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Abstract:

In this paper we consider forecasts from long memory time series using
the ARFIMA(p, d, ¢) model with de (0.0, 0.5). We also investigate through
simulations, the bias in the estimate of the variance of the k-step ahead
forecast errors. The ARFIMA model is also used to analyse and forecast a
set of wind speed data and these forecasts are compared with those from an
ARIMA model.
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1. Introduction

An autoregressive integrated moving average (ARIMA(p,d,q)) process in
which the parameter d (the degree of differencing) takes non-integer real
values is sometimes called an ARFIMA (p, d, q) process. The ARFIMA model
has recently become a useful tool in the analyses of time series in different

fields such as, astronomy, hydrology, mathematics, and computer science. It

1'Work was done while visiting the University of Waterloo, Canada.



can characterize “long-range” dependence when d € (0.0,0.5), and “short-
range” dependence when d € (—0.5,0.0). A good review of long memory
process may be found in Beran (1994).

The long-range dependence or “persistence” as defined by some authors is
characterized by the presence of significant dependence between observations
separated by a long time interval. The characteristics of long memory or short
memory properties of ARFIMA (p, d, q) processes when d € (—0.5,0.5) can be
seen in the shapes of the spectral density and autocorrelation functions. For
d € (0.0,0.5), the process is long memory because 3_ | p; | diverges, p; being
the autocorrelation function of the process, and asjthe frequency w goes to
0 the spectral density becomes unbounded. Thus the type of dependence
between observations is determined essentially by the fractional parameter
d. For some aspects of the estimation of d see Geweke and Porter-Hudak
(1983), Hassler (1993), Reisen (1993, 1994) and Chen, et al. (1994).

This paper is concerned with the problem of forecasting a time series with
possible long memory features. The outline of this paper is as follows: in
Section 2, we summarize some results related to the ARFIMA(p, d, q) model
and the estimation of the fractional differencing parameter d. Section 3
describes some forecasting issues in long memory models and use simulated
results to evaluate the bias in the estimate of the variance of the k-step ahead
forecast are presented. In section 4, long memory and short memory models
are used to analyse a set of wind speed data. Some concluding remarks are

given in section 3.



2. The ARFIMA (p,d,q) model

Hosking (1981) and Reisen (1994) describe ARFIMA models in detail.
Here we summarize some results.
Let {¢;} be a white noise process with F(e;) = 0,V (e;) = 02 and denote the
back-shift operator, B, such that BX; = X; ;. Let ®(B)=1—-¢B— ... —
¢pBP and ©(B) = 1—6,B — ... — 6,B? be polynomials of orders p, and ¢
respectively with roots outside of the unit circle. If {X;} is a linear process
satisfying

®(B)(1 — B)’X; = ©(B)e;, de€ (—0.5,0.5), (2.1)

then {X,} is called an ARFIMA(p,d,q) process where d is the degree of

differencing.
The process defined in (2.1) is stationary and invertible, and its spectral

density, f(w) , is given by
f(w) = fu(w)(2sin(w/2))™% , w € [-,7) (2.2)

where the function f,(w) is the spectral density of an ARMA(p, q) process.
The process in (2.1) can be written in the form

o(B)
3(B)

X,=(1-B)™ & =TU(B)e =D Yierj,
j=0

and Hassler (1993) showed that

a1 D .
¥; =59 1(d——1)' as j — 0o, (2.3)

where b is a constant.



2.1. Estimates of d

Consider the set of harmonic frequencies w; = 2L, j = 0,1,.,[n/2]
where n is the sample size. Let {X;} be an ARFIMA(p,d,q) process with
d € (—0.5,0.5). The logarithm of the spectral density may be written as

In f(w;) = In f,(0) — dln (2sin(w;/2))* + In{ fu(w;)/f.(0)}. (2.4)

We now consider two estimators for d which are obtained through the
regression equations constructed from equation (2.4). The first estimate,
denoted by Jp, uses the periodogram function, and the second, (fsp, uses a
smoothed periodogram function. Geweke and Porter-Hudak (1983) showed
that d, is asymptotically normally distributed with E(d,) = d and

Var(d,) = —ML——, where g(n) is a function of n and z; = In(2sin(w;/2))2.

