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Abstract

We estimate the limiting availability of a system when the operating and repair time
form a bivariate exponential Markov sequence. These estimators are shown to be consistent
and asymptotically normal.
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1. INTRODUCTION

Suppose that we have a repairable system and let {X,} and {Y,} denote the sequences of
operating and repair times, respectively. The first operating time and repair time constitute
the first cycle of the system. One of the important characteristics of such a system is the
measure of instantaneous availability denoted by A(t), which is the probability that the

system is in working state at time ¢. If we define

1 if the system is operating
£(t) = , (1.1)
0 otherwise
then A(t) = E[¢(t)] = P[£(t) = 1].
Note that the properties of A(t) depend on the distribution of (X,,Y,) and the exact
expression of A(t) is difficult to obtain. However, one can compute A = lim A(t) as t — oo,

under certain conditions and A is called the limiting availability. It is important to study the

properties of A because one may be interested in knowing the extent to which the system
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will be available after it has been run for a long time. The properties of A and the problem
of its estimation are discussed by different authors under various conditions.

Let {X,} and {Y,} be independent sequences of independent and identically distributed
(iid) non-negative random variables (r.v.’s) with E(X;) = p and E(Y1) = 0. Under this set
up it is proved by using the theory of renewal process that as t — oo A(t) — A = u/(pn+6)
a.s. (almost surely). See eg. Hoyland and Rausand (1994). Similar results are also proved
by Gut and Janson (1983) for the case when {(X,,Y;,)} is a sequence of iid bivariate random
vectors and Jie Mi (1995) for a sequence of independent non-identically distributed bivariate
random vectors.

There are two estimators proposed for A. They are

n
1=

A = X/ (X+Y0) (12)
i=1 i=1
= Average availability in the first n cycles

and

A(t) = a(t)/t = {Total operating time in (0,t)}/t. (1.3)

These estimators are proved to be consistent and asymptotically normal (CAN) for A under
different conditions. In particular, if {(X,, Y,)} is a sequence of iid bivariate random vectors

with E(X1) = u, E(Y1) = 6, Var(X;) = 04, Var(Y1) = oy and Corr(Xy,Y7) = p, then
V(A — /(1 +0)) 5 N(0,A%/(u+6)) as n — oo (1.4)
and
VHAR) = p/(n+ 0)) 5 N(0,A?) as t — oo, (1.5)
where %5 denotes the convergence in distribution and

A? = (0%02 + pPol — 2ufp)/(n+0)°. (1.6)

If (1.4) and (1.5) hold then the asymptotic variance of A, and A(t) are respectively given
by
AV(A,) = A?/{n(u+0)*} and AV (A(t)) = A?/t.
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The non-parametric confidence estimation and point estimation of A are discussed by
Baxter and Li (1994) and Baxter and Li (1996) respectively.

Our interest in this paper is to estimate A by A, and A(t) when {(X,, Y,)} is a stationary
bivariate Markov sequence. In particular, we take {(Xn,Y,)} as a first order bivariate ex-
ponential autoregressive (BEAR(1)) process defined by Block, Langberg and Stoffer (1988).
The Section 2 of the paper describes the BEAR(1) model and discusses its useful proper-
ties. The properties of the estimators are studied in Section 3. A comparison of asymptotic
variances of our estimators with those corresponding to iid sequences is made in Section 4.

Section 5 is the concluding remarks.

2. PROPERTIES OF BEAR(1) PROCESS
Before defining the BEAR(1) model we need to describe the following. The random

vector (N1, Np) has a bivariate geometric distribution defined by Block (cf. Block, Langberg
and Stoffer (1988)) if

P11 (Por + p11)™ ™™, Ng > N
P(N1 > n1, N2 > na) = { pi(p1o + p11)™ ™™, ny < my (2.1)

ny,Ne =1,2,... .

where 0 < p;; < 1, 4,5 = 0,1 such that poo + p1o +por + p1i1 = 1, 0 < por +pu1 < 1,
0 < p1o + P11 < 1, po1 + Poo = 71, P1o + Poo = Ta.

