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ABSTRACT

A designed experiment in which the number of factors are at least as large as
the number of runs is referred to as a supersaturated (SS) design. Recently these
designs have received increased attention. Construction of such designs and analysis
of data from these designs have been discussed by several authors. Our objective in
this paper is to examine these designs and inform practitioners that the correlation
structure inherent in SS designs can obscure real effects or promote non-real effects.
Hence one should be cautious with the use of SS designs.
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1 Introduction

In industrial experimentation it is natural to look at many factors simultaneously.
Cost considerations will sometimes make it impractical to design experiments so that
effects of all these factors are simultaneously estimated. Assuming that only a few
factors are active (having large effects), there have been attempts to identify them
with high probability. The supersaturated (SS) designs used for this purpose have
fewer observations than the number of factors considered (see, for example, Booth
and Cox (1962), Lin (1993)). The objective usually is to identify all or most of the
active factors. The intention of this paper is to investigate these designs and their
ability to identify active factors.

It is assumed that there is no interaction between the factors and that the effect
is linear in the level of each factor. Hence the basic model for observations y; is given

by
yi=Pfo+ Y BiXij+e,i=12-n n<m (1.1)

j=1

where m is the number of factors and n is the number of observations (runs). Here
Xi; is the level of factor X; in run ¢ and is restricted to two values (+1 or —1). The
parameter 3; (7 = 1,...,m) represents the effect of factor j and it is assumed that
only a few of these parameters are different from 0. As the number of parameters is
more than the number of observations, usual least square methods are not applicable
for analyzing the data and some sequential procedure is needed. Lin (1993) suggests
forward stepwise regression, while a second possibility is an exhaustive search over all
models with a given number of predictors.

There are several methods of constructing SS designs (choosing “X” matrix).
These include Wu (1993), Lin (1993), Nguyen (1996), Tang and Wu (1997), and Ya-
mada and Lin (1997). Lin (1993) suggested using half fractions of Hadamard matrices.
We will refer to this as the half replicate (HR) method. In Section 2 we will consider
this procedure and discuss a set of data (the Rubber Data) which was previously
considered by Williams (1968). Section 3 discusses the issue of misspecification and
gives a simulation study to investigate the merits of the HR supersaturated design.
Section 4 gives some concluding remarks.

2 Rubber Data

In order to illustrate the performance of the HR supersaturated design, Lin (1993)
considered a set of data originally reported in Williams (1968) who, in the context of
a rubber making process, used a Plackett-Burman (PB) design with 24 factors and
28 runs. The design and the data are given in Table 6 in the Appendix. As was
pointed out by Box and Draper (1987) there was a typographical error in one of the
entries of the original data (8th element from top in column 20) and this is corrected



in our table. Also columns 13 and 16 are identical and hence we eliminate column
16; however we keep the labeling of the other factors the same.

The HR method can be summarised as follows: In a standard Hadamard matrix
whose first column entries are all 41, take any other column as a branching column.
Consider the matrix formed by the rows which have the same sign in the branch-
ing columns. Assign factors to the columns other than the first and the branching
columns. The resulting matrix is recommended as an SS design.

The HR construction procedure implies that the design obtained is not unique. In
the current example since 23 factors are being investigated we consider a Hadamard
matrix of order 28 with +1 in the first column. The 23 factors given in Table 6 can be
assigned to any 23 of the other 27 columns of the Hadamard matrix. The remaining
4 columns of the Hadamard matrix can be considered as branching columns and can
be used to produce 8 designs (see Vijayan (1976)). The rows corresponding to these
8 designs are given in Table 7 in the Appendix. For the analysis, we assume that the
data for each run in the different designs are the same as those obtained by Williams.
Lin (1993) proposed design number 5 for this situation and used a stepwise regression
procedure to identify the active factors. We adopted the same procedure for each of
these 8 designs (the stepwise procedure in SAS - Statistical Analysis System). For
inclusion and exclusion the default option (“significance” level .15) was used first.
Then we considered the level .075 to get results for design 5 to be close to those of
Lin (1993). Table 1 shows the factors which were picked as active by each design.
For instance, in design 1 with significance level (SL) = .075, factor 17 was selected as
active in the first step and factors 15, 4, 22 and 10 were selected in subsequent steps.
As can be seen from the table, different factors are chosen in different designs.

