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1. INTRODUCTION

The analysis of time series in the classical set up is based on the assumption that an
observed series is a realization from a Gaussian sequence. However, there are many situations,
where the naturally occurring data showing tendency to follow asymmetric and heavy-tailed
distributions which cannot be modelled by Gaussian distributions. The usual techniques
of transforming the data for using Gaussian models also fail under certain situations (see
Lawrance (1991)). Hence a number of non-Gaussian time series models have been introduced
by different researchers during the last two decades. (See for example, Lawrance and Lewis
(1985), Adke and Balakrishna (1992) and the references there.)

The literature on non-Gaussian time series mainly deals with finding the innovation dis-
tribution for a specified marginal and then discussing the second order properties of the
sequences generated by them. Not much attention is given to the problem of statistical
inference, which is essential to check the validity of a model in real situations. The prob-

lems of estimation for autoregressive sequences with exponential marginals are discussed by
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Smith (1986), Billard and Mohamed (1991), Adke and Balakrishna (1992a). Estimation in
Laplacian autoregressive models are considered by Karlsen and Tj¢stheim (1988) and Son
and Cho (1996). Another non-Gaussian r.v. which attracted some attention is the inverse
Gaussian that have many applications in studying life time or number of event occurrences.
Lancaster (1972) showed that the duration of strike in United Kingdom has an inverse Gaus-
sian distribution. Banerjee and Bhattacharyya (1976) studied the purchase incidence model
when the inter-purchase time of an individual household is described by an inverse Gaussian
distribution. Chhikara and Folks (1977) considered this distribution for a lifetime model and
suggest its applications for studying reliability aspects.
In this paper we study the properties of inverse Gaussian autoregressive models and also

discuss the related estimation problems. A random variable (r.v) X is said to have an inverse
Gaussian (IG) distribution with parameters A, u if its probability density function (pdf) is

of the form,

1/2 )
) exp{— (z—w?}, >0, A>0, u>0. (1.1)

A
f(m;u,/\)=( 572

2mx3

The properties of (1.1) and its various reparameterisations may be found in Johnson, Kotz

and Balakrishnan (1994). If A = u? then (1.1) reduces to

f@im = Grtmmel-g @ u), £>0 1>0 (12)

which is the pdf of the first passage time to a point x in a Brownian motion process with unit
drift and unit variance. Another interesting form of pdf can be obtained by letting u — oo

in (1.1). The resulting pdf is given by

A\ A
flz; \) = ( ) exp{——z—a-:-}, A>0, z>0. (1.3)

2wx3

This is in fact the pdf of first passage time of drift-free Brownian motion.
In Section 2 we introduce the inverse Gaussian Autoregressive process of order 1, IGAR(1).

Section 3 discusses conditional least squares estimation, section 4 considers ML estimation



and section 5 contains the estimation based on empirical Laplace Transform. The final sec-

tion 6 gives a summary and some concluding remarks.

2. AUTOREGRESSIVE MODELS
Let {en, n > 1} be a sequence of independent and identically distributed (iid) non-
negative r.v’s and Xy be an inverse Gaussian r.v independent of €;, j > 1. Define {X,.} by

a first order autoregressive '(AR(l)) model:
Xpn=pXn_1+€, n=12,..0<p< 1. (2.1)

Note that X, depends on Xy, €, €, ..., €, and independent of €;, j > n. Suppose that {X,}
has inverse Gaussian distribution (1.1) for every n > 0. Let ¢x(s) and ¢(s) be the Laplace”
transforms (LT) of X, and €, respectively. Then (2.1) implies that

ox(8) = dx(ps) - dc(s), s>0. (2.2)

Pillai and Satheesh (1992) have proved that the inverse Gaussian distribution (1.1) is self-
decomposable and hence ¢.(s) = ¢x(s)/dx(ps) is the LT of a proper d.f. for every p € [0,1).
The LT of (1.1) is given by

dx(s) = exp {% (1 —J1+ 2‘/‘\23 } . (2.3)

6e(s) = exp [—2 {\/ 1+ 2’;23 - \/ 1+ 2”523 }] . (2.4)

By inverting ¢.(s), we can get the corresponding distribution function of €,. Thus if {¢,}

Hence

is an iid sequence with LT (2.4) then {X,, n > 0} given by (2.1) defines a stationary
sequence of inverse Gaussian r.v’s with marginal pdf (1.1). For this sequence E(X,) = u,

var(X,) = p3/X for all n > 0 and the autocorrelation function of order A is

Corr(Xn, Xnsn) =p" h=1,2,... . (2.5)



