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Abstract

In screening experiments, run size considerations often necessitate the use of designs with
complex aliasing patterns. Such designs provide an opportunity to examine interactions and
other higher order terms as possible predictors, as Hamada and Wu (1992) propose. The large
number of model terms and the small number of observations mean that many good models
may describe the data well. The need for good model search algorithms motivated Chipman,
Hamada, and Wu (1997) to propose a Bayesian approach based on the Gibbs sampler. Their
stochastic search method was able to identify many promising models, while incorporating
preferences for certain models. In this paper, several enhancements to this procedure are
outlined. The selection of prior parameters is further explained and simplified, so that in
the absence of strong prior knowledge the methodology may be used to search for promising
models. Priors that allow the posterior to be simplified speed up the search, and eliminate
Monte Carlo error in evaluating model probabilities. Several new plots and summaries are
introduced to examine models identified by the procedure. These proposals and methods
are illustrated using simulated data in a Plackett-Burman 12-run layout.

Key Words: interactions, partial aliasing, Plackett-Burman designs, Gibbs sampler, auto-

matic prior selection.

1 Introduction

When screening many variables, designs with eco-
nomical run sizes are desirable. Quite often these
designs will not be orthogonal if terms other than
main effects are considered. A common example is
the 12-run Plackett-Burman (1946) (PB) design (see
Table 1), in which each main effect is correlated (par-
tially aliased) with the 45 two-factor interactions not
involving that effect.

Hamada and Wu (1992) viewed designs with com-
plex aliasing as an opportunity to identify promising
interactions as well as main effects. With a modified
stepwise algorithm, they showed that promising mod-
els could be identified when only a few effects were
large (the assumption of effect sparsity), and atten-
tion was focused on interactions between large main
effects (the assumption of effect heredity). While their
stepwise algorithm finds promising models, it is not
always able to identify all promising models. Chip-
man, Hamada, and Wu (1997) (CHW) gave a more
thorough model search algorithm. This approach
used a Bayesian model, and the Stochastic Search
Variable Selection (SSVS) algorithm of George and
McCulloch (1993). This methodology was able to

search the model space more completely while incor-
porating effect heredity.

This paper considers a number of enhancements to
CHW. First, it uses a “fast” version of SSVS proposed
by George and McCulloch (1997). This formulation
allows analytical evaluation of relative probabilities
on models, rather than relying upon Monte Carlo
integration, as in CHW. The ability to analytically
evaluate relative probabilities also helps identify stop-
ping conditions for the algorithm. Second, the pri-
ors used are discussed in more detail, and automatic
choices for all prior parameters are given, simplify-
ing the use of this approach for non-Bayesians who
wish to identify promising models. Third, a number
of graphics and summaries are introduced to iden-
tify promising models found by the procedure. These
include a C), - like plot that divides up model prob-
ability according to model size, a time series plot of
the probability of models visited, and reweighting of
the posterior to assess prior influence.

The paper is organized as follows. Section 2 out-
lines the priors used, and in Section 3 the Gibbs sam-
pler is described for this situation. Two examples are
given in Sections 4 and 5 to illustrate the practical
application of this method. In the first, automatic



choices of priors are given. The second example is
more challenging because multiple models fit the data
well. The impact of different priors on models is ex-
amined, and several new plots and summaries are in-
troduced to examine the promising models identified.

2 Priors

For the regression model, ¥ = X + ¢, with € ~
N(0,0?), the parameters of interest are 3,0. Some
of the k columns of X (such as interactions) may be
formed from the original variables.

In variable selection, some of the k elements of 8
may be negligible. George and McCulloch capture
this by augmenting the model with an unobserved
k-vector 7 of 0’s and 1’s. A 0 corresponds to a negli-
gible coefficient, and a 1 corresponds to an important
coefficient. The prior is specified as

Pr(y,0,8) = Pr(Blo,v) Pr(y) Pr(o)

with

B; ~ iid N(0,0%72(1 — ) + o 1iciy), i=1,...,k
By choosing ¢ >> 1, the prior variance of §; is o7}
when v; = 0 and ¢? times larger when ; = 1. The
hyperparameters c;, 7; are chosen to indicate magni-
tudes of small and large effects. Section 4 suggests
how these may be selected automatically.