In the original study Williams (1968) selected factors 15, 20, and 17 as having
major effects and 4, 22, 14 and 8 as having moderate effects. Combining process
knowledge with the experimental results Williams chose factors 15, 10, 20 and 4 for
subsequent use. Design 5 leads to factors 15, 12, 20, 4 and 10 as active. This set is
somewhat similar to the one Williams (1968) used. However, factors 17 and 22 were
not chosen as active in design 5; instead 12 and 10 were selected.

We adopted the ‘best subset selection’ procedure also to see how the results would
compare. Procedures available in the usual packages such as Splus and SAS need to
be modified for this situation since there are more columns (factors) than rows (runs)
in the “X” matrix. Hence we restricted our search for the best subsets of size 5 or
less factors; note that there are (2i3) subsets of size 7 (¢ = 1,2, 3,4,5). The results are
shown in Table 2. For example in design 1, factors 1, 15 and 20 provide the “best
subset” of size 3; 1, 14, 15, and 20 provide the “best subset” of size 4; 1, 3, 14, 15,
and 20 lead in subsets of size 5. Here best is in the sense of R?. From Table 2 we
note the following.

(i) Different designs lead to different choices with subsets of size ¢ = 3,4,5. No
single design identifies the same five factors as an analysis of the full 28 runs.



Table 1: Rubber Data: Factors included after Five Steps in a Stepwise Procedure

Steps 1 2 3 4 5 R?
Design

1 SL = .15 17 15 4 22 10 .90
SL=.075 17 15 4 22 10 .90
2 SL=.15 15 24 18 13 8 97
SL=.075 15 24 18 13 8 97
3 SL=.15 15 20 3 4 22 .92
SL=.075 15 20 - - - 73
4 SL=.15 2 13 8 3 20 .84
SL=.075 2 13 8 - - .69
5 SL=.15 15 12 20 4 10 .97
SL=.075 15 12 20 4 10 97
6 SL=.15 4 22 23 18 24 .88
SL=.075 4 22 23 - - .74
7 SL=.15 14 12 11 23 - .89
SL=.075 14 12 11 23 - .89
8 SL=.15 15 22 8 17 1 94
SL=.075 15 22 8 17 1 .94

Notes: *  Design 5 is the same as that used in Lin (1993)

«on

indicates that the procedure stopped before

(ii) Stepwise regression often finds poorer models than best subsets regression. In
designs 2 and 5 the two methods identify the same factors (up to step 5). In
design 7 the two procedures lead to the same factors up to step 4 and in design
8 only up to step 3. In other designs they lead to different factors.

(iii) If R? is used as a criterion and subsets of size b are considered, then design 3 is
the “winner” with factors 1, 5, 8, 15 and 21; design 5 is a close contender with
factors 4, 10, 12, 15, and 20.

(iv) When the best subset selection procedure was used with the original PB design,
factors 4, 15, 17, 20, and 22 were selected as the best five variable model. A half
normal plot of effects for the original PB design identifies the same five factors
as having the largest effects. The plot indicates that factor 15 is important; it
1s difficult to make concrete statements about other factors.

The important point is that different designs lead to the identification of different
factors as active, which in turn would lead to different conclusions.



Table 2: Rubber Data: factors from ‘best subset selection’ procedure. The row
marked “all” refers to results using all 28 runs. Each row corresponds to a model
identified by best subsets, with a e indicating an active factor.
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3 Misspecification

The discussion in the previous section points to two issues: (i) Choice of a design.
(ii) Misspecification. We now discuss the second issue more fully.

When the number of factors is very large it is inevitable that some of the inactive
factors would be selected with high probability. This is a serious problem but may be
manageable as long as active factors are also selected with high probability. However,
sometimes the procedures fail to select active factors and select inactive factors instead
(see, for instance, Chipman et. al. (1997), Hamada and Wu (1992) and Wu (1993)).
The nonorthogonality of the columns of the design matrix X is the root of the problem.

To highlight the misspecification issue we conducted a simulation study. To verify
some of the features of the supersaturated designs, we consider the two designs (14
run, 12 run) given in Lin (1993, 1995) and the model given in (1.1).

3.1 14 run design with 23 factors used in Lin (1993)

Step 1:  Data generation:
We generate n = 14 N(0, 1) random variates, ¢;,¢ = 1,...,14 and then
using the model (1.1) generate y,---,y14 for specific sets of values of
the B’s.
Simulated Models:

(1)  Pure noise: B; = 0 for all j.

o me P 3!

