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Abstract

In recent years the availability of automated measurement systems and
data storage devices has increased the need for dealing with large datasets. In
this paper we discuss methods that predict a set of responses from a subspace
~ of alarge set of regressors. Such methods build this subspace by determining
an ordered set of orthogonal axis which are optimal with respect to some
objective function.

We consider an objective function from which all the most commonly
used methods can be obtained as particular cases by changing the values of
two parameters. By setting one of these parameters to a constant value the
function yields a continuum of solutions as the values of the other parameter

change.

1 Introduction

Dimensionality reduction methods (DRMs) are methods that determine or-
thogonal linear combinations of a set of variables, called latent variables,
that are the orthogonal axis of a subspace of interest, called latent subspace.
The DRMs that we consider determine the coefficients of these linear com-

binations of the variables as the optimal solutions of an objective function.
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Successive solutions are determined under the constraint of being orthogonal
to the previous ones. The latent subspace of dimension d is the subspace
spanned by the first d latent variables. Different DRMs have been proposed,;
each method obtains the latent variables as the optimal solution of a different
objective function.

DRMs have been introduced as descriptive tools but they have been re-
cently applied in prediction problems, for example in chemometrics (e.g.
Gelaldi and Kowalski (1986)), biochemistry (e.g. Schmidli (1995)) and statis-
tical process control (e.g. Nomikos and MacGregor (1993)). In some of these
applications it has been shown that the prediction of points not in the sample
using latent variables from some heuristic methods (not by minimizing the
residual sum of squares (RSS), of the responses) are better than those from
latent variables that minimize the RSS. It becomes then important to relate
the different DRMs to one another through a common objective function.

In section two we discuss reduced rank regression and in section three we
will review various DRMs. Section four will provide an objective function
from which all the DRMs considered can be obtained as special cases. The

last section gives some concluding remarks.

2 Reduced Rank Regression

Let X be an (n X p) matrix containing n rows of independent observations
on p explanatory variables and Y an (n X ¢) matrix containing n rows of
corresponding observations on g response variables. The observations on the

y variables are assumed to be independent of one another. It is assumed that
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the data follow the (multivariate) linear regression model
Y=XB+E (2.1)

where B is the (p x ¢) matrix of unknown regression coefficients. The value of

B that minimizes the RSS, ||[Y — XBJ||?, is the least squares (LS) estimator

B = (X"X)"'X'Y (2.2)

Let A be a (p x d), d < p, matrix of coefficients such that the matrix of
latent variables T = XA has rank d. For identifiability of the solutions we
require that the latent variables are orthogonal to one another and that they

have bounded length. We consider two different sets of constraints:

TT=ATX"XA=1 (2.3)
and
T'T = diag
(2.4)
aja; =1

where a; is the i-th column of A. The linear regression model in latent

variables is

Y =TQ+E (2.5)

where Q is the (d X ¢) matrix of regression coefficients and it is also known

as y-loading matrix. By substituting the expression T = XA in model (2.5)
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we obtaln

Y =XAQ+ E=XM+E. (2.6)

Hence the linear relationship between the explanatory variables and the re-
sponses is expressed by the (p X ¢) matrix M = AQ of rank d. It is then
clear how the use of DRMs in prediction can be turned into a regression
problem with rank deficient matrix of coefficients. Model (2.6) is known as

the reduced rank regression (RRR) model.

The LS solution of model (2.5) is
Q=(T"T)"'T"Y. (2.7)

Hence the LS solution for the RRR coefficient matrix as given in equation

(2.6) is
M=AQ=A(T'T)'TTY = A(ATX'XA)'A'X'Y.  (28)

The estimation of model (2.6) is then reduced to the estimation of the matrix

of coefficients A.