As in George and McCulloch (1993),

o2 ~1G(v/2,v)\/2),

where IG denotes an inverted gamma distribution.
This is equivalent to vA/o? ~ x2.

This prior formulation differs from that of George
and McCulloch (1993) and CHW, in that the variance
of B; depends on o. With this prior, the posterior for
(B,0,7) can be integrated over o,[. As discussed in
Section 3, this facilitates model search. The posterior
for v is given by (see George and McCulloch 1997):

Pr(y]Y) =g¢(v)
x IX'X|"1/2|D7|"1(/\I/+5.2/)(”+”)/2Pr('y) (1)
where D., is diagonal with ith element 7;(1 — ;) +

CiTi%Yiy

§2=Y'Y -V'X(X'X)'X'Y,
X

Y
. Y -
Y:[O] and X_[D../l:[.
The remaining component of the prior is for 7,
which puts probability on the space of all possible

models. When interactions and other related predic-
tors are present, it is not practical to assume that all
elements of y are independent. Instead, a dependence
structure for related predictors (Chipman (1996)) is
used. This prior consists of a product of k probabili-
ties:
k
Pr(y) = H Pr(vy;|Parents(y;))

i=1

(2)

The probability that a given term is active or inactive
depends on its “parent” terms, typically taken to be
those terms of the next lowest order from which the
given term may be formed. For example, main effects
A and B would have no parents, and an interaction
AB would have two parents (A and B). The cor-
responding elements of (2) would be Pr(vy4), Pr(ys)
and Pr(yap|ya,yB). The prior is specified by choos-
ing marginal probabilities that a main effect is active,
and conditional probabilities that an interaction is ac-
tive, given the state of its parents:

poo  if (
por if (ya,vB
P(vap = 1jy4,78) = :
(vaB = 1|v4,78) pro if (
(

b11

Choosing poo = p1o = po1 = 0,p11 > 0 allows an
interaction to be active only if both corresponding.
main effects are active (referred to as strong heredity).
Choosing poo = 0, po1, P10, P11 > 0 allows an interac-
tion to be active if one or more of its parents are active
(weak heredity). Typical values of (poo, P10, Po1, P11)
might be (0, 0, 0, 0.25) for strong heredity, and (0,
0.10, 0.10, 0.25) for weak heredity. Values less than
0.5 represent the belief that only a few effects are
likely to be active (see Box and Meyer (1986) for a
similar argument).

3 Efficient Stochastic Search

The large number of models makes it impractical
to exhaustively evaluate the posterior probability for
each model. Instead the Gibbs sampler is used to
make draws from the posterior distribution. In the
context of model selection, this algorithm may be
thought of as a stochastic search.

For this problem, the Gibbs sampler (see Smith
and Roberts (1993) and Gelfand and Smith (1990))
may be summarized as follows. The algorithm makes
use of “full conditional” distributions, which specify
the conditional distribution of one parameter given
all others (and the data). The algorithm starts with
initial values of all parameters, and then repeatedly
draws each parameter conditional on all the others



and the data:
0. Start with v9 = (49,49,.. )
1. Draw v; from p(y1]73,.-.,72,Y).
Y1 P7117Y2, ,'7k,

2. Draw '7% from p(’YZ I’Y%a')’ga <. 'a')'](c)’ Y)

k. Draw v; from p(vx|vi, ..., 7i-1,Y).

Each draw is from a Bernoulli distribution. Steps 1
to k are repeated a large number of times, each time
conditioning on the most recently drawn values of
the other elements of 4. The sequence v°,~+%,v2,...
converges to the posterior for .

A similar scheme was used in CHW, but with the
parameters  and o included in the Gibbs sampler
rather than being integrated out. Elimination of 3
and o from the Gibbs sampler speeds up the algo-
rithm (see George and McCulloch (1997), and Liu,
Wong, and Kong (1995)). By reducing the dimen-
sionality of the parameter space, the Gibbs sampler
is able to move around faster.

