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Abstract

There are many practical problems in which finite mixtures of probability dis-
tributions arise as models of life lengths. Although the roles of failure rate and
mean residual life in modelling life lengths are well established, much work has not
been done to characterize mixture distributions in terms of these concepts. In the
present paper we establish an identity connecting the failure rate and the mean
residual life that characterizes two-component mixtures of exponential, Lomax and
beta densities. We also prove a similar result connecting the failure rate and the
second moment of residual life. The use of the characteristic property in deriving

some quick estimates of the parameters of the mixture model is indicated.

Key Words - Life distributions, mixture, failure rate, mean residual life, characteri-

zation.

1 Introduction

Acronyms, Abbreviations and Notations:
MRLF - mean residual life function
IFR, DFR - [increasing, decreasing] failure rate

IMRL, DMRL [increasing, decreasing] MRL

10n leave from Cochin University of Science and Technology, Cochin, India.
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X continuous rv in the support of the set of non-negative reals
f() pdf of X

R(:) Sfof X

h(z) failure rate of X f(z)/R(x)

r(z) E(X—-z|X >z), MRLF of X

m(z) E[(X —z)?| X > z],second moment of residual life

D a real number in the interval (0, 1)

fi(-) component densities

i mean corresponding to the density f;

The role of the failure rate, MRL and second moment of residual life in modelling
life time data is well established. Based on the result that these determine the corre-
sponding life distribution uniquely, there have been many attempts in the literature to
identify the specific functional forms of the failure rate or MRL that characterize various
distributions. Galambos and Kotz [1] discuss this topic extensively.

For many distributions used in life length studies, there is no closed form expression
for the failure rate or MRL that permits simple characterizations. However, in such
cases, there may exist identities connecting these functions that determine the underlying

distribution uniquely. In [2] it is proved that X has gamma distribution if and only if
EX | X 2 y] = p+yh(y)/a
where u = E(X). This was extended (see [3]) to cover the Pearson family
f'(z) = —(z + d) f(z)/ (bo + brz + bpz?)

by the identity
Elz | X > z] = p + (a0 + a1 + a22?)h(z)



where, a; = b;/(1 — by),% = 0,1,2. Results along the same direction can also be seen in
[4] and the references cited therein.

There are many practical problems in which a population of life times allow de-
composition into sub populations such as those based on units, in different production
periods, with different designs or from different raw materials [5]. Also failure occurs due
to various causes and each cause may produce a different density. In all these cases the
failure density assumes the form of a finite mixture. We refer to [6], [7] for details and
further examples. With mixture distributions as plausible models in life length studies,
it is natural to explore the possibilities of characterizing them by means of identities
of the type already mentioned. In Section 2 we present two characterizations of the
mixtures of exponential, Lomax and beta densities through relationships between (i)
failure rate and MRL and (ii) second moment of residual life and failure rate. Some
basic properties of these models are also discussed in Section 2. A possible application
of the characteristic property to inference on the parameters of the model is pointed out

in Section 3.

2 Main results

We give two characterizations of the exponential, Lomax and beta densities.

Theorem 1 The identity

r(z) = (1+az)( + p2 + @ ppz) — papa(l + az)’h(z) (2.1)

is satisfied for all x for a rv. X with density
f(z) = pfi(z) + (1 — p)fa()



if and only if for i =1,2

fi(xz) = Njexp[—Aiz], A\>0; >0, fora=0; (2.2)
fi(z) = ;% (z + B)~@+) o, B>0; >0, fora>0 (2.3)
and fi(z) = %(1 - %)Ci"l, C;, R>0,0<z<R, fora<O. (2.4)

Theorem 2 The distribution of X will be a mizture of exponentials (Lomaz laws; betas)

with component densities as in (2.2)((2.3); (2.4)) if and only if for all x

MAZm(z) = 202 + A2 + Md2) — 2(A1 + Ag) h(z) (2.5)

[(Olz —a)(a1 — 1)(a; = 2)m(z) = 2(z + B)* (a2 — a1u) — 2(z + B)*(1 — w)h(z) (2.6)

where u = (g —1)(o1 —2)/(ag — 1)(2 — 2);

(C2 = C)(C1+1)(CL +2)m(z) = 2(C:— C)(R - 2)* - 2(R — 2)°(1 — ¥)h()
where ’19(01 + 1)(C1 + 2)/(02 + 1)(02 + 2)]

The proofs of Theorems 1 and 2 are given in the Appendix.

Remarks

1. Although the exponential distributions have constant failure rates (MRL), their
mixture has DFR (IMRL). The Lomax densities as well as their mixtures belong
to the DFR (IMRL) class. On the other hand even though beta densities are in
the IFR class, their mixture can exhibit DFR property. This follows from the fact
that the sign of dh(z)/dz for the beta density is the same as that of

Cip? (1= 227 4 Ca1=p) (1= )P p(1-p) (1= )+ Cu Co—(C1—Co)’]
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and a choice of C; and C; sufficiently apart will lead to dh(z)/dz < 0. Thus one

has to take care when data belonging to two such beta densities are pooled.