Let Y(d) be the fitted value of Y using d latent variables, we have
Y(d) = XM = TQ. (2.9)

In virtue of the orthogonality among the latent variables, Y(d) can be written
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as

Y(d) = Zd:tk( ite) LY = X[Zd: ap(alX Xay) tafX Y] = XM(d)

- . (2.10)
where M(d) is the rank d matrix of regression coefficients. Under constraints
(2.3), (2.10) simplifies to

k=1

d d
V(d) =) tityY =X Y aaX'Y (2.11)
k=1

Letting Y = t(tits) 1t)Y be the fitted value of Y using the k-th latent

variable, Y (d) can be written as
Y(d) = Y+ Y + -+ Y. (2.12)

From (2.12) it is easy to see that the solutions Y (d) can be ordered with
respect to the RSS as

Y =¥(@)||>|[Y-Y(@), 1<d<d"<p (2.13)

where || || is the Euclidean norm. Equality in (2.13) is obtained if and only if
tY =0, j=d'+1,... ,d". Properties (2.12) and (2.13) allow the estimation
of the latent components independently of the value of d. Generally the value
of d is treated as an unknown parameter of the predictive model and its
value is determined by comparing the predictions obtained with successively
increasing number of latent variables. Note that in this paper we leave the

value of d undetermined and hence the quantities that depend on its value,



such as the matrix of coefficients A and its compounds, are not indexed and
it is understood that their rank or dimension is arbitrary.

The natural approach to estimating the matrix of coefficients A in (2.8)
is to choose the solution that yields the minimum RSS for the responses (the
LS solution). However, in many applications it has been shown that the
predictions of the observations not in the sample obtained with these latent
variables can be worse than those obtained with other systems of latent
components. Note that here we distinguish between the fitted values of the
responses and their predicted values.

In the next section we give an overview of DRMs that are used for pre-

diction. We will derive them from the optimization of an objective function.

3 DRMs for Prediction

Let X and Y be the (n x p) and (n X ¢) matrices as in the previous section.
From now on we assume that the columns of these matrices have been mean-

centered. That is their values have been redefined as

1
X + (X--1,1;X)
n

1
Y « (Y--1,1Y)
n

where 1,, is the column vector of » ones. It is common practice to scale
the columns of the data matrices to unit length (or variance), there is, how-
ever, debate on whether this practice is always appropriate or not. In what

follows we assume that XX and Y'Y are non-singular. Without this as-
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sumption the ordinary inverses appearing later would have to be substituted
by generalized inverses of some kind.

The DRMs that we consider are those that determine an orthogonal par-
tition in the space spanned by the p explanatory variables. That is if we let

T be the matrix of d latent variables, the matrix X is represented as
X=TP+F (3.1)

with the requirement that TTF = 0. It is easy to see that this requirement
is satisfied for

P=(TT)"'T'X (3.2)

that is TP is the orthogonal projection of X onto the latent space. If we
substitute the expression of T = XA in that of P the Euclidean norm of the

squared residual matrix is:

IIX - XA(ATX'XA)TATX"X|]? = tr(X"X — X'XA(ATX'XA) TATX"X).
(3.3)

This expression is minimized with respect to the matrix A satisfying con-
straints (2.3) or (2.4) by the eigenvectors of X'X corresponding to the d
largest eigenvalues (e.g. Rao (1964)). These solutions are known as the prin-
cipal components of X, and can also be obtained as (Hotelling (1935)) the

solutions of



max a/X'Xa; 1=1,...,d

aai=t (3.4)
t{tj =0,5<z2

The other DRMs used in prediction involve both the matrix of regressors

X and the matrix of responses Y.

The solutions of the RRR model (2.6) that minimize the RSS of the
responses were given by Izenman (1975) but Rao (1964) had already derived
these solutions from a generalization of principle components analysis (PCA).
From equations (2.8) and (2.9) the RSS of the RRR model can be written

as

Y —XAATX"XA)'A™X"Y|? = tr(YTY - Y XA(ATX'XA) 'ATXTY)

(3.5)
which has to be minimized under constraints that (ATX"XA) is diagonal
with finite diagonal entries. From the decomposition (2.10) it is clear that
we can require without loss of generality that (ATX"XA) = I. Then the LS

solutions are those that maximize the Lagrangian
tr[Y'XAA'X'Y — $(ATX"XA —TI)] (3.6)

where ® is a symmetric matrix of Lagrangian multipliers. By equating the
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first derivatives to zero we get the first order conditions