6 Z (X:—X)2
The estimafccl;1 cis,, is obtained by replacing the spectral function in equa-
tion (2.4) by the smoothed periodogram function with the Parzen lag win-
dow. Reisen(1994) showed that d;,, is asymptotically normally distributed
with E(ds) = d and Var(dy) ~ 0.539285—™——, where m is a func-
n Y, (X;—X)?

i=1

tion of n and usually referred to as the truncation point in the Parzen lag
window (m = n?,0 < B8 < 1). Since the autocorrelation function of the
ARFIMA(p, d, q) process is not summable for d in (0.0,0.5), the theoretical
results relating to both the estimates through regression hold only in the case
where d is negative. However, simulations have shown that these estimators

can also be applied in the case d > 0 ( see, for instance, Reisen (1994)).



3. Forecasting the ARFIMA process

Since the ARFIMA process in (2.1) is invertible for d > —.5 forecasts from
this process can be obtained in the same way as those from an ARIMA
process. Similarly, since the ARFIMA process is stationary for d < .5, the
variance of the k-step ahead forecast error can be obtained using the same
procedure as in the ARIMA case. The ARFIMA(p,d,q) process may be

written in either infinite AR or M A representations which at time ¢ + k are:

AR: X = ZWjXHk—j + €t+k, (3-3)
j=1

MA : Xt+k = Z'l)bjet-}-k-—j (34)
§=0

where 1; and 7; are the coefficients of B’ in the expansions of

¥(B) = %(%(1 —B)?and II(B) = g(%(l — B)? respectively.

Hence given X,,, X1, ... we have

1 Xa(k—7), for k>1. (3.5)

M8

Xn(k') = E(Xn+1|Xn> Xn-1,-- ) =
j=1

Note that for j > 1,
én(j) = E(enss| X, Xn1,.--) = 0, and X,(5) = E(Xn+j|Xn, Xn-1,-- ),

and for j <0, é‘n(j) = €n+j and Xn(]) = Xn+j'
Now we may obtain the forecast error e, (k) using the infinite M A represen-

tation given by (3.4) as follows:

Xn(k) =FE (Z ¢j6n+k—j|Xm Xn—l’ .. ) = Z ¢j€n+k—j (36)
j=k

Jj=0



The forecast error is

k-1
en(k) = Xn+k - Xn(k) = Z ¢j5n+k—j~ (37)
=0
k=1
By (2.3) » ¥? < 00, and hence Var(e,(k)) = 02 Y- 97 is finite for all &.
J=0 j=0

Simulation study

To evaluate the forecasting properties of the ARFIMA (p,d,q) process, we
simulate data from ARFIMA(p, d, ¢) models, with 0 < d < .5, and p,q =0, 1,
using the algorithm in Hosking (1984). The M A and AR weights for the
above models are needed for generation of forecasts and forecast errors, and
these are as follows:

MA:

Yo=10, v1=-0-4A

j—1 . .
_ : _ 1 [rGg=-d) r(j—d-1
Y = mz=:0¢mAk_m, for j > 2, where A;= e [1‘(;'+1) —¢ (]1"(j) ]

and I'(-) is the Gamma function.
AR:

7T0=1, 7Tj=97Tj_1+Aj, j?_ 1

These weights can be calculated once d, 6§ and ¢ are known.

For each model with given (d, ¢,0) we generate 350 observations with
mean zero and o2 = 1. Then we discard the first 50 observations to avoid
transient initial effects and the remaining 300 observations are labelled as
X1, Xs, ..., X300. From this series the parameter estimates J), é, 62 are calcu-
lated using NAG subroutines and the forecast X260+j(k) for  Xogotjt+k is

obtained for j =0,1,2,---,40—k and k = 1,2,---,7. Thus we have the one



step ahead forecasts and corresponding forecast errors:
KXoso(1) y Xogr(1), -+, Xooe(1)

exo(1) , eg61(l) , -+, e200(1)

the two step ahead forecasts and the corresponding forecast errors

Xzso(z) , Xos1(2), -+, ngs(z)
e260(2) , e261(2) , -+, e20s(2)

and up to seven steps ahead.

