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Often in industry critical quality characteristics can be measured by more
than one measurement system. Typically, in such a situation, there is a
fast but relatively inaccurate measurement system that may be used to
provide some initial information, and a more accurate, but slower and
more expensive, alternative measurement device. In such circumstances,
it is desirable to determine the minimum cost procedure for monitoring the
production process using some combination of the measurement systems.
This article develops such a procedure. An example of its use in the

automotive industry is provided.

Introduction

Metrology is an important aspect of manufacturing since measurements are necessary for
monitoring and controlling production processes. However, in many situations there is more
than one way to measure an important quality dimension. Frequently the choice between the
different measurement systems is not clear due to tradeoffs with respect to sampling cost,
sampling time, and measurement accuracy. One particular situation, that is explored in this
article, occurs when there is a “quick and dirty” measurement device that is inexpensive and
relatively fast, but is not the most accurate way to measure, and a slower more accurate and
expensive measurement device or method. Good examples of this situation occur in many

manufacturing plants. For example, in foundries the chemistry of molten iron may be checked



using a quick method, called a “quick lab”, or may be sent to a laboratory. In the foundry
application, the quick measurement is used to monitor and control the process, since adjustments
to composition are required immediately and the lab measurement takes a number of hours. The
slower lab measurements are used only for after the fact confirmation. Another example is the
use of in-line fixture gauges to monitor the production of engine covers. The fixture gauges
provide approximate measurements for some critical dimensions. A Coordinate Measurement
Machine (CMM) can be used to determine more precise values. This engine covers example is
discussed in more detail later.

The current approaches to monitor production processes where two measurement devices
are available is to use results from each measurement device separately and often for different
purposes. However, from cost and efficiency considerations using only one of the measurement
devices to monitor the process is not ideal. A procedure that monitors or controls the process
through the use of both measurement devices in conjunction is the best solution. In this article a
method for using both measurements in conjunction to monitor or control the process is
proposed. The basic idea is straightforward. The first measurement device is inexpensive and
quick, so we try initially to make a decision regarding the state of control of the process based on
results from the first measurement device. If the results are not clear cut, we measure the same
sample of units again using the more accurate measurement device. Notice that this procedure
does not require additional sampling since the same sample is measured again if the initial results
were not conclusive. Not requiring an additional independent sample is an advantage since
obtaining another independent sample may be difficult and/or time consuming.

This idea of using the second measurement device only in cases where the first
measurement does not yield clear cut results is motivated by earlier work by Croasdale (1974)
and Daudin (1994). Croasdale and Daudin develop double sampling control charts as an
alternative to traditional X control charts. Using double sampling charts warning limits are
added to the traditional control charts in addition to control limits. The warning limits are used

to decide when a second independent sample is needed to reach a conclusion regarding the



process’ stability. Double sampling charts, however, are not applicable in the two measurement
devices problem since they assume that the same measurement device measures all samples and
that measurement error is negligible. As a result, with double sampling charts when the initial
sample does not provide a clear decision an additional independent sample taken from the
production process is required in order to provide more process information.

In this article, optimal process monitoring control charts for the two measurement device
case are determined. The resulting control charts are called two measurement system control
charts. Two different cost models are considered, namely a sampling cost model and a
production cost model. For each model the monitoring procedure that minimizes costs subject to
a statistical constraint in terms of the false alarm rate and power of the resulting control chart are
determined. The production cost model considers other production costs such as the cost of
producing nonconformities and the cost of searching for assignable causes as well as sampling
costs. The sampling cost model requires less process knowledge, and is thus appropriate when

the production costs are difficult to estimate precisely.

Control Charts for Two Measurement Systems

The results from the two measurement systems are modeled as follows. Let

Y, = X +e, i=1,..,n, j=1,2. (1)

t

where X, is the actual dimension of the ith unit, ¥;; and Y, are the measured dimensions of the
ith unit with measurement device one and two respectively, and e; is the measurement error.
We assume e;s are normally distributed with mean zero and variance 0'1?. Assuming that the

mean of e; equals zero implies that we have compensated for any long term bias of the

measurement device. The properties of the two measurement devices are assumed well known
since regular gauge R&R studies for all measurement devices are required in industry. Note that
for most cases of interest 0, < 0,. We also assume that the actual dimensions of the quality

characteristic of interest are normally distributed with mean u, and, without loss of generality,



have a standard deviation equal to one. Thus, X ~ N(u, 1), and X ~ N(u,1/n). Also without
loss of generality, we assume that the in-control process mean has been scaled to zero. In other
words, for the in-control process the X variable represents a standardized variable.