The LT (2.4) does not seem to have closed form expression for its inverse. Let us now
consider a stationary Markov sequence of IG r.v’s with pdf (1.3). The LT of (1.3) is given
by

x(s) = exp{—v2)s}. (2.6)

If we suppose that X, defined by (2.1) has the pdf (1.3) for every n > 0 then the LT of ¢,

Yils) = exp{—y/2As(1 — v/5)2}. (2.7)

The pdf of ¢, corresponding to (2.7) is

becomes

Even though, we have a closed form density function for €,, it is not possible to discuss the
second order properties here as E(X*) = oo if & > 1/2.
Remark 1: A r.v X is said to be positive stable if its LT is of the form

P(s) = exp{—(2Xs)?}, 0<a<2 s>0. (2.9)

Hence it follows that the IG r.v with LT (2.6) is positive stable with a = 1/2. A positive
stable r.v has a closed form expression for pdf when a = 1/2, which is given by (1.3). So, the
above discussion on AR(1) model can be extended for any o € (0,2). However, we restrict
the details for the case o = 1/2 since, the pdf has a closed form expression here.
Remark 2: In AR(1) models for exponential, gamma, Laplace etc. r.v’s, the distributions
of €, are entirely different from those of X,,’s. But pdf’s (2.8) and (1.3) are the same except
that X is replaced by A(1—./p)? in (2.8). This is a consequence of one of the characterizations
of stable laws (cf. Rao and Shanbhag (1994), p. 154).

Suppose that {X,, n > 0} is an IGAR(1) sequence with marginal distribution (1.3). Let
us consider the distribution of S, = X; + X5 + - - - + X,,. Using the definition of the model

1 — p® n 1— n—j+1
1-p j=2

(2.1) we can write

1-p
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The LT of S, is computed as,

¢s;. (s) = exp {— 2)\3%} exp {_ /1223/)(1 - /P) z: (1 — pn=i+1)

This implies that

by(e) = exp{ (1= VA2 w5 m oo

That is, the limit distribution of %} as n — oo is again an IG with pdf of the type (1.3). For
a positive stable AR(1) process it is readily proved that for every a € (0, 2),

1/1:%;(3) — exp {—(1 - p%) (fisp) } as m — oo.

That is, the positive stable AR(1) process belongs to the domain of attraction of positive-
stable distribution.

In the rest of the paper we discuss various methods for estimating the parameters.

3. METHOD OF CONDITIONAL LEAST SQUARES
The conditional least square (CLS) estimator of a parametric vector § = (01, 6,,...6,) is
obtained by minimising
Qn(9) = Z[Xi"‘l - E(Xi+1|Xia Xi-—-la Xl)]2 (31)
i=1 ‘
with respect to 6. This method and properties of CLS estimators are studied by Klimko
and Nelson (1978). We obtain the CLS estimators of § = (i, p) in an IGAR(1) model which
generates a sequence with marginal pdf (1.2). That is, pdf (1.1) with A = p?. Since AR(1)

sequence is Markovian,
E(Xin|Xi, Xic1y ..., X1) = E(Xi1] Xi) = pXi + (1 — p)pu.
’i‘he CLS estimators of p and p are respectively given by

p= 3 (Kexs = i X)/n(1 = )

i=1



and

3 XX — ) (é X,.> (nf X,~+1) ;(X,- — X)(Xis1 — X)

A =1 i=1 _
Pn = - n

> X2 —nX? > (X — X)?

i=1 i=1

(sample lag 1 autocorrelation).

Since {X,, n > 0} defined by (2.1) is stationary and ergodic, from pointwise ergodic
theorem it follows that f a5 w and pp a3 p as n — 0o, where 23 stands for almost sure
convergence. Klimko and Nelson (1978) have proved under certain regularity conditions the
asymptotic properties of the CLS estimators. Those conditions are satisfied in the case of
AR(1) model generating IG sequence with marginal distributions (1.1) and (1.2). Hence, it
follows that

Vn [ 'Lfn B IS N2(0,Y") as n — o0, (3.2)
Pn— P

where 5 denotes the convergence in law and N,(0,Y) is a bivariate normal vector with

mean 0 and dispersion matrix

Thus we have CLS estimator of 6, which is consistent and asymptotically normal (CAN).
We cannot apply CLS method for estimating the parameters of AR(1) model generating

IG r.v’s having marginal pdf (1.3) as it does not possess moments of order greater than 1/2.

