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Abstract: The has been growing interest in the Kalman filter as an estimation
technique in statistical process control. In cases where prior information about
the process is available, procedures based on the ‘optimal’ [Godambe (1985)]
smoother can be superior to the classical procedures like Shewhart and CUSUM
control charts. We also discuss the relationship among EWMA, Kalman filter-
ing and the ‘optimal’ smoother. This smoother and its applications are also
illustrated through an example.
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1 Introduction

Recently there has been growing interest in the general theory of statistical pro-
cess control through the use of exponentially weighted moving average (EWMA)
charts [Hunter (1986), Montgomery and Mastrangelo (1991) ], for autocorre-
lated data. In this paper an ‘optimal’ smoother is proposed; it is optimal in the
sense that the smoother is a solution of the optimal estimating function, [see
for example, Thavaneswaran and Abraham (1988), Godambe, (1985)]. This
smoother essentially incorporates the correlation structure of the underlying
process, and leads to a control chart with better properties than the EWMA
chart.

In the literature two different methods for constructing control charts are
proposed for correlated data. In the first method, the basic idea is to model
the autocorrelation structure in the original process using an autoregressive
integrated moving average (ARIMA) model and apply control charts to the
residuals. The second method uses a control chart based on the EWMA statis-
tic, a function of the one step ahead forecast errors. The exponentially weighted
moving average statistic gives a procedure which is optimal (in the minimum
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mean square error (MSE) sense) for a limited class of ARIMA (p,d,q) processes
with (p, d, ¢) = (0,1, 1) [see for example, Abraham and Ledolter (1986)].

Shewhart Control Charts and other Statistical Process Control (SPC) tech-
niques are very useful in industry for process improvement, estimation of pro-
cess parameters and determination of process capabilities. The assumption of
uncorrelated observations is fundamental to the use of the Shewhart control
charts [Hunter (1986)]. In this situation a simple model that is used for the
observations is:

Xie=p+e
where u is the process mean and ¢ (t = 1,2,...) are independent identically
distributed (iid) random variables with mean zero and variance 0.

The existence of autocorrelated errors violates the conditions of this model
and failure to detect, or ignoring autocorrelations can lead to misleading results.
Detection of autocorrelation can be accomplished through diagnostic plots or
through a formal test. A simple plot of the residuals from the model can be
helpful. If the residuals are plotted against time, and unusually large numbers
of residuals with the same sign are observed clustered together, then this is
an indication that the errors are governed by positive autocorrelation. On the
other hand, rapid changes in sign may indicate the presence of negative auto-
correlation. Positively correlated errors can lead to substantial underestimation
of 02 and an increase in the frequency of false alarms; in other words, the in
control Average Run Length (ARL) is much shorter than it would be for a
process with uncorrelated observations. Thus often, the state of control of the
process can not be determined from the usual control charts.

In Section 2, the ARIMA (p,d,q) modeling approach to quality control and
EWMA are briefly discussed. Section 3 provides the filtering and prediction
algorithms based on estimating functions. It is also shown there that Kalman
filtering algorithm does not take into account the autocorrelation structure
of the observed process . In addition we provide control charts for correlated
observations using a smoother, the form of which depends on the autocorrelation
structure of the observed process of interest. Section 4 provides some special
cases and an application. Section 5 gives some concluding remarks.
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2 Control Charts for Autocorrelated Data

2.1 Modeling the autocorrelations using ARIMA (p,d,q)
models

The primary approach is to fit an appropriate time series model to the obser-
vations and apply ‘a Shewhart control chart to the residuals from this model.
A commonly used time series model is the Autoregressive Integrated Moving
Average model which is given by

$p(B)(1 - B)?X, = 64(B)e:
where  ¢p(B)=1-¢:B —60,B>— .- — ¢,B?
,B)=1-6,B—6,B>~ ... — 6,B?

and the ¢’s are iid random variables with mean zero and variance o2,

If X,’s are the predicted values from a fitted ARIMA model, then
et=Xt—Xt, t=1,2,...,n

are the residuals which are considered to be approximately identically dis-
tributed independent random variables. The process X; will be declared ‘out of
control’ if a mean shift is detected on the control chart applied to the residuals.

