interest;
for example, uncertainty about the source of a problem may lead to the replacement of

two or more components when only one is truly involved. The methods in this paper deal
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with models for individual types of claims. It is possible to extend them in a reasonably
straightforward way to deal simultaneously with multiple claim types (e.g. Hu et al. 1997).
Chukova and Dimitrov (1996) discuss modelling of complex product failures.

Finally, although our focus has been on the analysis of warranty data, many of the issues
discussed arise more generally for field failure or field return data, and the methods presented
are of quite broad applicability. Robinson and McDonald (1991), Lawless and Kalbfleisch
(1992) and Suzuki (1995) survey field reliability analysis.
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Legends for Figures

Figure 1. Age-based cumulative automobile warranty claims.

Figure 2. Confidence intervals for survival function of miles to first warranty claim.
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