A random vector (E1, E») is said to have a bivariate exponential distribution if each of its
marginal distribution is univariate exponential. We denote a bivariate exponential random
vector with mean (1/A1,1/)2) and correlation coefficient p by BVE (A1, A2, p). Now let us
define the BEAR(1) model.

Let {E(n) = (Ein, Ea), n = 0,%£1,£2,...} be a sequence of iid BVE (A1, Ay, p) and
(N1, N;) be a bivariate geometric random vector specified by (2.1) which is independent

of E(n) for all n. Let {(I1(n), I2(n))} be a sequence of iid bivariate random vectors with



Pr(Ii(n) =i, I,(n) = j] = pij, i,§ = 0,1, where p;;’s are as in (2.1). Define

E(0), n=0
X(n) = { (2.2)
A(n)X(n—-1)+ BE(n), n=1,2,..,
where N N
E(O) = (7!'1 Zl El,—j) o Zz EQ’_]‘) y (23)

such that {A(n)} and {E(n)} are mutually independent iid sequences of random vectors.
Then for each n > 0, X(n) has BVE (A1, Ay, p) distribution. It can be shown that E(0)
defined by (2.3) has BVE (A1, Ag, p) distribution. The sequence {X(n),n > 0} defined by

(2.2) is referred to as a BEAR(1) process. The common dispersion matrix of {X(n)} is given

by
A2 A1, A2) 7t
Sx = ' ph 22) . (2.4)
P(A1, X))t Ay

The autocovariance matrix I'x (k) of {X(n)} becomes

Ix(k) = Cov(X(n),X(n+k)) =
x (k) = Cov(X(n), X(n + k) (p(l—m)'“//h)\z (1= ma) /33

1_ k>\2 1_71' k/\)\
(L=m)*/AL o 1)/12)’ k=0,1,2,... .

(2.5)
In the following theorem we prove an important property of the BEAR(1) sequence.
Theorem 2.1: The BEAR(1) sequence {X(n)} defined by (2.2) is stationary, ergodic and

uniformly mixing with mixing parameters

¢(h) = (pro + 1) + (Por +p11))" ™}, h=1,2,... . (2.6)

Proof: Recursive use of the model (2.2) tells us that X (n) is a function of the mutually inde-
pendent r.v.’s X(0), A(1), A(2), ..., A(n), E(1), E(2), ..., E(n). Then by using the arguments
given in Nicholls and Quinn (1982), it follows that {X(n)} is stationary and ergodic.
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For proving mixing property let A € o{X (1), X(2),...,X(n)} and B € o{X(n+h), X(n+
h+1),...}, where 0{ X (1), X (2), ...} denotes the minimal sigma field induced by X (1), X (2), ... .

The sequence {X (n)} is uniformly mixing if
|[P(AN B) — P(A)P(B)| < P(A) - ¢(h)

such that ¢(h) — 0 as n — oo for every A and B defined above. Note that mixing means

asymptotic independence of A and B as h — oo. If we write the model (2.2) as

Xn Li(n)Xp-1+mE,
X(n) = _ [ B Xa-r 4 mEy , (2.7)
Y, Ir(n)Yn—1 + moEs,
then it follows that the independence of A and B is decided by the r.v.’s (I1(n+j), I2(n+7)),
h—1
j=1,2,..,h—1 Let M; = Ii(n+j), i = 1,2 then M; has a binomial distribution with
j=1

parameters h— 1 and 1 —m;. Since the random vectors (I;(n), Iz(n)), n > 1 are independent,
the events A and B are independent if [M; < h — 1, My < h —1]. That is, A and B are
conditionally independent given M; < h — 1 and My < h — 1. Further the r.v.’s I(A) and
(My, M) are independent, where I(A) denotes the indicator function of A. Using these
observations along with the Markov property of {X(n)} we can write,

|P(AN B) — P(A) - P(B)|

= P(A)|P(My=h—-1,My=h—1){P(B|A,Mi=h—-1,My=h—1)— P(B|My=h—1,M; = h—1)]
+P(My=h—1,My; <h—-1){PB|A,Mi=h—-1,My<h—-1)—P(B|Mi=h—-1,My <h-1)}
+P(M; <h—1,My=h—1){P(B|A, My <h—1,My;=h—1)—~ P(B|[M; <h—1,M;=h—1)}|
< PA[PM;=h—1,My=h—-1)+P(My=h—-1,My <h—1)+P(M; <h—1,My=h~—1)]
< P(A) - ¢(h),

where ¢(h) = (p11 + p10)* ™ + (Por + p11)" ! — 0 as h — oo. This completes the proof.