2.2 An application of the EWMA statistic to autocorrelated
data

The EWMA approach was first suggested by Roberts (1959) and has been
discussed by several authors [for example, Abraham and Kartha (1978,1979)].
The EWMA statistic Z; is defined as

Zt_—“AXt-{-(l—A)Zt_l, 0<A<l.

Montgomery and Mastrangelo (1991) and Hunter (1986) have shown that if the
observations are uncorrelated, the control limits for the EWMA control chart
under steady state conditions are given by :

LCL = X—30‘ m
A

UCL RSy

X + 30

where X is the overall average and o is the process standard deviation. The
EWMA can also be used for autocorrelated data. As an illustration, consider
a situation where the data can be modelled as an ARIMA (0,1,1) process:

Xe=Xeo1+ & — 061,
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When A = 1 — 6, the EWMA is the optimal one step ahead forecast (prediction)
for this process (i.e. Z; = Xt+1/t)a the one step ahead forecast of X;;; made at
time t). In this case, the one step ahead forecast errors X, - Xt/t_l,t =2,3,...
are independent with mean zero and standard deviation o if the fitted ARIMA
(0,1,1) model is correct. Thus, we could set up control charts for the one step
ahead forecast errors.

Montgomery and Mastrangelo (1991) argue that generally the EWMA, with
a suitable ), will give an “excellent one step ahead forecast” even if the ob-
servations from the process are positively autocorrelated or the process mean
does not drift too quickly. In addition they indicate that the EWMA provides
good forecasts for models which are not exactly ARIMA (0,1,1) and that some
processes which follow a slow random walk, can be well represented by the
ARIMA(0,1,1) model. We show however that the use of the EWMA in these
situations results in a loss of almost 50% efficiency compared to the smoother
based on the optimal estimating function.

3 Optimal Filter and Smoother

Let us consider a simple time series model,
Xi=¢Xi1+ e

where {¢;} is an iid sequence with mean zero and variance o? and |¢] < 1. We
can define two different means and variances. The unconditional mean of X; is
zero and the unconditional variance of X; is l—f%; In addition, the conditional
mean and variance of X; given X;_1, X;—3, -+, X1 are given by

E[XyXt-1,Xt-2, -+, X1] = ¢Xi1

and
Var [Xt|Xt—~1a Xt-Za T Xl] = 02

respectively.

Most of the recent inferences for non-linear time series models are based on
conditional moments. In the next section we use the conditional moments to
obtain an optimal filter and compare this with the Kalman filter.

3.1 Optimal filter

Consider a process of the form

thot—}-Nt t=1,---,n, -
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where {N;} is an autocorrelated sequence with zero mean and known covariance
structure. Estimationof 6;,t = 1,2, -+, n from n-observations on {X;} without
making any restrictions on the parameter sequence is an ill-posed problem. In
order to obtain a filtered estimate of 6, we assume that 6; follows a random
walk
0y =01 +a;
2

where {a;} is a white noise sequence with mean zero and variance o;.
The following theorem on optimal estimation of 6; obtained by identifying

the sources of variation and optimally combining elementary estimating func-

tions [see Heyde (1987)] from each of these sources, gives the filtering formula

for 6,.