XYY XA =X"XA®
(3.7)
ATX'XA =1

Assuming that XX is non-singular the solutions are the eigenvectors A
satisfying
(X'X)"'X'YY'XA = Ad (3.8)

where @ is the (d x d) diagonal matrix made up of the d largest eigenvalues
é1,. .. ,¢q in non-increasing order! scaled so that ATX"XA =1
The optimal LS latent vectors for the RRR model are then given by the

eigenvectors associated with the d largest eigenvalues
X(X'X)'X'YY'T =T®. (3.9)

By substituting Y'T = Y'T, where Y is the full rank LS solution, equation
(3.9) becomes
YY'T = T®. (3.10)

Hence the latent variables are the principal components of the orthogonal
projection of Y onto X scaled to unit length 2. It follows that taking the
complete set of min{p, q} latent variables we obtain Y.

In canonical correlation analysis (CCA) (Hotelling (1936)) pairs of latent

variables (r;,t;) = (Yd;,Xa;) with maximum squared correlation are deter-

In case ¢g = $(a+1) the solutions would be non-unique
2Note that although the coefficients A are not uniquely defined for X"X singular, the
latent variables are always unique.



mined. Min{p, q} such pairs are determined under the constraint of being

orthogonal to the previous ones. Formally, Magnus and Neudecker (1988)

show that it is sufficient to require that the latent variables in one space are

orthogonal to the previous ones, hence the j-th pair of CCA latent variables

is obtained by the solution of the following maximization problem:
(a]XTYd;)?

alX"Xa;d] Y1Yd;

ala; = 1, did; = 1 (3.11)

max

alX"Xa; =04 < j

The solutions are the eigenvectors satisfying

X™X)'X'Y(Y'Y) 'Y Xa; = a;p?
(XTX) (YY) i = ajp; (3.12)
(YTY)'Y"X(XTX)1XTYd; = djp?

where p? is the j-th eigenvalue. p] is the squared correlation between the
j-th pair of latent variables and it is known as the j-th squared canonical
correlation. When CCA is applied to prediction the first d latent variables
T = XA are used as regressors. From the objective function (3.11) it is clear
that these subsets of latent variables are not optimal for the prediction of the
y variables. Using the complete set of min{p, ¢} latent variables T the fitted
values are the full rank LS solutions of the linear regression model (2.1). The
CCA latent variables T lie completely in the space spanned by the full rank
LS solutions Y; it can be easily shown that t; = Ydipi. CCA is a valuable
exploratory tool for the study of the linear relationship between two sets of

variables, however its use in prediction has seldom given satisfactory results.
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A DRM related to CCA is maximum redundancy (MR) (Van den Wol-
lenberg (1977)). He shows that the MR solutions are the solutions of
(a‘]!-)(‘rYdj)2

a/XTXa;

ala; =1, dd; =1 (3.13)

max

alX'Xa; =0, i< j.

By equating the derivatives to zero and solving for a; it is easy to show that
the MR solutions are the same as the LS solutions of the RRR model given
by (3.8). While in CCA the matrices X and Y are treated symmetrically,
that is they can be exchanged without changing the solutions, in MR they are
treated asymmetrically as a matrix of regressors and a matrix of responses. In
MR min{p, ¢} pairs of latent variables (t; = Xa;,r; = Yd;) are determined
so that the projection of r; onto t; has maximum length.