We will use the above theorem to establish the properties of the estimators in the next

section.



3. PROPERTIES OF THE ESTIMATORS

In this section, we discuss the properties of the estimators A, and A(t) of the limiting
availability introduced in Section 1 when {(X,,Y,),n > 0} is a BEAR( ) sequence. Since
{X(n)} is uniformly mixing with mixing parameters ¢(h) and Z¢1/ %(h) < 00, by the central

limit theorem for such sequences (cf. Billingsley (1968)) we have as n — 00,
VX = AT Vo = 251) 5 No(0, ), (31)

where N5(0,Y,) is a bivariate normal vector with mean O = ( ) and dispersion matrix
0
Ozz Ogzy
22 = ’
Oye  Oyy

02y = Cov(Xo, Yo) + Z Cov(Xo, Ys) + Z Cov(Xp, Yo)
h=1 h=1

0z = Var(Xp) + 2 Z Cov(Xo, Xn)
h=1

vz = Cov(Xo, Yo) + Z Cov(Xp, Yo) + Z Cov(Xo, Yz)
h=1 h=1

)
yy — VaI‘(X()) +2 Z COV(Y(), Yh)
h=1

The expressions of the covariance terms in these summations may be obtained from the

matrix (2.5). After some simplification we obtain

2—m p 7r1+7r2—7r17r2>
TN A1 e ( 1Ty
2o = (3~2)
p T + Ty — MMy 2 — g
)\1>\2 ( 17 ) 7T2)\%

Let us consider the estimator,



Since {X(n)} is stationary and ergodic, by pointwise ergodic theorem it follows that as
n — 00

An — )\2/()\1 + )\2) a.s.

If we define g(z,y) = z/(z +y), then g(X,,Y,) = A, and hence by using the results from
Serfling ((1981, p. 122) we can show that

Jn (An _ )\1)-\1-2)\2> AN (o, 275;2—( Q(iljj))j (my + g — 7717T2)> . (3.3)

That is, A, is a CAN estimator of A = Xy/(A1 + A2).
The properties of A(t) are studied using the renewal theoretic arguments. Let Z, =

Xn+Yy,n=12,..and S, =Z1+Zo+---+ Zp,n=1,2,... . Define
N(t) =inf{n: S, <t}.

Clearly as t — oo, N(t) — oo a.s. and S,/n — A{' + A;! as. as n — oo. This in
turn implies that Mtﬁ — T’}fx; a.s. ast — oo. Note that N(t) gives the number of cycles
completed in the interval [0,¢]. Now following the notations of Jie Mi (1995) the total up
time «/(t) in the interval [0,t] may be represented as

N()+1 N
a(t) = A(t) Z X;+ (1= X)) { X;+t— SN(t)} , (3.4)

J
where

At) = I(Snw) + Xnw+1 <t < Sn)- (3.5)

We have Zy (41 = Sn(+1 — Sn(y and hence ﬁ%ﬁl — 0 a.s. ast — 0o. Moreover, it is also
clear that 0 <t — Sn@) < Zn()+1 so that as ¢ — oo, tstﬂﬂ — 0 a.s. Using these results in
(3.4), we can show that as t — oo,

A2
a.s.

a_(?_).=f—1(t)—-—>)\1+>\2 .

t

Hence A(t) is strongly consistent for A.



For proving asymptotic normality of A(t), we define
Wp=X"'X, = A\['Y,, n=0,1,2,.. .