2. Results for single populations can be deduced if we set A\; = A2, a3 = ay and

Ci =0C,.

3. Apart from the increased algebraic calculations, the method of proof remains the

same even if we increase the number of components in f.

3 Application

Equation (2.1) in the case of the exponential mixture becomes

r(z) = (p1 + p2) — pap2 h(z) (3.1)

which implies that a plot of (h(z), r(x)) is a straight line. Thus if the values of the MRL
and failure rate realised from a random sample of failure times fall along a straight line
it indicates that the model is a mixture of exponentials. Moreover, in such cases, the
least square estimates of the slope (u1p2) and intercept (u; + p2) in (3.1) will lead to
estimates of the parameters of the component densities. The sample mean is an estimate

of r(0) = E(X) and hence using

7(0) = pus + (1 — p)pe

and the earlier estimates of p; and pg, we can find the mixing parameter p. This
procedure presents a simple methodology and can provide some quick estimates of the
parameters without many computational difficulties. The properties of these estimates

require detailed study and hence will be reported elsewhere.



Appendix

A.1 Proof of Theorem 1

To establish the if part, we note that for the Lomax mixture
h(z) = [paa (z + B) ) + (1 - p)af(z + B) "> V)/Ra(z) (A1)

r(z) = [p(oa — 1)7' 8% (2 + 7 + (1= p)(az — 1)7'8%(z + B) "] /Ru(z) (A.2)
with
Ry(z) =pB " (z+ B)™* + (1 - p)B%(z + B)*. (A.3)
From (A.1), (A.2) and (A.3),

o tog—1 (z+6)?
(1 —1) (a2 — 1) (a1 = 1) (a2 — 1)

Using p; = B(a; —1)7Y,i=1,2 in (A.4) and setting 87! = a > 0 we obtain (2.1).

r(z) = (z+6) -

(A4)

In the case of the beta mixture
h(z) = [pCiR7}(1 — 2R + (1 — p)(1 — zR™1)?*CoR ]/ Ry(z) (A.5)

r(z) = [pR(Cl +1)7N(1—-2zR ) + (1-p)R(C2 + 1)1 (1~ va'l)Cz“] Ry(z)
(A.6)
where

Ry(z) =p(1 —zR )% 4+ (1 -p)(1 — xR ).

Simplifying using p; = R(C;+1)"! and a = —R™! < 0, we get (2.1). The exponential

case is proved in Nassar and Mahmoud [8].



It remains to establish the converse. For this we assume that a # 0. From the

definitions of h(z) and r(z) and (2.1) we write

(1+az)(u + p2 + app2) R(z) — papie(1 + az)*f(z) = /x TR@d (A7)

Differentiating (A.7) twice w.r.t z,

papa(1 + az)’ f"(x) + (11 + p2 + Sapy po) (1 + az) f'(x)
+[2a(p + p2) + 4a?py o + 1] (z) = 0. (A.8)
To solve the differential equation (A.8), we set
e?=1+ar and y= f(z)

to yield

d? d
azﬂlﬂzd_zi + [(u1 + p2)a + 402111#2]% +[1+ 2a(p1 + p2)

+a® oy = 0, (A.9)

which is homogeneous with constant coefficients. The auxiliary equation

1+2
m2+(w+4) m+ i(“1+”2)+4=0
ap piz a2 pip

has roots

my =2+ (ap)™t, my =2+ (ap)™L.

The solution of (A.9) is thus
Y =A exp[-(2+a'u;")Z]) + B exp[—(2+a'u;Y)Z]) = A(1 + az)~@2*) 4 B(1 + az)~@+D
with o; = 1+ (ap;)™!. Now choose A = ang and B = a;p to read

f(z) = aupB® (z + B)" @D + 0yq8%2 (z + B)~(2tD),
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Using the conditions, f(z) > 0 and [3° f(z)dz = 1, we find oy > 0 and ¢ = 1 — p.
Thus we have a mixture of Lomax densities as stated in the Theorem. For a < 0, we set
a = —R~! and proceed as before. The case for a = 0 is treated independently in [8] and

our proof is complete.

Proof of Theorem 2

Since the method of proof is the same as that of Theorem 1 we give here only the outline

of the proof in one case. Equation (2.5) when differentiated three times after substituting

m(z) = 2 / "t — 2)R(t)dt

takes the form

()\1 + )\z)f,” + ()\%)\g + /\1)\2)f” — )\%/\%f = 0. (AlO)
The corresponding auxiliary equation is
(/\1 + /\2)m3 + ()\% + )\% + )\1)\2)m2 - )\f)\g =0

whose solutions are

m = —/\1, - Az and )\1)\2()\1 + )\2)_1.

Accordingly the unique solution of differential equation (A.10) is

f(z) = Ae™® 4B e Qi)

= pA\ e NT 4 g Ay e 4 O Maitia) e (A.11)

For (A.11) to be a density function, C' must be zero and hence ¢ = 1 — p and X has
mixture exponential distribution. The proofs for (2.6) and (2.7) follow the same pattern

with substitutions made as in the solution of (A.8).
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