An additional advantage is the ability to analyti-
cally evaluate the posterior probability of a model up
to a normalizing constant, using (1). The posterior
probability of a model ' is then

Pr(v|Y) = g(v') Zg(%)- (4)

The normalizing constant in the denominator entails
evaluation of the posterior probability for all models,
which is prohibitive. For any given set of models,
relative probabilities can be evaluated by replacing
the denominator of (4) with a sum of g over all mod-
els visited so far. Probabilities estimated in this way
will be too large, but if most of the “good” mod-
els have been visited, this provides a way to remove
sometimes sizeable Monte Carlo error. CHW expe-
rienced this error because their posterior probability
estimates were based on frequencies.

4 Automatic selection of prior
parameters

In this section, an example illustrates automatic
choices for prior parameters ¢;, 7, v, A, and the model
prior for 4. The choices proposed here are easier to
implement than those described in CHW.

The data are simulated from a simple model con-
sidered by Hamada and Wu (1992): ¥ = A+ 24B +

ABCDEFGHIJK| Vi Y,
+ 4+ - 4+ + + — — — ¥ —[1.058]-1.358
+ =+ + + - — — + — +| 1.004] 1.228
-+ + + - — — 4+ — 4+ +/-5.200| 2.291
+ 4+ 4+ - — — + — + + —|5.320] 9.432
+ 4+ - — =+ — + + — +| 1.022]-5.719
+ - — — + — + 4+ — + +[-2471|-2.417
- — — 4+ — 4+ 4+ — 4+ + +| 2.809|-2.494
- — 4+ — 4+ + - + + + —|-1.272| 2.674
-+ — 4+ 4+ — 4+ 4+ 4+ — —|-0.955(-5.943
+ -4+ 4+ — 4+ + + — — —|0.644| 1.596
-~ + 4+ — 4+ + + — — — +]|-5.025| 6.682
____________ 3.060 |-5.973

Table 1: Screening experiment with Plackett-Burman
12-run design and response data

2AC + € with € ~ N(0,0 = 0.25). Eleven predic-
tors are arranged in a 12-run Plackett-Burman (1946)
(PB) design, shown in Table 1 along with the re-
sponse Y7.

In choosing the prior for o2, v and )\ are chosen
so the upper tail is some large value and the middle
is near the anticipated residual variance. The prior
expected value of o2 is

Av
v—2
suggesting that )\ be chosen near the expected resid-
ual variance. In the absence of expert knowledge,

some fraction of the unconditional variance of the re-
sponse could be used to estimate \. CHW propose

|\ = Var(Y)/25.]

E(O’Z) =

for v > 2,

In this example, Var(Y') = 10 so X = 0.40 is selected.
The parameter v acts as a degrees of freedom, with
larger values corresponding to a distribution that is
tighter about A. A sufficiently diffuse prior may be
selected by choosing v so that the upper tail (say the
99th percentile) is roughly equal to the unconditional
variance. Table 2 gives various quantiles for an in-
verse gamma with A = 1. Choosing v = 5 would place
the 99th percentile of the prior at 9.02), for example.
Smaller degrees of freedom are possible (for example
values of 1.5 were used in CHW), although they can
lead to unreasonably long tails, because Var(c?) is
not defined for v < 4. In general, one would choose

'1/ =5 or from Table 2. |

The prior parameters ¢; and 7; may be chosen as

(5)

_ _ 1
¢i=10,7 = IxTange(x;)"




v | mean | 0.01 0.1 0.5 0.9 0.99
1 -10.15 037 2.2 6333 6365
2 -10.22 0.43 144 9.49 99.50
3 31026 048 1.27 5.13 26.13
4 21030 0.51 1.19 3.76 13.46
5 1.67 | 0.33 0.54 1.15 3.10 9.02
6 1.5 1036 056 1.12 2.72 6.88
7 1.410.38 0.58 1.10 2.47 5.65
8 1.33 | 0.40 0.60 1.09 2.29 4.86
9 1.29 | 0.42 0.61 1.08 2.16 4.31
10 1.25 | 0.43 0.63 1.07 2.06 3.91

Table 2: Quantiles of an Inverse Gamma distribution
with A =1

Box and Meyer (1986) suggest ¢ = 10, separating
large and small coefficients by an order of magnitude.
Choice of 7; is motivated by the fact that a small coef-
ficient has standard deviation o7;, and will lie within
0 + 30y = 0 £ o/range(X;) with very high proba-
bility. Even a large change in X; (say of magnitude
comparable to range(X;)) will result in a change in
Y of no more than o, which is presumably small.