Wold (1982) proposed the method of partial least squares (PLS). It is
presented as an algorithm in which p pairs of latent variables are derived
without explicit optimization. The functioning of the method is as'follows.
After k — 1 pairs have been determined, the k-th pair is determined as the
linear combinations with unit-length coefficients of the orthogonal residuals
of the x variables that has maximal covariance with a linear combination

with unit-length coefficients of the y variables. That is, if we let
X® = X = T-ty (T Te-1)) " Tl X,

then the coefficients of the k-th pair are provided by the solutions of
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max dJ Y X®a;

(3.14)
azak = 1, dzdk =1
The latent variables are therefore given by
rey = de
(3.15)
tk = X(k)ak

At each iteration PLS computes the unit-length coefficients a, and dj so
that vector t; = X a; has maximal covariance with the vector ry = Ydy,
where X®) is the matrix of orthogonal residuals of X and it is known as the
deflated X matrix. This deflation leads to latent variables that are orthogonal
to the previous ones. The k-th pair of latent variables are the left and right
singular vectors of the matrix YTX®) corresponding to the largest singular
value. Note that the coefficients of the latent variables in the original x
variables must be computed separately and these will not necessarily have
unit length. This feature renders the understanding of the method and also

the computation of the RRR coefficients M in (2.8) more difficult.

Different versions of the algorithm for computing PLS have been pro-
posed. Some of these are given by Gelaldi and Kowalski (1986), Hoskulds-
son (1988) and Nomikos and MacGregor (1993); they all give the same so-
lutions but with different computational efficiency. Hoskuldsson (1988) and
Helland (1988) have contributed to explaining the functioning of the PLS
algorithm. de Jong (1993) and then Schmidli (1995) give different formulae

for computing the matrix of coefficients for expressing the PLS latent vectors
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in the original variables x. In the Appendix we outline an efficient algorithm

for computing PLS.

de Jong (1993) proposed the method SIMPLS which is closely related
to PLS with the difference that the solutions are obtained from a straight-
forward optimization problem. In SIMPLS the coefficients of the latent vari-

ables are the solutions of the problem

max (d}, Y™ Xay)?

ala, =1, dld; = 1, (3.16)

a;XXa; =0,5<k.

By letting A(x-1) = (a1,... ,ak_1), the solutions are given by the first eigen-

vector of
XTXA(k_l)(A{k_I)XTXA(k_l))_l {k_l)XTXXTYTYTX, (3.17)
for the coefficients a; and by
Y'Xa;, = dg (3.18)
for the coefficients d;. The latent variables are defined by

rey = de
(3.19)

tk = Xak

In applications it has been shown that these solutions are numerically very
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close to the PLS ones.

Unlike CCA and MR, the PLS (and SIMPLS) latent variables are free
to span the whole X-space and not only the space spanned by the full rank
LS solutions Y. It should be noted that CCA and MR give latent variables
of the projections of the responses on the ezplanatory space while PLS and

PCA give latent variables of the explanatory variables.

Table 1 gives a summary of the DRMs we discussed in this section. There
we show the objective function for the generic k-th latent variable and the
matrices whose eigenvectors are the solutions. The objective function is
maximized under the constraints aja; = djdy = 1 and a;X"Xa; = 0
for 7 < k. The solution matrices are those whose eigenvectors are solu-
tions to the maximization problem. The symbol H; denotes the matrix

XTT(k_l)(T{k~1)T(k_1))'IT{k_l)Y and it is computed at each iteration.

name obj. func. solution matrix criterion

PCR max a; X' Xa X'X k-th eigenvalue
CCA max a{x(:)zc)::;%%l; o (X™X)'XTY(Y'Y) 'YX | k-th eigenvalue
MR/RRR | max ﬁfz’;%f (XTX)"'XTYY™X k-th eigenvalue
SIMPLS max (alX"Ydy)? (I-H)X'YY'X 1-st eigenvalue

Table 1: DRMs used in prediction.

(SIMPLS is approximately the same as PLS)
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4 Common Objective Function

In this section we introduce a common objective function from which the
objective functions of the various DRMs can be obtained as special cases.
Burnham, Viveros and MacGregor (1995) related these objective functions
in terms of different metrics applied to the spaces spanned by the Y and X
variables. In this paper we do not tackle the problem of choosing the metrics
but we suggest a function that can be used to obtain the different methods
discussed above as well as some others.

