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Abstract

In this paper we briefly review dimensionality reduction methods such as principal com-
ponents analysis, canonical correlation, partial least squares and reduced rank regression.
We also consider some recent techniques such as maximum overall redundancy (MOR), and
weighted MOR. All these methods are applied to a set of copolymer reactor data.
Keywords: Canonical correlation regression, maximum overall redundancy, partial least

squares, principal component regression, reduced rank regression, polymerization.

1. Introduction

Many units in the chemical processing industries processes such as chemical reactors are
equipped with sensors connected to computers that can provide hundreds of measurements
taken on many process variables (x) every few seconds and on output characteristics (y)
sometimes less frequently. The variables are often highly correlated as well. The availability
of the * measurements can be used to monitor the process itself and also as a diagnostic
tool for detecting causes of out-of-control values of the y-variables. The structure of such
data calls for an approach which looks for a lower dimensional subspace in which the process
can be monitored and from which y can be predicted. We refer to this as dimensionality
reduction approach. In this approach the y variables are predicted by latent variables in «

(linear combinations of the z-variables).



In section 2, we briefly outline the usual dimension reduction methods (DRMs). Section
3 gives an application of these DRMs to data from a copolymer reactor. Section 4 gives

some concluding remarks.

2. Dimensionality Reduction Methods (DRMs)

Let X be an (n x p) matrix containing n independent measurements on p process (ex-
planatory) variables and Y be an (n X ¢) matrix of n independent observations on ¢ response
(quality) variables. We assume that the columns of these matrices are mean centred and

that the data follow the multivariate linear model

Y =XB+E - (2.1)

where B is the (p X ¢) matrix of regression coefficients and E is a matrix of errors.

DRMs typically predict the responses (Y') from a subspace of the set of regressors (X).
Thus linear combinations of the z-variables (latent variables) are used to predict Y. There
are several methods available and we now briefly consider some of them. The DRMs that we
consider determine a set of d (< p) orthogonal latent variables, T', which form a subspace of
L(X), the space spanned by the columns of X.

2.1 Principal Components Regression (PCR)

Let T = X A where A = (a4, ...,aq) is a (p X d) matrix of coefficients. Consider the
orthogonal projection of X onto the subspace spanned by the columns of T.‘ This is obtained
by minimizing

| X -TP|’=]| X - XAAX'XA)TAX'X |? (2.2)
where P is the projection of X onto the subspace. Subject to the condition that the d
latent variables are orthogonal, ie. A’X’'X A = I, the expression (2.2) is minimized w.r.t.
the matrix A by the eigen-vectors of X'X corresponding to the d largest eigen-values (see

Rao (1964)). These latent variables are referred to as the principal components (PC) of X.



PCR uses an appropriate number of these PC’s to predict y. It should be noted that
the PC’s are not obtained using an optimality criterion for the prediction of y but for the
reconstruction of X (prediction of x).
v2.2 Canonical Correlation Regression (CCR)

In this procedure pairs of latent variables (r;,t;) = (Y'd;, Xa,) are obtained by maxi-

mizing the objective function
(a}X’Ydj)2/[a;X'Xajd;Y'Ydj] (2.3)

with respect to d; and a; such that aja; = 1 = djd; and a;X'Xa; = 0 i < j (see
Hotelling (1936), Magnus and Neudecker (1988)). For predicting y the first d latent variables
T=XA= X(a,a,,..,ay) are used as regressors. From the objective function it is clear
that subsets of latent variables chosen this way are not optimal for the prediction of the y
variables.

2.3 Reduced Rank Regression (RRR)

The linear model in the latent variables T' can be written as
Y=TQ+E" (2.4)
where @ is a (d x ¢) matrix of regression coefficients. Taking T'= X A as before
Y =XAQ+E'=XM+ E". (2.5)

The linear relationship between the explanatory variables X and the responses Y is ex-
pressed by the (p x d) matrix M = AQ of rank d. Thus, the use of DRMs in prediction
can be regarded as a regression with a rank deficient matrix of coefficients. Model (2.5) is
known as the reduced rank regression (RRR) model.