The variable selection procedure can be quite sen-
sitive to the choice of ; (see CHW and George and
McCulloch 1993). Equation (5) captures the relative
magnitudes of the 7; for different variables, but the
overall magnitude may need tuning. Box and Meyer
(1993) and CHW propose methods for tuning based
on runs of the search algorithm. A faster alternative
based on predictive distributions is proposed here.
For any given model v, the expected value of Y for
a given X may be calculated. The magnitude of 7;
will determine the degree of shrinkage for coefficient
Bi, in a manner similar to ridge regression. A simple
way to assess the value of 7; is to see how the predic-
tions vary for a range of values r7; for a single given
model. A good 7; value would be the smallest value
not shrinking predictions too much.

The posterior mean for 3 is given by

By = (X'X +D;%)7'X'Y

where D, is diagonal with elements 7; (1 —v;) + m¢iv;.
See George and McCulloch (1997) for details.

Figure 1 plots predicted values for the original 12
design points for r € (1/10,10). The model used (A,
B, C, AB, AC) was identified by stepwise regression
and a subsequent “hereditization”. The “1” value on
the horizontal axis is the default choice (5) for 7. In
this case, the default seems quite reasonable, as any
smaller multiples would shrink too much.

The prior on y may be selected by considering the

o

Predicted Y

0.5 1.0 5.0 10.0

multiplier

Figure 1: Predicted response under original design
for various multiples of parameter 7

prior expected number of active terms. If we have

k = number of main effects
p = Pr( main effect active)
Por = Pio
= Pr(AB active | one of A, B is active)
P11 = Pr(AB active | both A and B active),

where A and B are generic main effects, and AB is a
generic interaction, then under weak heredity

E(# effects)

= E¢[E(# effects|f main effects active)]  (6)

=E;(f+ (;)pn + f(k — f)po1)

The first element is the number of main effects. The
second is the expected number of active interactions
with both parents active. There are (J;) =f(f-1)/2
such terms and each one has a probability of py; of
being active. The third term is the expected number
of active interactions with exactly one parent active.
These are interactions between one of f active parents
and k — f inactive parents. Consequently there are
f(k—f) allowable terms, and each has probability pp;
of being active. Since f is Binomial(k, p), E(f) = kp
and E(f?) = kp(1 — p + kp). Simplification of (6)
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Figure 2: Marginal probability that an effect is large.
The high probabilities correspond to A, B, C, AB,
AC.

gives:
E(# effects)

= kp+puE(f(f - 1)/2) + po1E(fk — %)
= kp+ puk(k — 1)p*/2+ pork(k — 1)p(1 — p)

In this example strong heredity is used so 2.75 active
main effects and 0.86 active interactions are expected.

1000 draws from the posterior on v are generated
using the Gibbs sampler and the integrated posterior.
A total of 333 different models were visited. The
most probable model is A, B, C, AB, AC (probability
= 0.55), followed by A, B, C, AB, AC, BC (0.06)
and eight other models, each of which contains A, B,
C, AB, AC, and one other main effect (roughly 0.03
probability each). It is quite clear that A, B, C, AB,
AC are active. Although main effects B and C are not
important, they are included by the strong heredity
prior.

The marginal posterior probability that each term
is active is graphed in Figure 2. The five effects are
clearly active. The other interaction with probability
near 0.10 is BC, favored because of the strong hered-
ity prior.

(7)

5 A more difficult problem

The design for this example remains the same, and
the new response Y3 is given in Table 1. Data are

generated fromY =244 4C +2BC 4 2CD + € with
€ ~ N(0,0 = 0.5). Prior parameters v = 5\ =
Var(Y')/25,c; = 10,7; = 1/3range(X;) were chosen
as in the previous section. A number of priors on the
model space are explored:

1. Strong heredity with (p,p11,p01) = (.25,.25,0),
yielding 5.67 effects expected to be active.

2. Weak heredity with (p, p11,p01) = (.25, .25,.10),
yielding 3.61 effects expected to be active.

3. Independence prior with (py P11, PoO1)
= (0.25,0.1,0.1) and pgo = 0.10. This yields
2.75 + 55 x (0.10) = 8.25 effects expected to be
active.