(3) B2 =pP7=1, other B’s zero
B2 = Br = 20, other B’s zero

(4) Bri=p=ps=1, other 3’s zero
B2 = Br = Pis = .5, other 3’s zero
Ba = Pr =Pz =1, other 3’s zero

B2 =5,07 =10,8:13 =20,  other B’s zero
By = 14,87 = 20,313 = 20, other B’s zero
Bs = 7 = P13 = 20, other @’s zero

Step 2:  Analysis for factor selection.
We used forward selection with a specific SL for including a factor, stop
after step 5 and record the selected factors.

Step 3:  Repeat Steps 1 and 2, N = 200 times and record the number of times
each factor was selected.

For this particular design, correlations between columns are either £0.14 or £0.43.



X has a correlation of 0.43 with each of X,, X7, X153, making case (4) a challenging
problem. In models with single predictors, an effect will have t-ratio §;/se(3;) =
Bi/(a/y/n). For n = 14 and ¢ = 1, even a coefficient of 3; = 1 is large, since the
expected t-ratio would be /14 = 3.74. Coefficient values of 14 and 20 are very large
indeed.

In the pure noise case with SL = .05, 79% of the times at least one factor was
selected as active in 5 steps. This was not unexpected. With 23 contrasts tested
to zero individually and assuming them to be independent (this is not quite true in
our case) there is a chance 1 — (1 — @)? of selecting at least one significant contrast
where « is the SL for inclusion. When a = .05 this probability = .70 which is in the
vicinity of the simulated value. We cannot avoid this situation even if we have a large
number of observations. On the other hand if the present experiment is considered
as a device to reduce the number of factors which need to be carefully examined in
a later experiment, then it is important to know whether the procedure leads to the
active factors with high probability. For this purpose we consider cases 2-4 where
one, two, or three 3’s are different from zero. The results from a stepwise procedure
are presented in Table 3. We note the following from the table:

(i) When only one f is different from zero or it is much larger than the rest, the
corresponding factor gets selected in the first 5 steps. For instance, with a
SL =.1, X; gets selected 100% of the cases if 8; = 20, 87% of the cases when

B1 = 1 and only 36.5% when 8; = .5. When SL=.05 and B; = .5, X; gets
selected only in 36% of cases.

(ii) When two B’s are important and very large (82 = 7 = 20), the corresponding
factors get selected about 78% of the time. This drops to 67% when 8, = 87 = 1.
In both cases the inactive factor X; is selected in the first forward step about
22% of the time.

(iii) When more than two §’s are important, conclusions are different depending on
which (’s are non zero. For example when 3; = s = 83 = 1 and other ’s are
zero (situation 4), with SL = .1 the active factors X, X5, X3 get selected about
55% of the time in five steps. However, if 83 = 87 = 13 = 1 and other 3’s are
zero (active factors are now assigned to columns 3, 8, and 14 but the design is
the same), then with SL = .1 the combination (X3, X7, X13) get selected only
4% of the time in five steps and .5% of the time in three steps; X; gets selected
91.5% of the time in the first step. The same value (=1) was used for both
cases but the active factors were in different columns of the matrix and the non
orthogonality of the columns creates the difficulty.

Even when effects are very large, forward selection can be mislead. When
B2 = 14, B = P13 = 20 or By = B7 = P13 = 20, the combination (X, X7, X13)
is never selected while X; is selected 100% of the time. On the other hand, if
B2 =5, Br = 10, P13 = 20, the combination is selected in 100% of the cases.
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Table 3: Simulation Results: Selection Pattern of Factors, Lin’s 14 Run Design

Factors Corresp- | Percent of times real effect factors selected Percent of time X;
with Real | onding 8 | in k steps in 5 steps selected in the first
Effects values k = # factors in col. 1 step
SL=0.10 | SL=0.05 | SL=0.10 | SL = 0.05 | SL =0.10 | SL=0.05
0.5 36.5 27.5 56.5 38
X3 1 87 85.5 93 90.5
20 100 100 100 100
Xo, X7 1,1 55 56 67 62.5 24.5 22
20, 20 78 74 78 74 22 26
X1, Xo, 1,1,1 40.5 38 55 45.5
Xs
0.5, 0.5, 0.5 0 0 1 1 43.5 46.5
X5, X7, 1,1, 1, .5 5 4 2 91.5 91
5, 10, 20 100 100 100 100 0 0
X13 14, 20, 20 0 0 0 0 100 100
20, 20, 20 0 0 0 0 100 100

The major point is that factors selected as active depend on which columns of
the design matrix are assigned to the real active factors and that is difficult to
do in advance. This is a result of the correlation structure of the columns of
the design matrix.