We begin by defining some terms. Measuring the » units in the sample with the first

measurement device we may calculate Y, = z If the same sample is measured with the

=17 il

second measurement device we may obtain Y, = 2; Y,. Based on the distributional

assumptions it can be shown that ¥, and ¥, are bivariate normal with

E(Y) = E(Y,) = p, Var(Y)) = (1+ 0})/n, Var(Y,) = (1+03)/n, and
Cov(T,.%,) = E(Cov(¥,.T,| X)) + Cov(E(Y,| X), E(%,| X)) =0+ Yn = Un.

Note ¥, and ¥, are not independent since they represent the sample average obtained by first and
second measurement device respectively on the same sample of size n. Assuming o, < 0, ¥,
provides more reliable information about the true process mean than ¥,. However, a weighted

average of ¥, and Y, provides even more information. Define W as the weighted sum given by

(2).

w = kY, +(1-k)Y, )
Based on the moments of Y, and ¥, we get:

E(w) = u,
Var() = < (k*(0? +1)+ (e~ (03 +1) + 241~ ),

Cov(Y,,w) = (1+ o7k)/n

We obtain the most information about the true process mean when the weighting constant

k is chosen so as to minimize Var(w). Denoting this best value for k as k,, and solving gives

k, = oi/(ol+03) (3)



Using £,

pt» the variance of W and the correlation coefficient relating Y, and W, denoted

p,,» are given by (4) and (5) respectively.

2 2
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The value of k,,, will be close to zero if the second measurement system is much more precise
than the first device. In that case, w almost equals 172.

The proposed procedure to determine whether the process is in-control or out-of-control
is as follows. Every h units of time take a rational sample of size n from the process. Measure
all units with the first measurement device to obtain Y,,, Y,,, ..., ¥,,. Calculate ¥, and if ¥, falls
outside the interval [—-c,,c,], where ¢, is the control limit for the first measurement device, we
conclude the process is out-of-control. If, on the other hand, ¥, falls within the interval [-7;, r,],
where r, is the extra measurement limit (r;, £ ¢), we conclude the process is in-control.
Otherwise, the results from the first measurement device are inconclusive, and we must measure
the sample again using the second measurement device. Combining the information from the
two measurements on each unit in the sample together, we base our decisions on w. If w falls
outside the interval [-Cz,c 2], where c, is the control limit for the combined sample, we conclude
the process is out-of-control, otherwise we conclude the process in in-control. The decision
process is summarized as a flowchart in Figure 1.

In many situations it is reasonable to simplify this procedure by setting ¢, equal to
infinity. The result of this restriction is that based on the results from the first measurement
device we can conclude that the process is in-control or that we need more information, but not
that the process is out-of-control. In applications this restriction is reasonable so long as the time

delay for the second measurements is not overly great.
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Figure 1: Decision Process for Control Charts for Two Measurement Systems

Using the assumption of normality, it is possible to determine the probabilities of making
the various decisions. Let ¢(z) = ¢*2/\2% and Q(z) = ﬁb(x)dx be the probability density

function and cumulative density function of the standard normal respectively. Also, denote the
probability density function of the standardized bivariate normal as ¢(z,z,,p) =
(27:0'10'2 W ) exp((z,2 -2pz2,+ 22 ) / (1 -p* )) Then, (6), (7) and (8) give expressions for the
probabilities that the following events occur: the procedure signals the process is out-of-control
based on results from the first measurement; measuring the sample with the second measurement
is necessary; and the combined results from the first and second measurement devices leads to a

signal.

p() = Pr(signal on first measurement) = Pr(¥, >, OR ¥, <)