Theorem 1: Let F | be the o-field generated by Xy, -+, X;_;. The recursive

form of the estimator of §; based on X, -, X; is given by:

0;=0:/t—1 + Pijs (Xt - X’t/t—l)/ Tt

. 2 o
where P,y = F [(Ht - 0t/t-1) IF}“?_I] y 04¢-1 is an estimate of 6; based
on X;_1,--+,X1, Xt/t_l is the predictor of X; based on X;_1,---,X; , and
. 2
re=F [(Xt — Xt/t_l) |th_1] its mean square error. Moreover,

Pyi1=PFP -1+ o

and
1 1 1

-}:Tt/—t- B Pt/t—l Tt

Proof: The elementary estimating function for fixed 6; based on the tth

observation is

hit = (Xt - Xt/t-—l)/'rt

and the corresponding information [see for example, Abraham et al (1997))
associated with hy; is 1/7;.
The elementary estimating function for the parameter of interest, say 6, is

Now hsy, the corresponding estimating function for 8, based on prior information
is

hot = (0 - ét/t—l)/Pt/t-—l'

Combining the estimating functions hy; and hg; the Theorem follows.
Under normality assumption on the errors, the Kalman filtering algorithm
turns out to be a special case of Theorem 1.
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It is of interest to note that the above filtering algorithm, which could be
used in a wider context ( for non-Gaussian linear processes as well ), provides
the estimator in terms of the first two conditional moments of the observed
process. The same argument is also true for Kalman filtering. However, for
many industrial situations the observed processes are autocorrelated and the
Kalman filtering formula does not incorporate the autocorrelation structure.
In Section 1.3.2 we present a smoother which incorporates the autocorrelation
structure and is different from the Kalman filter.

3.2 Optimal smoother

In Abraham et al. (1997), an optimal smoother based on conditional moments
has been proposed for nonlinear time series models. In this section an opti-
mal smoother which is a solution of an optimal estimating function (based on
moments of the observed process) is proposed for linear processes. In this con-
text, the control limits of the chart for monitoring the process level (conditional
mean) with the optimal smoother are functions of the autocorrelation of the
observed process of interest.

For an industrial process {X;} having mean zero and covariances 7(t, s) the
following theorem provides the form of the optimal smoother.
Theorem 2: The optimal predictor of X;, based on X; 1, X; 2,---, X1 is

given by
t—1
- r(t, s
Xt/t—l = Z —(‘—)Xs (1)

—r(s,s)

. 2
and the corresponding mean square error, v; = E [Xt - X, /t—l] , is given by

Vt:r(t’t)_irr_((s—?-s_?

8=1

(2)

We can also give the predictions in terms of predication errors X; — X;/;_;
having covariances r*(t, s) :

Xt/t——l = i ;%i)j (Xs - Xt/t—l) (3)

s=1
. 2
and the corresponding mean square error, V; = E [Xt - X /t—l] , is given by

W:T*(t,t)—i-g‘%f))-

8=1

(4)

Proof: When the normality assumption is made, the proof follows from a
theorem on normal correlations as in Abraham and Thavaneswaran (1990) or as
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in Brockwell and Davis (1991) using projection arguments. For the nonnormal
case, the result follows by applying the unconditional version of the optimality
criterion given in Thavaneswaran and Thompson (1988).

4 Applications

4.1 ARMA(0,0,1) process or MA(1) process
Consider the recursive smoothing algorithm for an MA(1) process
Xt =€ — Oy (5)

where {¢;} is a white noise process having mean zero and variance a2

Then it can be easily shown that the one step ahead smoother of X;,; and
its mean square error are given by

Xt+1/t = -0 (Xt - Xt/t—l) /Vt

and
Vi = afl (1 + 02> - 02/Vt_1, respectively

where
Vo =02 (1+02).

Based on n observations,
V.= B (Xn+1 B An+1/n)2 — o2 (1 _ 02n+4) / (1 _ 02n+2>

which converges to o2 as n — 00, i.e. MSE of the smoother converges to o? for
an MA(1) process. Now we look at the asymptotic properties of the EWMA
statistic for the MA (1) process and compare its mean square error with that of
the smoother.

Consider the EWMA,

Zt - )\Xt + (1 - A)Zt_l.