We also performed simulations for cases (2) and (4) and used the best subset
selection procedure to see how the selection pattern would be affected. The results
are given in Table 4. We note the following.

(1) Best subsets performs notably better than stepwise in the more difficult problem
involving X5, X7 and X;3. It finds the correct model more than a third of the
time when all three coefficients are 1. In the cases of (8, 87, f13) = (14,20, 20)
and (20, 20, 20) where stepwise fails to find the right model, best subsets iden-
tifies the model 100% of the time.

Unlike stepwise, the best subsets algorithm can identify different models of a
given size with good fit. For this reason, Table 4 also gives the percentage of
times that the correct model is among the five best of a given size. So for
example, when 8, = (7 = (13 = 1, this model was ranked first among 3 term
models by best subsets 33% of the time. It appeared in the top five models of
size three 57% of the time.




Table 4: Simulation Results with Best Subset Procedure, Lin’s 14 Run Design
Percent times correct factors
Factors with | B-values | selected in subsets of size k *
Real Effects k=3 k=4 k=5
X1, X5, X3 1,1,1 52 (77) 50 (77) 51 (70)
X2, Xz, X153 | 5,55 | 1(8) 4(9) 5 (15)
1,1,1 33 (57) 44 (65) 43 (67)
5,10,20 | 100 (100) | 100 (100) | 100 (100)
14,20,20 | 100 (100) | 100 (100) | 100 (100)
20,20,20 | 100 (100) | 100 (100) | 100 (100)

* Note: The first number gives frequency that the highest ranked
model contained all active factors. The number in parentheses gives
the frequency with which one of the five highest ranked models con-
tained all the active factors.

Table 5: A Hadamard Matrix of Order 12

1 2 3 4 ) 6 7 8 9 10 11 12
1 1 —us 1 —u3 —uz —u; —u; —u, u; u; u;
1 1 us -1 u; u, us u; uz —uz —u, —U;
1 -1 1 u; us u; —u; —u u, —us u; us
1 -1 -1 —u; —u, —us u; U; —U, us —us —uj

Since SS designs are intended to screen variables, it is quite likely that prac-
titioners will examine more than one model. The findings of this simulation
study indicates that even when SS designs are used in this fashion, it is possible
that the correct factors will not be identified.

3.2 12 run design

Lin (1995) presented an algorithm to generate certain SS designs and designs for 12
runs. General construction methods are available to produce these designs with num-
ber of factors as high as 66. Basically the design is constructed from the columns of a
standard Hadamard matrix. Using the notation 1’ = (1,1,1),u} = (1,-1,-1),u), =
(-1,1,-1), and uj = (—1,—1,1) we can write down one such Hadamard matrix of
order 12 as given in Table 5.

The different columns of the design matrix would be obtained by taking compo-
nentwise products of two columns of this basic matrix leading to a design matrix with



66 columns. We denote the componentwise product of the columns ¢ and 7 by “z x 3”.
Lin (1995) demonstrated the usefulness of such SS designs by carrying out a simu-
lation study using the above design. In the simulation study factors corresponding
to columns 1 x 4,1 x 8, and 8 x 10 were given large effects (8 values 17, 24 and 15
respectively), those corresponding to 1 x 11, and 8 x 11 were given moderate effects (3
values 3), and others were taken as zero. The results of the simulation indicated that
the 5 active factors were always selected in the first five steps of a forward selection
procedure.

We wish to demonstrate that the results depend on which columns of the X matrix
correspond to the large and moderate effect factors. In our simulation study we used
the same design as in Lin (1995) and we assigned the 3 values 17,24,15 (large effects
in Lin’s simulation) to columns 8 x 10,6 x 12, and 9 x 11 and the 3 value 3 to columns
3 x5 and 4 x 7, and zero to the remaining columns. 12 observations were generated
from model (1.1) using the B-values indicated before and a forward selection procedure
as in Lin (1995) was used to select the active factors. In 200 repetitions, none of the
active factors corresponding to columns 6 x 12,9 x 11,3 x 5 and 4 x 7 were picked
up in the first five steps while the factor corresponding to column 8 x 10 was selected
only 29% of the time. The factor corresponding to column 1 X 2 (inactive) was always
the choice in the first step.