The residual sum of squares (RSS) for this model can be written as

Y - XAA'X'XA)TAX'Y |2 (2.6)



This is to be minimized with respect to A subject to the condition A’X'XA = I. Tt is
known (see Rao (1964), Izenman (1975)) that the optimal latent vectors for this RRR model

are given by the eigen-vectors associated with the d largest eigen-values obtained from
XX'X)'X'YY'T=T% (2.7)
where @ is the diagonal matrix of eigen-values. Suppose now that ¥ = X B = X (X'X)"!X'Y
is the ordinary least square estimate of Y, then Y'T = Y'T and hence (2.7) becomes
YY'T=T%. (2.8)

This means that the latent variables obtained are the principal components of the orthogonal
projection of Y onto X. It should be noted that these latent vectors are obtained from an

optimality criteria (minimization of RSS) for the prediction of y.

2.4 Partial Least Squares (PLS)

Wold (1982) proposed an algorithm (which is known as PLS) to compute pairs of latent
variables by maximizing their covariance. Several versions of this algorithm have been pro-
posed, see, for example, Gelaldi and Kowalski (1986), Hoskuldsson (1988), Helland (1988),
Nomikos and MacGregor (1993), de Jong (1993) and Schmidli (1995). Merola (1998) gave
an improved algorithm which is given below.

Let us denote by T'(;_1) the latent variables in the X-space after (k — 1) pairs of latent

variables have been determined. Then
XM = X - Tgoy(Th_)Tr-1y) " Ty X

represent the residuals from the X matrix at this stage and is refered to as the deflated X-

matrix. Then the coefficients of the k-th pair of latent variables are obtained by maximizing
d,Y'X®ay such that aja = 1= dd;. (2.9)

The k-th pair of latent variables is given by
r. =Yd; and t, = X®a,. (2.10)
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The algorithm then becomes:
0) Initialize Fo = X.
1) svd(F;_,Y) = JAT'; Svd(X) = singular values of the matrix X.
2) ¢; = 7, (first column of J)
3) tj=Fjc
9 ¢ — e/ JELIVA
5) t; — [t;/\[titi]vn
t;t]

6) Fj=(I,— =)F;

n

7) If (]| Fj||?’<€) go to 8

else go to 1

8) ar(N) = QR
A=CR™

After the coefficient A is computed, M, is computed as
M =at,Y + My_;, k=1,...,d, Mog=0

2.5 Maximum Overall Redundancy (MOR)

In the context of multivariate process control it is important to predict y as well as to
reconstruct the X matrix from the latent subspace. However, there is a trade off between
these two objectives and PLS is a compromise between these without showing any particular
optimality. Now we like to obtain a set of latent variables which meet both of these objectives.

Earlier we saw that

(i) the first d principal components of X are the d latent variables in L(X) giving the

best reconstruction of X.



(i) the first d RRR-latent variables (PC of Y') are optimal for predicting y.

Merola (1998) has shown that, if the two objectives are equally important, then the corre-

sponding latent variables are given by the eigen-solution to
X(X'X) X' (YYT+XXT=TA (2.11)

where A is a diagonal matrix of eigen-values and (X'X)~ is a generalised inverse of X'X.

Now equation (2.11) can be written as
(YY' + XXT =TA (2.12)

where Y is the projection of Y onto L(X). Thus the resulting latent variables are the
eigen-vectors corresponding to the d largest eigen-values of YV + XX !, which is the sum
of the matrices generating the latent variables in RRR and PCA respectively. We refer to
this procedure as the Maximum Overall Redundancy (MOR).
Weighted MOR

We can generalize the MOR procedure to obtain a set of latent variables which are the

eigen-vectors of

1-a)YY +aXX' (2.13)

which is a convex combination of the matrices in. RRR and PCA. This will be referred to
as the Weighted MOR (WMOR) method. It is easy to see that a = 0,0.5,1 correspond to
RRR, MOR and PCR solutions, respectively. As a becomes smaller the prediction of y gets
more weight and vice versa. Now we consider some special weighting schemes. Let £(y) =
tr(Y'Y)?), h(y) = tr(Y'Y), ((§) = tr(Y'Y)?], 6(@) = tr(Y'Y), () = tr[(X' X)),
and £;(z) = tr(X'X).
Based on these we define
= \/f )/ (VL) + (), (i) a2 = &i(y)/(G(y) + 4(=)),