1000 iterations of the Gibbs sampler were used in
each of the three cases. To better display the variety
of models that have high probability in the posterior,
the best models of each size for each of the three pri-
ors are displayed in Tables 3 and 4. Since a variety of
priors on model size seem plausible, this dependence
can be reduced by reporting results conditional on
model size, rather than just giving the most probable
models (as in CHW).

The main effect for C' is active, but models contain-
ing a variety of other terms explain the data well. Re-
laxing the prior (from strong to weak or weak to inde-
pendence) produces models with better fit for a given
number of effects. These models may be more diffi-
cult to interpret, especially in the independence case
where numerous two way interactions are included
without any corresponding main effects.

The true model (A, C, BC, CD) is the most likely
of its size in the weak heredity case. The true
model has no probability in the strong heredity case.
The closest model under strong heredity would be
A, B,C,D,BC,CD,which was not visited in the first
1000 steps. The size of this model (almost twice the
number of active terms as expected) and the many
six term models that fit well may explain why it was
not visited.

Figure 3 gives marginal probabilities for the weak
heredity case. The main effect for C has the largest
probability of being active, and other possibly active
effects include H, J, BC, BH, C D. The fact that none
of the latter effects has a large probability indicates
considerable uncertainty about which effects in addi-
tion to C are active. Figure 4 is a C)-like plot, giving
the conditional probability of models, conditional on
model size (plotted as circles). The marginal prob-
abilities associated with all models of a certain size
are represented with vertical lines. This plot indi-
cates that the most likely model sizes are 1, 2, 3 or 4
terms. Among the one term models, the model with



Strong Heredity

Model Prob R?
C 0.183 0.712
CclJ 0.077 0.794
CH 0.059 0.782
CG 0.045  0.77
CHJ 0.027 0.864
CD C:D 0.024 0.84
CGJ 0.019 0.852
B CH B:H 0.033 0.923
CGJCG 0.019 0.928
CHJCH 0.012 0.914
B C H B:C B:H 0.017 0.958
C D G C:D D:G 0.01 0.948
B CHJB:H 0.006 0.957
B CHIB:C B:H 0.003 0.989
B CHB:CB:HC:H | 0.002 0.961
CD G C:DC:GD:G | 0.002 0.961
Weak Heredity
Model Prob R?
C 0.221 0.712
CCD 0.065 0.812
ClJ 0.04 0.794
C B:C 0.031 0.782
C H B:H 0.028 0.887
CEE:!I 0.021 0.917
CIEI 0.021 0.917
A CB:CC:D 0.02 0.992
C D C:D D:G 0.012 0.927
B C B:C B:H 0.01 0.923
ACDB:CC:D 0.002 0.994
C G HB:H G:H 0.002 0.953
B C B:C B:H C:F | 0.002 0.961

Table 3: Models identified under strong and weak
heredity priors. The most probable models of each
size are given.

C only dominates, but in other cases a number of
models are close.

The different models identified in Tables 3 and 4
indicate that the prior exerts considerable influence
on the posterior. To illustrate this effect, the weak
heredity prior is replaced with p = po1 = p11 = 0.5.
This prior is uniform on all weak heredity models.
Rather than re-run the Gibbs sampler, re-normalized
probabilities are calculated conditional on those mod-
els visited with the original prior (Table 5). The large
change in the posterior probabilities indicates that
the prior penalizes larger models heavily.

Independence
Model Prob R?
CH 0.068 0.782
CE 0.016 0.712
C JK 0.013 0.746
CJEI 0.115 0.935
C B:H E:J 0.101 0.923
CHE:I 0.09 0.929
CHJEI 0.03 0.953
CHEILK 0.025 0.965
CGJEI 0.022  0.947
B CJA:F D:F 0.007 0.993
CGH A:BD:G 0.0056 0.991
ABCD:GILJ 0.004 0.955
CDJEKFIGH | 0.002 0.995
CEHB:EB:HE:J | 0.001 0.991
CDE B:H C:F E:J | 0.001 0.992

Table 4: Models identified under independence prior.
The most probable models of each size are given.
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Figure 3: Marginal probability that an effect is large.