= 0(-za)+1-0(z) ©)
q,(#) = Pr(second measurement needed) = Pr(r, <¥, < OR —1,> %, > )
= 0(-2)-0(-24) +0(z) - 0(z,) ™

where z,, = (¢, _ﬂ)/w, and z, = (r, —.U)/ (1+02)/n-

Similarly, we have
p,(#) = Pr(signal on combined measurements)

= Pr((W>c,ORW<—6,)&(r, <% < OR -1, >¥,>—¢))



= H ¢(z,,2,.p, )dzdz, + H ¢(z,,2,,p, )dzdz,

21€[z,,24] 1 €[z,,24 l
22 €[~ =22 2 E[Zcz [ad
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where z,, = (c, —,u)/(\/(of +0; +070;)/(o] + of)n). Note that p,, p, and g, all depend on

the true process mean /L.
Using the decision procedure illustrated in Figure 1, the false alarm rate o, the
probability the chart signals when the process mean is in-control, and the power 1-f3, the

probability the chart signals when the process mean shifts to 4, are given by (9) and (10).

o = p(0)+p,(0) ®
1-B = pl(:ul)+p2(:ul) (10)

Using the simplified version where c, is set equal to infinity gives p, (1) = 0 for all values of 1,

and z,, = oo,

Design of Control Charts using Two Measurement Systems

There are five design parameters for two measurement system control charts, as outlined
in the previous section. We must specify the control limits ¢, (wWhen not set equal to infinity) and
c,, the extra measurement limit r,, the sample size n, and the sampling interval 2. Through a
judicious choice of these parameters a good monitoring procedure can be defined. As pointed
out by Woodall (1986 and 1987) purely economic models of control charts may yield designs
that are unacceptable in terms of operating characteristics. For example, the “optimal” design
from a purely cost perspective may have such a large false alarm rate that the chart is routinely
ignored. For this reason, in this article, the optimal designs for two measurement system control
charts are determined based on economic considerations with the addition of some constraints on
the operating characteristics of the chart. In particular, two measurement system control charts

are designed to closely match the operating characteristics of a Shewhart X chart with a sample



of size five. Thus, the false alarm rate of the two measurement system control chart is
constrained such that o < o =.0027, and the power of the chart to detect shifts in the process
mean of two standard deviation units must satisfy the constraint 8 < B° = .0705. The values for
o' and B could be changed if the objective of the chart is different than that of a standard X
chart with a sample of size five.

In this article two different cost models are considered. First, a model that minimizes
only the sampling costs as examined. This sampling cost only model is relatively easy to use,
and is appropriate when other cost parameters can not be well estimated. The more complex cost
model considers all the production costs and is based on the general framework developed by

Lorenzen and Vance (1986).

Sampling Cost Model

Using the sampling cost model the goal is to minimize the sampling costs while

maintaining the desired minimum error rates of the procedure. Let f; and v, denote the fixed

and variable sampling costs for the ith measurement system respectively (i =1,2). Then the

sampling cost per sample interval, S(1), is given by (11).

S(u) = fi+vin+(f, +v,n)q (1) (11)

The sampling cost per interval is a function of the actual process mean through the
probability the second measurement is needed g,(u). There are a number of ways to define an
objective function using (11). Since the process will (hopefully) spend most of its time in-
control we minimize the in-control sampling costs. Using this formulation, the optimal design of
the control chart using two measurement devices is determined by finding the design parameters

that

minimize §(0) (12)

subjectto o < o =.0027 and B8 < B° =.0705



where §(0) is given by (11) when g =0, and & and B are given by (9) and (10). Note that
when considering only the sampling costs the sampling interval 4, has no effect on the cost. Asa
result, the sampling interval must be determined through some other criterion, such as the
production schedule. This leaves three or four design parameters c,, r,, n and perhaps c,.
Optimal values for these parameters that satisfy (12) can be determined using a constrained
minimization approach such as applying the Kuhn-Tucker conditions. This solution approach
was implemented using the routine “constr” in the optimization toolbox of MATLAB®. An
alternative objective function is a weighted average of in-control and out-of-control sampling
costs. However, it is not clear what weights to choose, and in most cases the optimal chart
design does not change substantially unless the in-control case is given a small weight which is
unrealistic.