4 Additional Discussion and Concluding Remarks

Data analysis in Section 2, and the simulations and discussion in Section 3 indicate
that one should be very cautious with the use of SS designs. The simulations, in
particular show that there is a high chance of missing the real active factors and
selecting the inactive ones instead. The assignment of factors to columns of these
designs is crucial because of the correlation structure among the columns of the design.
If SS designs are to be used, the results of Section 3 indicate that best subsets variable
selection should be used rather than stepwise regression.

In Section 2 we commented that some additional criterion is necessary to select
a design. One suggestion made in this regard is to consider a design in which the
average value of S7;, where S;; = X; X} (say, E(S?)), is made as small as possible (for
example see Booth and Cox (1962), Wu (1993)). In the case of a 12-run design with
13 factors it can be shown that the minimum value of F(5?) = 48 and is attained by a
design given in Wu (1993). In the eight different 14-run designs considered in Section
2, E(S?) is either 7.79 (for subsets 1 and 3) or 7.92 (for other subsets), leaving little
theoretical grounds for distinguishing between the eight designs. The dramatically
different conclusions found in the eight different subsets appears to be mainly due to
random variation in the data.
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Appendix

Run Factor Number Response
Number 1 2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 Y
r 4+ ++---+++++-+-=-++ - -+ - - -+ 133
2 -+---—-4+4+++-+--"+-++++ -+ + - 49
I o+ - === +++---"+4+++-4+--++ - - 62
¢ ++-++----4+-++++++----+ 4+ - 45
5 ++--++-----=- - - - - ++ -+ + + - + 88
6 ++-+-+--=-4++-+-++ -+ + + - - - 52
7 - -+ +++++ -+ - + - -4+ -4+ -=-- - - = 300
8 — =4+ +++-++ - -+ -+ + 4+ - -+ - + 56
v -—-+++++-+++-=-++ -+ + + + + - = 47
10" — == =4+ - =4+ - + +++-++++++ - -+ 88
11 -+ -=-4+--4 - -+ +-++++ - - -+ - 116
12 -+ ++--4+--+ - ++-+++--++ + + 83
B3 -++-=-t+t-+-+ - === - - = + -+ + + - 193
14 --t---——-"4+ 4+ - =-=-=-4+ - - - = - + - -+ 230
15 +-+-+-+--4+-=--4++ - - -+ - - + + 51
16 -+ +-+---+-+++ -+ + + -+ + - - - 82
17 - - = = - ++---+4+--+-++--- -+ + 32
18 +-++---+--+++-++-++++ + + + 58
19 +--++-++--4+ - - - - = + -4+ --4+ - - 201
20 +++-++-+++++-++--4+-- -+ + 56
21 -+-+-4++-+--+++-4+--++ -4+ - + 97
2 ++++-+++---+-++-+-4+ -4+ - -+ 53
28 -4+ -++-=-++ -+ - -+ - - - + - - -+ + 276
24 +---+++-+++++-=-4+--+ -+ + + 145
25" 4+ +4+++ -+ -+ -4+ - =- - - - + -+ + -+ - 130
26 -+--4+4+++--+-++++---4++ -+ - 55
27 +--+-+-+++++-4+--4+--++ -+ - 160
28" - =4+ - = = = = = -+ + -+ - - - - = + - 4+ - = 127

Table 6: Rubber data, from Williams (1968). Runs used in Lin’s (1993) design are

marked with a *.
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The level of run 8, factor 20 is here shown as 4. In the source
reference, the lower level appears: that seems to be a typographical error.



Design

Number Rows from the PB design
1(2) |1 2 4 5 7 9 11 14 18 22 23 24 26 28
3(4 |1 3 4 5 7 9 13 15 16 17 18 21 23 27T
5(6) |1 3 4 6 8 9 10 13 17 22 23 24 25 28
7(8) |1 4 9 10 11 13 14 17 18 19 20 21 25 26

Table 7: 14-run supersaturated designs from a Hadamard matrix of order 28. Even
numbered designs (in parentheses) are the complement of the rows listed.
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