(iii) \/é’ (\/€ + \[E ), and (iv) aq = £1(9)/(€1(9) + £1(x)) (2.16)

As can be seen, the weights are based on the norms of Y, Y and X. The procedure
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corresponding to o; may be referred to as WMOR; (i = 1,2,3,4). In the next section we
apply the different DRMs to a set of data. For comparing different methods we consider a

measure which is called a Redundancy Index (RI) and is defined as
RI =tr(Y'Y)/tr(Y'Y). (2.14)

The numerator is the sum of the ‘regression sums of squares’ for all the y variables and
the denominator is the sum of the corresponding ‘total sums of squares’. Thus it can be
interpreted as an overall measure similar to R?. When all the variables are standardized to

unit norm, RI simplifies to be the average of all the individual R? for the y-variables.

3. Analysis of Copolymer Reactor Data

We have some data available from a copolymer reactor model which simulates a chemical
reaction with 5 input variables. These inputs are:
z1: MMA, flow rate of first monomer (methyl methacrylate)
x9: STY, flow rate of second monomer (styrene)
x3: INI, initiator flow rate x4: TOL, solvent flow rate
zs: TEMP, temperature (degrees Kelvin). Flow rates are in mol/min.
Such a chemical reaction requires a certain amount of time to stabilize from the time it is
started. The simulator gives measures on 9 different responses. We consider 5 of these
y1: CPC, copolymer composition y: CR, radical concentration
y3: RMW, accumulated molecular weight y4: RP, polymerization rate
ys: Z, weight conversion

The procesé was activated following the prescription given in Table 3.1



Table 3.1: Specification of the simulated reaction.

| Name [ Value | Tolerance |
MMA | 0.08725 | £0.008725
STY 0.08170 | £0.00817
INI 0.02 +0.002
TOL 0.1758 | £0.0175
TEMP || 333.0 +0.1

These specifications represent the process under “normal” operating conditions. The
simulator reads the values of the 5 input variables and gives the corresponding readings of
responses.

3.1 Data and Initial Analysis

The process was simulated by letting the recipe specified in Table 3.1 run for 200 minutes
to reach steady state. After that pseudo-random noises were added to the 5 input variables
every 8 minutes and the outputs were measured correspondingly. The noises were generated

as multinormal, each with mean zero and standard deviation equal to 3

of the tolerance
interval shown in Table 3.1. We ran the process to obtain 150 observations of the process
under random fluctuations of the inputs, with the same error structure.

Prior to the analysis, the variables have been mean centered, that is the mean has been
subtracted from each column.

Table 3.2 gives the eigen-values of the covariance matrix of the x variables (scaled and

unscaled) and the cumulative proportion of variance explained.

Table 3.2 Eigen-values and cumulative variance explained for the X matrix.

Eig-val X | Cum. var. | Eig-val X scaled | Cum. var.
15.91 0.99 1.450 0.29
0.0048 0.99 1.230 0.53
0.0014 0.99 0.988 0.73
0.0008 1 0.767 0.88
0.0000 1 0.564 1

The effect of standardization is obvious from the table. The value and separation between

eigen-values changes drastically. Based on the eigen-values of the unscaled X one may decide
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the rank of X to be less than full. On the other hand, the correlation matrix indicates that
the matrix has full rank, as it is the case here. The difference is due to the fact that some
of the input variables have small readings due to the units they are measured in.

The Principal Component Analysis of the X matrix can be synthesized by the squared
correlations between the principal components and the x variables. Tables 3.3 and 3.4 show

these correlations for the unscaled and scaled variables.

Table 3.3: Squared correlations between the unscaled « variables and the principal
components of the X matrix.

Corr? | 1st PC | 2nd PC [ 3rd PC [ 4th PC | 5th PC
MMNIA 0.00 0.01 0.74 0.25 0.00
STY 0.01 0.02 0.50 0.48 0.00
INI 0.06 0.00 0.06 0.02 0.85
TOL 0.02 0.98 0.00 0.00 0.00
TEMP 1.00 0.00 0.00 0.00 0.00

Table 3.4: Squared correlations between the scaled x variables and the principal
components of the scaled X matrix.