In our analysis of the sampling cost model, without loss of generality, we may set v, = 1,
since the results depend only on the relative values of the sampling costs. In addition, to restrict
the possibilities somewhat, the fixed cost associated with the first measurement device is set to
zero, i.e. f, = 0. This restriction is justified because typically the first measurement device is
very easy and quick to use, and would not require much setup time or expense.

Figures 2-3 show the results of determining the optimal design parameters that satisfy
(12) for different sampling cost parameters when setting ¢, equal to infinity. Figure 2 gives
results when the second measurement device also has no fixed costs, while Figure 3 considers
the situation where the fixed cost associated with the second measurement device is relatively
large. Figures 2 and 3 each consist of four subplots that show contour plots of the optimal design
parameters: r,, ¢,, and n as a function of 0, and 0,, the variability inherent in the two
measurement devices. Each subplot represents four different values of v,, the variable sampling
cost associated with the second measurement device. Optimal values for r,, c,, and n in the
general case where ¢, is allowed to vary are very similar to those given in Figures 2 and 3. In
general, the optimal value of ¢, is large and as a result does not effect the procedure much unless

there is a large shift in the process mean.



Figures 2 and 3 suggest that the parameters r, and c, are the most sensitive to changes in
the variability of the measurement devices. In general, when the sampling costs of the two
measurement devices are comparable, as the first measurement device becomes less reliable ( o,
increases), n increases, while r, decreases. This makes sense since it means we rely more on the
second measurement device when the first device is less accurate. Conversely as the second
measurement device becomes less reliable (0o, increases), c, and n increase while r, increases
marginally since we rely more on the first measurement device.

Now consider the case where the second measurement device is expensive ( f, or v,
large). As the second measurement device becomes less reliable ( o, increases), again we
observe that c, increases while n and r, increase marginally which makes sense. However, the
pattern appears to be counterintuitive when the first measurement device becomes less reliable
(0, increases) since n and c, decrease marginally, but r, increases! Does this mean that we rely
more heavily on the inaccurate first measurement device? Looking more closely, this apparent
contradiction disappears. Although, as o, increases the optimal r, also increases this does not
mean that the decisions are more likely to be made based on the first measurement device. When
the variability of a measurement device is large we expect to observe large deviations from the
actual value. Thus, the observed increase in r, is only taking this into account. Consider Figure
4 which shows contours of the probability the second measurement is needed in the two cases:
fi=/f,=0, vy =1with v, =1 or 4. The plots in Figure 4 show clearly that as the first
measurement device becomes less accurate we rely on it less even though, as shown in Figure 1,

r, increases.
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Figure 2: Contour Plots of the Design Parameters for the No Fixed Cost Case
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Figure 4: Contour Plots of the Probability the Second Measur1ement is Required
Process in-control, f, =0, v, =1, f,=0
Figures 2 and 3 may be used to determine the design parameter values that are
approximately optimal in terms of in-control sampling costs. For sampling cost parameters in
between those given interpolation can be used to determine reasonable values for c,, r,, and n.
In practice, the sample size, n, must be rounded off to the nearest integer value. Rounding off
the sample size effects the power of the chart, but has no affect on the false alarm rate of the
procedure. Of course, rounding down the sample size decreases the procedure’s power, while

rounding up increases the power.

Production Cost Model

Besides sampling costs many other production related costs, such as the cost of searching
for assignable causes real and imagined, the cost of downtime, and the cost of producing
nonconformities effect the cost efficiency of any monitoring procedure. The production cost
model defined here is based on the general approach suggested by Lorenzen and Vance (1986).
Using cost models to design process monitoring control charts has a fairly long history, and there
is a large literature on the economic design on Shewhart type control charts starting with Duncan
(1956). A good review of the early work is provided by Montgomery (1980).

Following Lorenzen and Vance (1986) we define a quality cycle as the time between the

start of successive in-control periods. Repeated cycles form a renewal reward process (Ross,
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1983), and thus the expected production cost per unit time can be expressed as the ratio of the
expected net production cost per cycle divided by the expected length of a cycle.