For the constant mean model with iid errors given in Section 1, Hunter (1986)
showed that the mean of the EWMA,

and the variance

A
Var [Zt]—>2_/\a.
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or in terms of the discount coefficient w =1 — A,

1-w)

7] = 0 :

Var [Z;) 2 o itw)

For the MA(1) process (5) it can be shown that the asymptotic variance (MSE)
of the EWMA statistic is given by

_ 2(1-w) 2y
Var[Zy] =0 ) [(1+0 ) 2w0] .
Note that for small values of w, and 8 close to 1 this variance is as large as 202
and we lose about 50% of the efficiency by using EWMA. For different values
of X and 8, Table 1 provides the MSE for the EWMA statistic when o’ =1.

Table 1: MSE for the EWMA
A 0 .25 .5 75 1.0

1.85 2.38 3.10 4.12 5.7
1.68 2.15 280 3.71 5.14
1.51 1.94 252 3.34 4.62
1.37 1.75 2.27 3.00 4.14
1.25 1.59 2.04 2.69 3.69
1.14 144 184 240 3.29
1.05 1.32 1.66 2.15 2.92
0.98 1.22 1.51 193 2.59
0.93 1.14 138 1.74 2.30
0.90 1.08 1.28 1.58 2.04
0.88 1.04 121 1.45 1.83
0.88 1.03 1.16 1.34 1.65
0.90 1.03 1.13 1.27 1.51
094 106 1.13 1.23 141
1.00 1.11 115 122 1.34
11.08 1.18 1.20 1.23 1.31
1.17 1.27 1.27 128 1.32
1.28 1.39 1.37 136 1.36
141 1.52 1.49 146 1.45
9 1.56 1.68 1.64 1.59 1.57
1.0 1.73 1.85 181 1.76 1.72

It follows from Table 1 that the MSE of EWMA is larger than one when |6] is
large. For instance when § = —.8 and A = .25 the mean square error is 1.94.

L T N R I R N |
B UN S M BRI RO PO L
— o T~ o ©

4.2 ARMA(1,1) Process
Now we consider an ARMA(1,1) process of the form
Xi— ¢Xi1 =€ — ey
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Then it can be shown that the one step ahead smoother of X;;; and its mean
square error are given by

Xt+1/t =0¢X; 1 -0 (Xt - Xt/t—-l) /Vi

and
V=0 (1+6%) - a%6° Vi

respectively, where

Vo = o%(1+20¢ — 8)/(1 — ¢%).

As in the previous case it can be shown that V; converges to o? while the mean
square error of the EWMA depends on ¢, 8 and A. It is of interest to note here
that for purely autoregressive processes the optimal linear smoother turns out
to be the conditional expectation.

4.3 A numerical example

Montgomery and Mastrangelo (1991) used a control chart based on EWMA for
a set of data containing 197 observations from a chemical process. This chart
(not presented here to save space) identifies observations 4, 5, 9, 33, 44, 59, 65,
108,148, 173, 174, 183, 192 and 193 as out-of-control points with the optimal
value of the smoothing constant. Moreover, examination of the autocorrelation
structure leads to an AR(2) model

X, = 54.5973 + .4260X;_1 + .2538X;_»

for these data. The residuals from this model are uncorrelated.

Figure 1 presents the 197 observations from the same process, along with
the optimal smoother with two sigma control limits. This chart identifies ob-
servations 6, 33, 44, 45, 61, 65, 108, 174, 192 and 193 as out-of-control points
but does not detect any out-of-control conditions between observations 108 and
174. This is because different methods are used to estimate o2 (one step ahead
forecast error variance) on the control charts; this can result in observations
being classified differently.

As discussed in the paper by Montgomery and Mastrangelo (1991) and
Lowry and Montgomery (1995), the EWMA control chart is a very useful pro-
cedure that can be used when the data from a process are autocorrelated.
However, it should be noted that the EWMA smoother

(i) is just an approximation for any process other than an ARIMA (0,1,1)
and does not have any optimality property if used for other models,

(i) has the difficulty of choosing the smoothing constant using an iterative
procedure.
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5 Summary and Concluding Remarks
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