The sequence {W,,n > 0} is stationary, ergodic and uniformly mixing with E(W,) = 0.
From the asymptotic distribution of (X,,Y;,) it follows that as n — oo,

V(W) = V(3! X — \T'T0) 5 N(0,7%), (3.6)
2(1 = p)(my +mg — 7r17r2)
2 _
where v = NNBT i

Now using the central limit theorem for random sum of uniformly mixing r.v.’s (cf.
Billingsley (1968), p. 180) we have as t — oo
N(t)+1 N(t)+1

X Wi/ Nt \/——— 2 X =N S N(O,Y). (37)

Let us write

1 1 N(t)+1 ¢ N(t)+1 X Y N(t)+
—+—> X-—(—>= ( ) (X +Y) —t|u (38
()\1 /\2 JZ—-:I ! >\1 ]gl )\2 >\1 z:_-: # ( )
For a BEAR(1) process, it is true that
(Xn+Y,)/v/n— 0 as. as n — oo.
Hence as t — oo,
5N(t)+1 —t XN(t)-I-l + Yn(+1
— 0 as.
T N@)+1 /N +1
That is,
N()+1
{Y (X;+Y;)—t}/{N({)+1—0 as. as t — 0.
j=1
Hence from (3.7) and (3.8) we get as t — oo,
1 1 N(t)+1 ¢
T+ 2 Xi— ()
A2 j=1 Mg
£ N(0,7%). (3.9)
JN®) +1



Now by rewriting (3.4) in a convenient form and using the above convergence results it can

be shown that as t — oo,
1[A(t)1— A2/ (A1 + o))
(>\—1 + “)\';)_1[\/]\7(15) +1/1]

After simplification, it becomes, as t — oo,

£ N@©,7).

2/\1)\2(1 - p)(ﬂ'l + mT9 — ’/T17T2)

_ c
VHA(E) — A2/ (A + A2)] = N(O, (A1 + A2)3mymy

). (3.10)

Thus we have also proved that A(t) is CAN for A.

4. SENSITIVITY OF THE ESTIMATORS
We have already shown that the asymptotic variances of the estimators are given in (3.3)
and (3.10) when the process is BEAR(1). It is interesting to see how sensitive these variances

are for different values of the marginal autocorrelations of {X,} and {¥,}. It can be shown

that if {(X,,Y,), n > 0} is a sequence of iid BVE (A1, Az, p), then
me = AV(4,) = 2(1 = p)(MA2)?/n(As + Ag)*

and v; = AV(A(t)) = 2(1 — p) A d/t(M1 + A2)3.
Let 7, and -y, be the asymptotic variances of A, and A(t) (see (3.3) and (3.10)) under
BEAR(1) model. Thus we consider the ratio

Yn _ Asymptotic variance under BEAR(1) model
vE - Asymptotic variance under iid set up
— 1 1
_ Ty + o M2 _ n _1=1:_
Ty 1-=61 1-0 Vi

where f; = 1 —m and B, = 1 — m, are the marginal lag 1 autocorrelations of the {X,,} and
{Y,} sequences respectively. Note that the ratio is always greater than unity and we show

this for few values of 7; and 7.



Bo
02 05 07 09
S
0.2 1.5 225 3.58 10.25
0.5 - 3 433 11
0.7 - - 5.66 12.33
0.9 - - - 19

We see that as the marginal auto-correlations f; and (3, increase, the ratio increases. In
fact if B; = B2 = 0.5 the ratio is 3. This means that under the assumption of independence
the variance is drastically under estimated if the true process is BEAR(1). This could lead
to eroneous conclusions. Even when the correlation is small (8; = 8, = 0.2) the ratio is 1.5

indicating under estimation of 50%.

5. CONCLUDING REMARKS

We have discussed the estimation of limiting availability when the operating and repair
times of a system form a first order bivariate exponential autoregressive (BEAR(1)) process.
The proposed estimators of availability are proved to be consistent and asymptotically nor-
mal. These are compared with estimators under the iid set up in terms of their asymptotic
variances. It is observed that when the true model is BEAR(1), the assumption of iid se-

quence under estimates the variance of the estimators significantly.
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