One practical issue is how long to run the chain.
When probable models are no longer being discov-
ered, the chain can be stopped. Figure 5 presents
these relative probabilities for an extended run of
5000 iterations. Each vertical line is the probabil-
ity of a model the first time it is visited. After the
first 1000 iterations, new models are still being vis-
ited, but none with appreciable probability, suggest-
ing that 1000 runs is sufficient. The solid line gives
the cumulative probability, and indicates that about
75% of the probability thus far identified was discov-.
ered in the first 1000 steps.
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Figure 4: The most probable models ordered by size.
The vertical bars give total probability for all models
of this size and the dots give probabilities for specific
models conditional on that model size.

Unweighted
Model Prob Prob R?
C 0.221 0 0.712
CC:D 0.065 0.001 0.812
CJ 0.04 0.001 0.794
C B:C 0.031 0.001 0.782
CH 0.03 0.001 0.782
C HB:H 0.028 0.005 0.887
CG 0.023 0 077
CEEI 0.021 0.004 0.917
CIEI 0.021 0.004 0.917
ACB:CC:D| 0.02 0.031 0.992
Table 5: Posterior probabilities on models, weak

heredity case. Second “unweighted” probability col-
umn corresponds to a weak heredity prior with all
nonzero probabilities equal to 0.5.

In many problems the algorithm is quite fast and
computing time inexpensive enough that longer runs
are practical. In situations where as many models as
possible for the data are desired, long runs would be
preferred. Each of the 1000 iteration runs here took
50 seconds on a 200 Mhz Pentium Pro system. The
relatively small number of iterations used here (1000)
was chosen to illustrate that considerable information
could be quickly extracted from the data.
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Figure 5: Time series plot of relative probabilities of
models on the first time each is visited. The solid line
represents the cumulative probability of all models
visited so far.

References

Box, G. E. P. and Meyer, R. D. (1986), “An Analysis
for Unreplicated Fractional Factorials”, Techno-
metrics, 28, 11-18.

Chipman, H. (1996), “Bayesian Variable Selection
with Related Predictors”, Canadian Journal of
Statistics, 24, 17-36.

Chipman, H., Hamada, M. and Wu, C. F. J., (1997)
“A Bayesian Variable Selection Approach for
Analyzing Designed Experiments with Complex
Aliasing”, Technometrics, 39, 372-381.

Gelfand, A. E. and Smith, A. F. M. (1990),
“Sampling-Based Approaches to Calculating
Marginal Densities”,Journal of the American
Statistical Association, 85, 398—409.

George, E. I. and McCulloch. R. E. (1993) “Variable
Selection Via Gibbs Sampling”, Journal of the
American Statistical Association, 88, 881-889.

George, E. I. and McCulloch. R. E. (1997)
“Approaches to Variable Selection”, Statistica
Sinica, 7, 339-373.

Hamada, M. and Wu, C. F. J. (1992), “Analysis of
Designed Experiments with Complex Aliasing”,
Journal of Quality Technology, 24, 130-137.

Liu, J. S., Wong, W. H. and Kong, A. (1995), “Co-
variance Structure and Convergence Rate of the
Gibbs Sampler with Various Scans”, Journal of



the Royal Statistical Society, Series B, 57, 157—
169.

Meyer, R. D., and Box, G. (1992), “Finding the
Active Factor in Fractionated Screening Experi-
ments”, technical report, Center for Quality and
Productivity Improvement, University of Wis-
consin, Madison.

Plackett, R. L. and Burman, J. P. (1946), “ The De-
sign of Optimum Multifactorial Experiments,”
Biometrika, 33, 305-325.

Smith, A. F. M. and Roberts, G. O. (1993)
“Bayesian Computation via the Gibbs Sampler
and Related Markov Chain Monte Carlo Meth-
ods”, Journal of the Royal Statistical Society, Se-
ries B, b5, 3-23.



	