Corr? [ 1st PC | 2nd PC | 3rd PC | 4th PC | 5th PC
MMA 0.26 0.28 0.07 0.36 0.03
STY 0.46 0.14 0.15 0.04 0.20
INI 0.55 0.05 0.05 0.20 0.15
TOL 0.07 0.27 0.50 0.12 0.04
TEMP 0.11 0.49 0.20 0.05 0.14

For the unscaled variables the first PC consists of temperature. This is to be expected since
this variable has the largest variance. For the same reason the solvent (TOL) corresponds
to the second principal component and the initiator (INI) to the last. The third and fourth
principal components are combinations of the two monomers, that have, roughly, the same
variance. PCA on the scaled variables gives a completely different set up. The PC'’s for the
scaled variables cannot be identified with any of the original variables.
Canonical Correlation Analysis (CCA)

We consider CCA to describe the linear relationships between the explanatory variables

and the responses. CCA is particularly powerful for detecting outliers with respect to lin-
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Figure 3.1: First pair of Canonical Correlation variables.

ear dependences between the two spaces. Since CCA is invariant to changes of scale, we
perform the analysis on the variables standardized to unit length. The squared Cannonical

Correlations (CC) are the following:
2 _ 2 _ 2 _ 2 _ 2 _
p1 = 0.958, p; = 0.526, p;3 = 0.344, p; = 0.118, p; = 0.017

These show that there is only one very highly collinear direction common to the two sets
of data. Figures 3.1 and 3.2 show the scatter plots of the first three canonical variates; in
the second plot the points are labeled for ease of identification. There does not seem to be
outliers or influential points in these directions. The weights (that is, the coefficients of the

latent variables standardized to unit length) for the canonical variates in the X space are

given in Table 3.5.
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Figure 3.2: Plots of the second and third pairs of Canonical Correlation of variables.
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Table 3.5: Weights of the CC variates in the X space.

weights || cc.varl | cc.var2 | cc.vard | cc.vard | cc.vard
MMA 0.000 | 0.868 | -0.327 | 0.493 | -0.127
STY 0.049 | 0.444 | 0.795 | -0.394 | -0.058
INI 0.055 | -0.062 | 0.373 | 0.224 | -0.899
TOL -0.076 | -0.213 | 0.331 | 0.742 | 0.359
TEMP 0.994 | 0.026 | 0.112 | -0.026 | -0.208

From Table 3.5 it is evident that the first CC variate in the X space is practically TEMP.
The second variate is highly correlated with MMA, uncorrelated with TEMP and somewhat
correlated with the other 3 components. Also the correlations between the & variables and
the canonical variates, given in Table 3.6, confirm that the first canonical (latent) variable

consists of temperature.

Table 3.6: Correlation between the original & variables and the canonical variates
in the X space

Corr(X, CC.X) || CC.varl | CC.var2 | CC.var3 | CC.var4 | CC.var5
MMA 0.00 0.91 -0.24 0.34 -0.07
STY -0.07 0.58 0.73 -0.29 0.20
INI -0.20 -0.25 0.18 0.25 -0.90
TOL 0.06 -0.22 0.49 0.73 0.43
TEMP 1.00 -0.03 -0.01 0.06 0.07

The correlations between responses and CC variates in the X space, given in Table 3.7,

help understand which responses are best explained by the CC latent variates.