All of the objective functions of the DRMs discussed in the previous sec-
tion, except that of PCR, can be written in terms of the correlation between
the two sets of latent variables in the two spaces and their length. We pro-
pose to obtain the kth latent component by maximizing the following generic

form of an objective function:

9(tr,rr, @, B) = cor®(tx, rx)|[re| [* [[tx][>
ala, =dld, =1, alX"Xa; =0, j < k (4.1)

@, >0.

The objective function (4.1) is the product of three quantities involving the
latent variables: the squared lengths of each and the squared correlation. As
- shown for PCA, the maximization of the length of the latent variables leads
to minimizing their Euclidean distances from the set of variables from which
they are gemerated (that is the RSS). The maximization of cor?(t,r) leads
to minimizing the Euclidean distance (the angle) between the two latent

variables. Therefore the parameters a and 3 can be used to give more or less
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weight to the minimization of the RSS of the fit of the original variables to the
latent variables in the same space. Table 2 shows how the different methods

correspond to different choices of the parameters a = {0,1,00} and 8 =

{0,1}.

CCA | MR | SIMPLS | PCR
o 0 0 1 0o

I5] 0 1 1 finite

Table 2: DRMs corresponding to different values of the parameters a and S.
SIMPLS is approximately the same as PLS.

In the RRR framework we are not interested in the latent variables of
the response variables and we can simplify the objective function (4.1) by

discarding the parameter 3. By setting 8 = 1, Equation (4.1) simplifies to

cov(t;,r; a
g(ts x50 = 1) = iR |1

ala; = dld; = 1, alX"Xa; = 0, i < j (4.2)

a>0

In the univariate case (i.e. r = y) this objective function reduces to that
suggested by Stone and Brooks (1990) for continuum regression. By letting
a take values between zero and co we have a continuum of solutions be-
tween RRR (a = 0) and PCR (a — o0), passing through SIMPLS (a = 1).
However, this objective function does not yield CCA. The role of a in this
objective function is that of giving a weight to the closeness of the X vari-

ables to the latent variables. Table 3 summarizes the methods yielded by the
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objective function (4.2) as « increases.

MR | SIMPLS | PCR

«a 0 1 0o

Table 3: DRMs corresponding to different values of the parameters a. SIM-
PLS is approximately the same as PLS.

An interesting property of the objective function (4.2) is that its solution
does not require solving for r. In fact, let & = 2(a — 1), p1 and ps be two
Lagrange multipliers for the constraints in (4.2) then, equating the derivatives

with respect to d and a to zero gives the normal equations

99 . XTYd(tTr)(t7t)* + k(X X)a(t"t)* ) (tr)? = ap, 43
4.3

89 : Y™ Xa(tr)(t"t)™* = dpa.
Pre-multiplying g—% by d7 gives

pe = (£7r)%(t7t) 7R
Hence, we can simplify the second normal equation of (4.3) as

Y Xa(t'r)"' =d. (4.4)

The parameter d is not of interest for the prediction and can be eliminated

from the solution. By substituting the expression of d into the first normal
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equation in (4.3) we have
XYY Xa(t"t)* + k(X X)a(t"t)* D (t'r)? = ap; (4.5)
Hence the solution to (4.2) can be simplified as
XYY Xa(t't) + k(X" X)a(t'r)’ = ap (4.6)

where p = (t#ﬁ As required, for k = 0 (o = 1), (4.6) is the PLS solution
equation and for k = —2 (a = 0) it is the RRR solution, since in this case
p = 0. It is interesting to observe that for k = 2 (a = 2), (4.2) is the product
of the sum of squares of r explained by the regression on t and the sum of

squares of X explained by t. The solution becomes
XYY Xa(t't) + (X"X)a(t'r)? = ay, (4.7)

that is, the sum of the matrices that generates the PLS and the PCR solu-
tions. It should be noted, however, that the matrix defining the solutions for
k # 0 and k # —2 depend on a and the solutions must be found numerically.
Also note that after the first latent variable is determined, the subsequent
ones must be orthogonal to the previous ones. For k = —1 this constraint
is automatically satisfied (as g = 0) but for other values of k this require-
ment must be imposed. It can be enforced, either by the usual “brute force”
projection of the solution matrix in the space orthogonal to the previous so-
lutions (as in SIMPLS) or by approximation deflating the X matrix (as in
PLS).
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The additive form of the solution (4.6) suggests another approach to
achieve a generic form that generates different DRMs changing a scalar pa-

rameter. We consider the matrix
AX™X)TIXTYY™X + (1 - )X'X. (4.8)