It should be noted that the forecasts are obtained by the truncation

. n+k—1 .
Xalk) = Y w5 %nlk—3) (38)
j=1

40—k
Then we obtain the sample mean (k) = Y. eago+;(k)/(41 — k), the sample
Jj=0

variance,
40—k
(k) = Y (easors(k) — &(k))*/(40 — k),
=0
k=1
the true variance V(en(k)) = o2 [Z ¢,2]
=0
and
Viea(k)) =062> 47 k=127 (3.9)
=0

when ;s and 62 are the estimates from the series. This process is repeated

200 times and averages over the repetitions are calculated. Then we have

200 200

g(k) = Z &i(k)/200, 3*(k)= Zs?(k) /200 (3.10)
and
V(en(k)) = >_(Vi(en(k))/200

7



when &;(k), s2(k) and V;(e,(k)) refer to the quantities from the ith simulation
(i = 1,2,...,200). Then we define two measures of bias for the estimated

variance of the k-step forecast error.

bik = V(en(k)) — 5°(k)
bor = V(en(k)) — Vien(k)) k=1,2,..,7

We also consider the following sample variance from the 200 series:

200

Sz(k) = Z[e,-,%o(k) — ézao(k)]z/lgg, k= 1, 2, coey 7
i=1
where 0(k) = T2 ei200(k)/200 and e;a60(k) refer to the k step ahead

forecast error from simulation ¢ (i = 1,2, ..., 200).

Table 1 gives values for €(k), byx, be for d = .2,.3, .4, and for some values
of ¢. To save space we show only the results for £k = 1,3,5,7. The quantities
in parenthesis are the standard deviations over the 200 repetitions. From

this Table we conclude:

1. The average value of $ is very close to the true value of ¢ for all the

values of d and ¢ considered.

2. &(k) is very close to zero in all cases. As expected the sample standard

deviation (over the 200 repetitions shown in parenthesis) increases with

k.

3. For given k, by, and by increase with d and these increases are sub-
stantial when ¢ is close to 1 and also when d is close to .5. However,
when ¢ is close to —1 the increase in by (i = 1,2) is not as large as

when ¢ is positive.
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4. We note that by, < by (i.e. V(en(k)) < 32(k)) and the average differ-
ence is rather small for most cases. However, the standard deviation of
by, is smaller than that of by,. It should be noted that both estimators
V (en(k)) and 3%(k) underestimate V (e, (k)).

Table 2 presents results similar to those in Table 1 for § = .2,.5,.9. The
behaviour of é, €(k), bix and by are similar to those in Table 1. However
bix and by are much smaller than those in Table 1 (with ¢ # 0), especially
when ¢ > 0.

In our simulation study we have also considered many other values of ¢
and 6 as well as the ARFIMA(1,d, 1) process. The results are similar to

those presented and hence to save space we did not include those here.

4. An Example: The Wind Speed Data

We consider a set of wind speed data (wsd). Wind speeds were collected every
five minutes from 00:00 to 23:55 hours at the SILSOE Research Institute on
17/05/91 and are in units of miles per second (m/s). This series, the sample
autocorrelation function (acf) and the partial acf are shown in Figures 1-3.
The series appears to be stationary and the sample acf indicate that a long
memory (ARFIMA) model could be considered. We adopt the following four
step strategy to find an adequate ARFIMA(p, d, ¢) model for this data.
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4.1 Model building:

Step 1. Estimation of d.

As indicated in Section 2, d can be estimated in different ways. Peri-
odogram regression gives cfp = (.289 with estimated variance Sz = .044 ob-
tained through regression, and the estimated asymptotic variance of dp, Var(cfp) =
0.038. The smoothed periodogram regression (with the truncation point n%%)
leads to Jsp = 0.299 with estimated regression variance, S2, = 0.008 and
Var(dy) = 0.004. The number of regression observations used is g(n) =
n%5 = 16.

Although the point estimates of d look close to each other, i.e. Jp = c;lsp,
the estimated variances are quite different.