The cycle time consists of the sum of the following: (a) the time until the assignable
cause occurs; (b) the time until the next sample is taken; (c) the time until the first process
sample showing evidence of an out-of-control situation is collected; (d) the time to analyze the
sample and chart the results; and (e) the time to discover the assignable cause and repair the
system. See Figure 5.

(a) ,(b), (©) @ (e,
| l 1 1 P Time

RN Y PRI

take a sample process  first fist  signal  process

shifts ~ sample sampl i
every h hours oot after ftf:)P e detected repaired

control  shift signal
Figure 5: Process Time Line Showing the Five Periods

It is assumed that assignable causes occur according to an Poisson process with an
intensity of A. Then, it can be shown that 7 = [1-—(1+lh)e""‘]/ (2 —2e™) equals the

expected time of occurrence of the assignable cause within a sampling interval given that the

assignable cause occurs somewhere in that interval. Also, it can be shown that the expected
number of samples taken while in-control is s = ™ (1 - e"’“'). Define indictor variables §, and

d,, such that §, equals one if production continues during searches for assignable causes and
zero otherwise, and J, equals one if production continues during repair of a assignable cause and
zero otherwise. The expected search time for a false alarm, the expected time to find the source
of assignable cause, and the expected time to repair an assignable cause are denoted as 7, T,
and T, hours respectively.

For two measurement system control charts the expected amount of time the process

spends in periods (a), (b), (c) and (e) is unchanged from the Lorenzen and Vance (1986)

formulation, and are given by /A +(1-8,)saT,, h—t, hB/(1-B), and T, +T, respectively.

14
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The time in state (d), on the other hand, must be adjusted to take into account the possibility that
the second measurement of the sample causes the out-of-control signal rather than the results
from the first measurement device. Denote the expected time to sample and chart one unit with

the first and second measurement devices as E, and E,, respectively, and let the additional fixed

time needed to measure the sample with the second measurement device be E,,. Assuming that
0<nE,, +E,, <h, the expected time in period (d) is given by nE, + p, (nEZV +E,, ) / (P +py),

where p, and p, are determined by (6) and (8) evaluated at y1,. The constraint nE,, +E, <h

implies that the results of the second measurement device, if they are necessary, are known
before the next independent sample is taken. This is a reasonable assumption in most production
environments. If this assumption does not hold it is still possible to derive the expected time in
period d), but it is more complicated since the chart may signal due to the first measurement of a
sample before the results of a second measurement on a prior sample are known.

Putting this together, the expected cycle time, 7, equals

nk, +E
T = 1/2,+(1—61)saT0+h—-z'+nE1+p2( 2 2f)+ hpB + T, +T,
Dtp, (l—ﬁ)
h+nE, p,+E
= YA+(1-8)saT, + nE,+ "Zlvpzﬂ 2P o h T4, 13)

Turn now to the cycle costs. Costs per cycle are made up of three components:

nonconformities, search for and repairing assignable causes or false alarms, and sampling costs.

Define C, and C, (C, > C,) as the costs per hour due to nonconformities produced while the

process is in-control and out-of-control respectively. Then the expected cost per cycle due to

non-conformities equals

Co/A+C\[-T+nE, +(h+nEyp, + E, p,)/(1- B)+ 8T, + 5,1,

Let W equal the cost of locating and repairing the assignable cause when one exists.

Here W includes the cost of downtime while repairing the process. Also, let Y equal the



expected cost per false alarm. Then the expected cost associated with false alarms and the cost
of repairing the true assignable cause is Y ae™ / (1 - e‘”’)+ W. Sampling costs per cycle equal
the sampling costs per sample multiplied by the time producing divided by the sampling interval.
Applying this rule the expected sampling costs per cycle in-control and out-of-control

respectively are given by

[£i+ vin+a,(u,)(f, + v,n)| /AR and

h+nE, p,+E, . p.
[fl"‘Vln"'Qx(/-‘l)(fz"'Vzn)][ 21—2ﬂ D

+En—-1+48,T, + 62T2]/h,

where as defined previously f; and v, denote the fixed and variable sampling costs for the two
measurement devices, g,(it) is given by (7), and p, = p,(u,) is given by (8).
Thus, the expected net cost during a cycle, N, is

h+nE, p, + E, P2

1-B
h+nE, p, +E, P2

1-B

N = GJ/A+ Cl[—7:+ +nE +6,T, + 62T2]+ Yoce“”’/(l - e'”’)+ W

+ [fi+vin+qy(w)(f, + vzn)][ +En—t+8,T, + 62T2} /h (14)