For 0 < X < 1 this matrix is a convex linear combination of the matrix that
generates the MR solutions and the one that generates the coefficients of the
principal components. By letting the parameter A take values in [0, 1] the
first d eigenvectors of this matrix constitute the coefficients of latent variable
solution of a continuum of DRMs that go from MR to PCR. Furthermore,
for all values of A € [0,1] the constraint of orthogonality among the latent
variables is automatically satisfied. A model-based justification for adopting
such a solution matrix is the minimization of a convex sum of ||X — PrX]|
and ||Y — PrY]||, where Pr is the orthogonal projector on the columns of
T. The problem of assigning a value to the weight A will be considered in a

later paper.

5 Summary and Concluding Remarks

The use of DRMs like PCA or PLS in prediction cannot be justified by the
minimization of the RSS of the responses. In this paper we show how the
objective function of several DRMs can be written in terms of the closeness
of the latent variables to the original variables and to the responses. In order
to have a more flexible tool for determining latent variables we propose an

objective function as well as a simplified version from which all the DRMs
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discussed here can be derived as special cases. The simplified version of this
objective function however offers different solutions for different values of the
scalar parameter which can be considered intermediate with respect to the
known DRMs. The form of these intermediate solutions is a sum of matrices
and the solutions have to be computed iteratively since the coefficients of
the sum depend on the values previously obtained. In order to simplify the
derivation of intermediate methods we also consider a convex linear combi-
nation of different matrices to derive the coefficients of the latent variables.
By letting the coefficient of this convex combination vary in the finite range
[0,1] the solutions also vary between the optimal LS solutions of the RRR
model and the PCA solutions.
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Appendix

Here we outline the algorithms that efficiently compute the DRMs we dis-
cussed. The algorithms are written in pseudo-code without any reference to
a specific programming language. We assume that subroutines for singular
value decomposition, matrix inversion and QR decomposition are available.

In what follows we indicate the computation of the matrix of coefficients
A for each method. We assume that the matrices X"X and Y'Y are non
singular.

For all methods the data matrices X and Y must be column mean-

centered. This means that the matrices must be initialized as:

XX-21,17X

Y+ Y-11,17Y

Often DRMs are applied to matrices with columns scaled to unit variance.

In this case the matrices are to be transformed as:

X + X4/n[diag(X™X)]"?

Y < Y/n[diag(YTY)]"!

The singular value decompositions of the data matrices are computed first

and stored as:

svd(X) = UAVT
where U and V are orthonormal matrices and A is diagonal with pos-

itive, non-increasing, diagonal entries.
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svd(Y) = WI'Z"
where W and Z are orthonormal matrices and T is diagonal with pos-

itive, non-increasing, diagonal entries.

Principal Component Analysis

A=VA*t/n

T = XA

Reduced Rank Regression

svd(U™WT') = JAL"
A=VA1'I/n

T =XA

Canonical Correlation Analysis

svd(U"™W) = JAL"
A=VA I /n

T = XA
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Partial Least Squares

0) Initialize Xo =X, Yo =Y.
1) svd(X]_,Y) = JAA

2) ¢ = ji (first column of J)
3) tr = Xy-1Ck

4) cx + [en/y/titr]vn

5) b [t/ v/ELEilV

6) Xx = (L, — %)Xk—l

7) if sum(diag(X}; X)) < € go to 8
else go to 1

8) N = XC

qr(N) = QR
A = CR™!

After the coefficients A have been computed, the matrix of regression

coefficient of rank k, Mk, is computed as

M = aptlY + M1, k=1,...,d, Mg =0
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