4. MAXIMUM LIKELITHOOD ESTIMATION

In this section we obtain the maximum likelihood estimators (mle) of the parameters of
AR(1) process having marginal pdf (1.3). The likelihood based inference is not tractable
for AR(1) models generating the r.v’s with pdf (1.1) and (1.2) since the pdfs of €,’s do
not have closed form expressions. Let {X,} be an AR(1) sequence with (1.3) as marginal

pdf. The corresponding pdf of €, is given by (2.8). The transition distribution of X, given



Xn-1 = T,—1 in this case becomes

F(mnlxn—l) = P[Xn < wnIXn—l = -'L'n—l] = P[en <z, - Pxn—l]

{ 0 if Z,, < pTa_y

. (4.1)
"7 g(u)du if T, > pTn_y

Note that F(z,|z,—1) has density over the region {(zn,Zn-1) : Tn > pz,—_1} and is given by

A1y 112 2 :
exp{—A(1 — 2(zy — pTp- fz, > px,_
F(@n|Tnot) = [ ]  exp{=A(L = \/B)*/2(zn — pTa1) if Tp > pEay (42)
0 if x,, < pxp_;.
The likelihood function of (), p) based on (Xj, X1, ..., X») can be written as
n
L(\p) = f(Xo) - II f(X51X;-1), Xo>0, X;>pX;1, j=1,2,..n.
j=1
A upea B A= P A1 = /5)?
L A, — 1/26 2Xq 1/2 exp|—
() [27FX3] JI=12[27T(XJ' - PX'—1)3] ol 2(X; — PXJ'—1)]
if X]‘ > pXj_l, i=12..,n. (43)
If we fix p then mle of = § is given by
R S I SRS SR S
" n+1l|Xo - io (X5 — pXjo1)
1 |1 Yy 1
= foﬂl_ﬁ);q]' (4.4)

It can be noted here that, if X, has the pdf (1.3) then U = X' has a gamma G(1/2, A/2)
distribution with pdf

A2 122
h(u) = () 7w, u>0 (4.5)
0 otherwise.

Further, ej"l has G’(%, ’\(14_2@2) distribution for each 7 > 1 and Xy, €, €9, ..., €, are mutually

independent r.v’s. Hence it follows that B, is unbiased for 8 and Bn — [ a.s. asn — o0.
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As far as asymptotic properties of mle are concerned we can ignore the term corresponding
to Xo in (4.4). The summands in the second term of (4.4) are iid. r.v’s, =, j =1,2,..n
J
with

1 1 1 2

P = sa=ae V) = =

Hence an application of central limit theorem (CLT) for iid r.v’s leads to the result that

2 /n g
D= VAV (Z( =)

4 N(0,26%) as n — 0.

(4.6)

That is Bn is a CAN estimator of 8 when p is known.
If p is unknown, it can be estimated by p, suggested by Feigin and Resnick (1992) where -

e (2s) @

This estimator is strongly consistent for p. In the following result proved by Feigin and

Resnick (1992) the asymptotic distribution of p, in (4.7) is obtained.
Result: Let {X,} be an AR(1) sequence defined by (2.1) and p, be as in (4.7). Suppose

that the distribution function G of €; satisfies the following regularity conditions:
(i) {en} is a sequence of non-negative iid r.v’s.

(ii) For some € > 0,

. [1=G(sz)| _ _4
SILI&{-T:W} =z for all z > 0.

(iii) E(e;?) < oo for some 3 > c.
Then
Plbn(fpn — p) > z] — ™", asn — o0
where b, = (-1-_-_1-5)‘— (n) (here H(n) = inf{z : H(z) > n}) and
c= [°[1 - ﬁ {1-G(p"s)}as™ Uds.

n=0



It is readily verified that the regularity conditions (i) and (ii) hold with o = 1/2. The
condition (iii) holds since €,;! has a gamma distribution and hence all the moments are finite.
Thus we have a limit law for p,. But we do not have closed form expressions for b, and c,.

If p is unknown, the mle of B can be obtained by replacing p by g, in (4.4). Then the
properties of 3, discussed above will not hold, since it is not possible to extract €;'s from
X;’s when p is unknown.

In the next section, we Apropose an estimator for A, which is free from p and hence the

above difficulties will not arise.

5. ESTIMATION BASED ON EMPIRICAL LAPLACE TRANSFORM

We estimate )\ of the pdf (1.3) when it is the marginal pdf of an AR(1) sequence generated -
by (2.1) using the empirical LT. The empirical LT of a distribution function based on a sample
(X1, X2, .., X») is defined by

¢n(s) = 2 Enje‘sx", s> 0. (5.1)
n i

Note that E(¢,(s)) = ¢(s) for s > 0. The value of s can be fixed conveniently. We can use
method of moments to estimate ) in terms of ¢,(s). The LT of (1.3) is given by

¢(s) = exp{—v2As}.