Table 3.7: Correlation between y variables and the canonical variates in the X space

Corr(Y, CC.X) || CC.varl | CC.var2 | CC.var3 | CC.var4 | CC.vard
CPC -0.05 -0.17 0.00 -0.06 -0.01
CR 0.93 -0.10 0.04 0.00 0.00
RMW -0.14 0.13 -0.04 0.08 -0.01
RP 0.94 0.01 -0.05 0.01 0.00
zZ 0.18 -0.43 -0.08 -0.05 0.01

The first canonical variate in the X space is highly correlated with the responses CR

and RP (which are highly correlated between themselves), while the second is only mildly
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correlated with the weight conversion Z. The last three components are almost uncorrelated
with all y variables. This confirms that the linear relationship between the & and y variables
is one or at most two dimensional, as the CC coefficients indicated. We could also deduce
that the responses CR and RP can be very well predicted by the first CC (that is, by
temperature), but y;, y3 and ys do not seem to have a strong linear relation with any of the
x variables.
3.2 Dimensionality Reduction Methods

We now consider the DRMs PLS, MOR, RRR, CCR and PCR for prediction. The
methods have been applied both on the raw data and on the data standardized to unit length.
We report only the analysis performed on the standardized data for which the different
methods are better compared. In addition, we look at WMOR with different weights. Since
the variables are scaled to unit length, as = g/(p+¢) = 5/(5 + 5) = 0.5. Hence WMOR,
gives equal weights to the prediction of y and the reconstruction of X. Hence WMOR, is
the same as MOR in this context. It turns out that a; and a3 are very close to 0.5 and
ag =~ 0.7. Hence we only consider WMOR, in further discussions.

In order to compare the latent components we examine the correlations between the x
variables and the first two latent components obtained with different methods. These are

given in Tables 3.8-3.9.

Table 3.8: Correlations between the & variables and the first latent variables
for different DRMs

COR PLS | MOR | WMOR4 | RRR | CCR | PCR
MMA 0.11 | -0.10 -0.10 -0.09 | 0.00 | 0.51
STY 0.19 | -0.15 -0.14 -0.14 | -0.07 | 0.68
INI 0.35 | -0.28 -0.33 -0.18 | -0.20 | -0.74
TOL -0.19 | 0.14 0.18 0.07 | 0.06 | 0.26
TEMP | -0.98 ] 0.99 0.99 099 | 1.00| 0.33
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Table 3.9: Correlations between the x variables and the second latent variables
for different DRMs

COR PLS | MOR | WMOR4 | RRR | CCR | PCR
MMA 0.86 | 0.73 -0.70 -092 | 091 | 0.53
STY 0.66 | 0.75 -0.76 -0.57 | 0.58 | 0.38
INI -0.38 | -0.56 0.58 0.19 1 -0.25 | 0.22
TOL -0.03 | 0.07 -0.09 0.03 | -0.22 | -0.52
TEMP | 0.11| 0.07 -0.04 -0.08 | -0.03 | -0.70

All the first latent variables but the first principal component (Table 3.8) have similar cor-
relation pattern with the x variables, and are dominated by TEMP. With the exception of
the second principal component, all other second latent variables are uncorrelated with tem-
perature. Only the second principal component and the second CC variate have correlation
greater than 0.1 (in absolute value) with the solvent, TOL (Table 3.9). All second latent
variates, but the second principal component, have high correlation with the two monomers.
N;)te that MOR and WMOR, latent variables are similar to those of the other predictive
methods, thus different from principal components.

Tables 3.10-3.15 give R? and the Redundancy Indices (RI) for the y variables employing
up to five latent components for the different methods.

Table 3.10: R? and Redundancy Index for PLS

PLS CpC| CR |RMW | RP VA RI

1 comp | 0.001 | 0.813 | 0.023 | 0.819 | 0.061 | 0.453
2 comps || 0.034 | 0.814 | 0.034 | 0.833 | 0.221 | 0.489
3 comps || 0.034 | 0.861 | 0.034 | 0.892 | 0.221 | 0.507
4 comps || 0.036 | 0.872 | 0.043 | 0.892 | 0.221 | 0.511
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 3.11: R? and Redundancy Index for MOR

MOR || CPC| CR | RMW | RP Z RI
1 comp | 0.001 | 0.855 | 0.024 | 0.862 | 0.056 | 0.466
2 comps || 0.028 | 0.855 | 0.032 | 0.865 | 0.199 | 0.497
3 comps || 0.031 | 0.857 | 0.034 | 0.885 | 0.207 | 0.502
4 comps || 0.037 | 0.861 | 0.039 | 0.889 | 0.222 | 0.508
5 comps | 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512
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Table 3.12: R? and Redundancy Index for WMORA4.