Step 2. Test Hy : d = 0. We consider the statistic z = cf,/ 0;, 1 = s, sp for
this purpose where 62 = Var(d;).

In this example z = 3.72 for the smoothed periodogram case and z = 1.37
for the periodogram estimate. The approximate 95% confidence interval for
d, (d+ 1.965;), are respectively (0.175,0.423) and (—.09,0.67). The smoothed
periodogram method indicates that there is evidence against d = 0 while the
periodogram method shows the opposite. It is shown in Reisen (1994) that
for testing Hy : d = 0 (0 < d < 0.5) the smoothed regression estimator is
more powerful than the periodogram estimator. In any case we proceed with
d = 0.299.

Step 3. Identification and estimation of ARFIMA.

We now look for an ARMA(p, ¢) model for 4; = (1 — B)*?°(X, — 0.8).
The AIC criterion (Akaike (1973)) leads to ARFIMA(1, d, 1) model and the
estimated model is (1—0.81B)(1—B)%*°X} = (1-0.55B)¢; with 6 = 0.044

10



and X} = X, — 0.8. The AIC (estimated value) is —73.37.

As discussed in Crato and Ray (1996), the AIC criterion generally tends
to underestimate the orders for long range dependent processes. Hence, we
also looked for other possible criterion such as BIC to choose p and g. These
all lead to the same model.

Step 4: Diagnostic checking

Several residual checks including the autocorrelation function, and the
normal probability plots indicated that the model above is adequate for the
data.

It was noted earlier that the periodogram estimator had suggested d = 0,
i.e., the data may be modelled by a short memory model. Based on the AIC
criterion we arrived at an ARMA (1,1) model.

(1-0.89B)X; = (1 —0.35B)e; , 62 = 0.04325, AIC = —82.83. The diag-

nostic checks for this model also indicated that the fitted model is adequate.

4.2 Forecast:

For comparison we generate the minimum mean square forecasts from the
ARFIMA and ARMA models. Thus we re-estimate the models using the
first 260 observations. This lead to

ARFIMA: (1-0.79B)(1 — B)**X; = (1 —0.58B)e;, 62 = 0.0443,
AIC = -64.14
ARMA: (1-0.86B)X; = (1—0.37)e 62=0.044, AIC = —-7543
The estimate of d, ¢ and 6 are similar to those obtained before. The esti-

mate of d by periodogram function was 0.043 which is somewhat smaller than
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that obtained before. However, this value is still inside the 95% confidence
interval obtained for d by the periodogram estimator.

We generate the k-step ahead forecasts, and the corresponding forecast
errors using the two models, for the holdout period ¢ = 261,...,288 and
for k = 1,2,...,15. Then, as in the previous simulations in Section 3 we
obtained the sample average error (é(k)) the sample variance (s?(k)), the

estimated variance V (e, (k)) = 62 E wz and the mean square error of the

28—k
forecast, mse(k) = 26260 +i(k)/(29 — k).

The results are shown in Table 3. We note the following

1. For all k |e(k)| is larger for the model.
2. s2(k) > V(e (k)) in both models.

3. To compare the forecasts from the two models we compute the ratio of

the mean squares from both models:

arma mse(k)
ar fima mse(k)

The last row of Table 3 shows the % increase in mse(k) if ARIMA is
used instead of ARFIMA (i.e. v(k) — 100). We note that this value is
bigger than 12.5% and that it increases with k.

i.e. Yk) = x 100.

4. We also obtained

MSE = Ze260 )/20
k=1

and
6260(k)

MPE = 100 2 o

k=

/20

for the two models.
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MSE | MPE
ARFIMA | .084 | 70.28
ARMA 113 | 75.64

From the analysis of the forecasts we see that the ARFIMA model has
an edge on ARIMA for the wind speed data and hence it is to be preferred

in this case.

5. Summary and Conclusions

We summarized some results from ARFIMA models and investigated the
forecasts from this model as well as the ARIMA model. We also considered
the bias in the estimate of the variance of the k-step ahead forecast error.
This bias tends to increase with k£ and with the value of d, the fractional
differencing parameter.

A set of wind speed data was analysed and forecasts from the ARFIMA

and ARIMA models were generated and compared.
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