Equating ¢(s) to J)n(s) and solving we get an estimator ), of ) as

/‘\n — {=log 4§n(3)}2.
2s

(5.2)

It will be shown below that A, is a CAN estimator of A for which we need the following
results by Athreya and Pantula (1986).

Result 1: Let {X,, n > 0} be an AR(1) process (2.1) with marginal pdf (1.3). Assume
that '

(i) E[{log|e1]|}*] < o0 and



(i) €; has a non-trivial absolutely continuous component.

Then for any initial distribution of Xy, the Markov sequence {X,} is Harris recurrent
and strong mixing.
The AR(1) process described above satisfies both the conditions. For a Harris recurrent

Markov sequence {X,} Athreya and Pantula (1986a) proved that

sup |P(AN B) — P(A) - P(B)| = /(m) < 2sup E[Km-1(Xn+1)], (5.3)
AEFp, BEFR n

m+n

where F7 and F, ,, are the minimal sigma fields induced by (Xo, X1, ...X») and (Xn+m, Xatm+1,---)

m+n

respectively, and
Km-1(Xns1) =l| P(Xntmi1 € AlXnt1) —m(A) || (5.4).

In (5.4), P(Xn+m+1 € A|Xn4+1) denotes the m-step transition function of {X,}, | p—vis
the total variation norm of the signed measure p — v for probability measures p and v and
7(+) is the stationary measure.

In our case, the AR(1) sequence defined by (2.1) is strictly stationary, ergodic, Harris

recurrent and strongly mixing. Hence the stationary measure is given by

w(4) = [ fle)da,

when f(-) is the pdf (1.3). Now, we use the relation (5.4) to determine the mixing coefficients,
which is required to study the CAN property M.

Consider

Bl (X)) = [ Kn(@)f(@)de
= [T PXnor € )= 7(A) | F@)im, (55)
where A is an arbitrary event and
Po(Xmor € A) = P[Xm_1 € AlXo=1]
= P[p" e +p" P+t em € A—p" g, (5.6)
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where we have used the recursive relation (2.1) and independence of r.v’s Xy, €1, ..., €m—y. If
we let

Zm = p" %1+ " e+ Emo,
its pdf is given by

fante) = PEIT Py S OATH 5 5

223 2z

Now (5.6) implies that
Po(Xm-1€4) = /A o S22
< [ fan(2)dz.
Hence for any A, we can write
| PoXims € A) = (A IS [ [fz(2) = £z . (538)

Note that

| [ fon(@) = £z =1 [ () = furn (22 |
1/2
I /A (2323) e — {1- (VA" e B 0-WAm g |

: /20 _ _
< Ha(z2s) el =14 (vp)mdz ||
S (\/ﬁ)m—l.
Thus we have from (5.5)

E[Km-1(Xar)] < (VP)™

Hence from (5.3), we can take

a(m) = 2p"T (5.9)

as a sequence of mixing parameters for {X,}. Clearly a(m) — 0 as m — oo. So {X,} is a

strongly mixing sequence with mixing parameters a(m).
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Let Y, = e™*%» s > 0, n =0,1,2,... then {Y,, n > 0} is a strictly stationary, strong
mixing sequence with mixing parameters a(m). Moreover, {Y,} is a sequence of r.v’s which
is uniformly bounded by unity and 3o°_; a(m) < co. Then by Theorem 18.5.4 of Ibragimov
and Linnik (1978) we have as n — oo

n
V23 {Y; — E(Y;)} 5 N(0,0%),
j=1

where

o = Var(Yp) +2 > Cov(¥y,Ys) >0

h=1
C Vs _ VB | gV i [e_\/m{,/i;‘ph'-(mh} _ e-\/m] .

h=1

Note that 0 < 02 < co. Hence,
Vilga(s) = $(s)] 5 N(0,0%) as n — co.

Now applying the well-known results on functions of asymptotic normal variates (cf. Serfling

(1980), p. 118), it is proved for the estimator of A defined by (5.2) that

Vi —A) 5N (o, { In $(s) }202) as n — 00,

s6(s)

or, Vi(As — A) 5 N(0, 212V . %2) as n — oo. Thus, A, is a CAN estimator of \.

6. CONCLUDING REMARKS

We introduced a first order autoregressive model which generates a sequence of inverse
Gaussian random variables. The existence of innovation distributions in various cases is
discussed. Explicit expression for the innovation density is obtained in the case of a one-
parameter inverse Gaussian model. The unknown parameters in all models are estimated
using appropriate methods of estimation. It is also proved that the estimators obtained

are consistent and asymptotically normal. These properties can be utilised for constructing
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asymptotic tests and confidence intervals for the parameters. The models discussed in this

paper can be applied to time series data which show heavy tail behaviour.
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