+ [+ vin+ qy(1o)(f, + von)] A

The expected cost per hour is given by the ratio N/T, and the optimization problem is to find the

design parameters that

minimize N/T (15)
subjectto @ < o =.0027 and 8 < B° =.0705

where N and T are given by (14) and (13) respectively, and o and B are given by (9) and (10).
Using the second measurement device results in longer times in the out-of-control state, thus
leading to more nonconformities, but may reduce the sampling costs.

Due to the large number of cost and time parameters required for this model it is not
possible to provide graphs or tables that would allow a practitioner to determine near optimal

designs. However, as an illustration, consider the following example adapted from Lorenzen
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and Vance (1986). The cost and time parameters are: A=1/500, u, =2, E=5/60, E,, = 10/60,
E,;, =0, T,= T, =5/60, T, =45/60, C, = 114.24, C; =949.2, f, =0, v, =844, f, =0, v, =
16.88, W =977.4, and Y=977.4. Also, assume that production continues while searching for
assignable causes, but that while repairing assignable causes production stops, i.e. 6, = 1 and 9,
= 0. Figure 6 shows contours of the optimal design parameters for different values of o, and o,.
In this example the optimal ¢, was always large, and thus we used the simplified monitoring

procedure where ¢, is set to infinity.
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Figure 6: Contour Plots of the Design Parameters for the Production Cost Model Example

See Lorenzen and Vance (1986) for more details on sensitivity analysis for the model

parameters that are in their model. To accommodate the second measurement device four

additional parameters are added to the model, namely f,, v,, E,, and E,;. The effect of the

additional sampling cost parameters: f,, Vv, are fairly straightforward. In the cost model they
influence only the cycle cost. Increasing (decreasing) either f, or v, results in lower (higher)

levels for the optimal r, value, and slightly larger (smaller) values for » and h. In other words,

as the cost of the second measurement increases (decreases) we try to rely more (less) on the

17



results from the fist measurement device. The effect of the sampling time parameters E,, and
E,; is more complicated since changes in the sampling time effects both the cycle cost and cycle
time. As a result, the effect of increases or decreases in the sampling times is not consistent. In
general, changes to the variable sampling costs or times have more influence than changes to the

fixed sampling costs or times.

Example

In the manufacture of engine front covers there are many critical dimensions. One such
critical dimension is the distance between two bolt holes in the engine cover used to attach the
cover to the engine block. This distance may be accurately measured using a coordinate
measurement machine (CMM). However, using a CMM is expensive and time consuming. An
easier, but less accurate measurement method involves the use of a fixture gauge. The fixture
gauge clamps the engine cover in a fixed position while measuring hole diameters and relative
distances.

In this example, denote the fixture gauge as the first measurement device, and the CMM
as the second measurement device. Based on previous measurement system studies it has been
determined that o, =.5 and o, =.05. As expected, the CMM measurement has less variability
than the fixture gauge results. We also know that on a relative cost basis the using the CMM is
six times as expensive as the fixture gauge in terms of personnel time. We shall assume that the
fixed costs associated with the two measurement methods is zero. Thus, in terms of the notation
from the sample cost model we have: f, = f, =0, v,=1,and v, =6.

Additional information about the production costs was felt to be difficult to estimate. As
a result, we use the sampling costs only model. Solving (12) with the additional simplification
that ¢, = oo gives: r, = 2.80, ¢, =2.92, with n = 5.26 for a relative cost of 5.65. In this optimal
solution the values for r, and ¢, are almost equal. From an implementation perspective setting
r, and ¢, equal is desirable since it simplifies the resulting control chart as will be shown. For

this example the optimal solution to (12) with the additional constraint that r, = ¢, results in the
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constrained solution: r, = ¢, = 2.89, n = 5.36 with a corresponding cost of 5.67. For
implementation the sample size is rounded off to five. These costs are around 10% less than the
sampling costs associated with a similar plan that uses only the first measurement device.

Figure 7 gives an example of the resulting two measurement control chart. On the chart
the average of the measurements obtained with the first measurement device are shown on the
plot with an “0”, while the average of the combined first and second measurement sample (if it is
necessary) are shown with a “x”’s. The extra measurement limit (+r,) for the results from the
first measurement device and control limit (+c,) for the combined sample are given by the solid
horizontal lines on the chart. If the initial measurement average plots between the extra
measurement limits the chart concludes that the process is in-control. Otherwise, if the initial
point lies outside the extra measurement limits a second measurement of the sample is required.
Using the second measurement we calculate the combined sample weighted average w =
.01Y,+.99Y,. If w falls outside the control limits we conclude the process shows evidence of
an assignable cause, otherwise the process appears to be in-control. The dashed/dotted line gives
the center line of the chart. In creating the time sequence plot if two samples were drawn at a
time period the midpoint of the two plotted points is used to connect that paired sample with the
adjacent time periods. In this example, for illustration, after the 19th observation one was added
to all the measurements to simulate a one sigma shift in the process mean. Figure 7 shows that in
the 25 measurements a second sample was required five times, at sample numbers 3 and 20, 21,
24 and 25. However, only samples 21 and 25 yield an out-of-control signal, in the other cases
the second measurement of the sample suggested the process was still in-control. Of course the
number of times the second measurement was needed after observation 19 is also an indication

that the process has shifted.
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Two Measurement Control Chart
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Figure 7: Two Measurement Control Chart

Other Issues

An alternative approach to process monitoring in this context is to use a second sample
that is different than first. So rather than measuring the first sample again we take a completely
new sample. However, it may be difficult to get a new independent sample in a timely manner
since much of the measurement variability may be due to factors that are difficult to alter, such
as the operator, the setup, the environmental factors, etc. However, if these sampling concerns
can be overcome, the advantage of using an additional sample is that more information about the
true level of the process is available in two independent samples than measuring the same sample
twice.

In a similar vain, we may consider situations where repeated measurements with a single
measurement systems are allowed. If independent measurements are possible then by averaging
the results we would be able to reduce the measurement error by a factor of \n. We could
consider the second measurement to be simply the results of repeated measurements on the units
with the first measurement device. However, using repeated measurements from the same
measurement device will only work if we can obtain independent measurements of the units
which is often not the case.

Additional applications of this monitoring procedure occur in the medical field. In
medical testing there is often a choice between a screening type test that is cheap, but is

relatively inaccurate, and another more expensive test that is much more precise. This problem
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is very similar to the previously described industrial monitoring problem. Using the proposed
methodology it is possible to determine a testing scheme that minimizes the sampling (testing)

costs while making few misclassifications of the patients.

Summary

This article develops a sampling cost model and a total production cost model that can be
used to determine an optimal process monitoring control chart that utilizes two measurement
devices. It is assumed that the first measurement device is fast and cheap, but relatively
inaccurate, while the second measurement device is more accurate, but also more costly.
Applications of this methodology occur in industry and medical situations. The proposed
monitoring procedure may be thought of as an adaptive monitoring method that provides a

reasonable way to compromise between sampling cost and sampling accuracy.
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Appendix - Glossary of Symbols

Design Parameters
¢, control limit for results from first measurement
¢, control limit for the results from the second measurement
r, limit used to determine if a second measurement is needed
h  sampling interval time
n  sample size

Decision Variables

X
Y,
Y,

w

actual dimension of unit
subgroup average using first measurement device
subgroup average using second measurement device

weighted average of ¥, and ¥,

Sample and Production Cost Model Parameters

fi

N~ aa =

NN

E,

E,;

fixed cost associated with measurement device i

variable cost per unit associated with measurement device i

cost per hour due to nonconformities while process in-control

cost per hour due to nonconformities while process out-of-control
cost of locating and repairing the assignable cause when one exists
expected cost per false alarm

expected time to searching for a false alarms

expected time to find an assignable cause

expected time to repair an assignable cause

time required to obtain one measurement using the first measurement device

fixed time required to obtain measurements using the second measurement device

E,, time required to obtain one measurement using the second measurement device
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