WMORA4

CPC

CR

RMW

RP

Z

RI

1 comp
2 comps
3 comps
4 comps
5 comps

0.001
0.029
0.031
0.036
0.037

0.861
0.861
0.861
0.864
0.874

0.024
0.033
0.034
0.039
0.045

0.867
0.873
0.888
0.891
0.892

0.056
0.202
0.209
0.222
0.223

0.468
0.499
0.504
0.509
0.512

Table 3.13: R? and Redundancy Index for RRR

RRR

CPC

CR

RMW

RP

Z

RI

1 comp
2 comps
3 comps
4 comps
5 comps

0.001
0.036
0.037
0.037
0.037

0.872
0.872
0.873
0.874
0.874

0.024
0.039
0.044
0.045
0.045

0.879
0.890
0.891
0.892
0.892

0.052
0.221
0.223
0.223
0.223

0.471
0.510
0.511
0.512
0.512

Table 3.14: R? and Redundancy Index for CCR

CCR

CPC

CR

RMW

RP

Z

RI

1 comp
2 comps
3 comps
4 comps
5 comps

0.003
0.033
0.033
0.037
0.037

0.864
0.873
0.874
0.874
0.874

0.021
0.037
0.038
0.045
0.045

0.890
0.890
0.892
0.892
0.892

0.034
0.215
0.220
0.223
0.223

0.471
0.508
0.509
0.510
0.512

Table 3.15: R? and Redundancy Index for PCR

PCR R?

CPC

CR

RMW

RP

Z

RI

1 comp

2 comps
3 comps
4 comps
5 comps

0.020
0.023
0.025
0.037
0.037

0.055
0.497
0.660
0.692
0.874

0.001
0.026
0.028
0.034
0.045

0.081
0.447
0.692
0.742
0.892

0.060
0.201
0.206
0.222
0.223

0.203
0.366
0.435
0.455
0.512
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For all DRMs but PCR the first latent component explains most of the linear relationships
between the & and the y variables. Also, contributions of the second components are similar
but their addition in the predictive model gives only modest increases in the overall RI.

The different behaviour of PCR is easily explained by the different nature of the PCA




decomposition, which does not depend on the y variables. The performance of PCR in this
example is quite poor, compared with the other methods. The increase in RI follows a similar
pattern for all methods but PLS. The value of RI for PLS prediction of the y variables is
slightly lower than the others for the first two components, but after the third component
is added to the model the RI becomes almost the same as that of the others. For the x
variables we note that the RI’s of PCR are highest for all number of components, while
those of RRR are the lowest for all components.
3.3 Alternative Analysis
Ordinary Regression

We perform regression of each y variable on the x-variables standardized to unit length.

The regression coefficients and R? indices are given in Table 3.16.

Table 3.16: Regression coefficients and R? for the x variables standardized
to unit length

Coeft CPC | CR |RMW | RP VA

MMA -0.171 | -0.089 | 0.160 | 0.026 | -0.333
STY -0.040 | 0.041 | -0.027 | 0.004 | -0.207
INI - 0.005 | 0.071| 0.000 { 0.036 | -0.015
TOL -0.020 | -0.041 | 0.036 | -0.088 | 0.000
TEMP -0.053 | 0.953 | -0.148 | 0.960 | 0.168
R? 0.037 | 0.874 | 0.044 | 0892 | 0.222
R? (Temp) || 0.026 | 0.861 | 0.020 | 0.882 | 0.038

The regression coefficients and the R? indices confirm that only CR and RP are well pre-
dicted by the inputs and that temperature alone is significantly linearly correlated with
these outputs. This is also confirmed by a regression of each y variable on temperature
alone. Corresponding R? (Temp) indices are also shown in Table 3.16.

The results presented so far provide overwhelming evidence to the fact that the only
significant regressions are those of CR and RP on temperature. It should also be clear that
a linear multivariate approach for this kind of data is redundant. It is evident that variables

CPC, RMW and Z are not predicted well at all.
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Time Series Analysis

The poor performance of the linear models for prediction may be explained by the serial
correlation in the responses. In analyzing the time structure of the y variables it is evident
that CPC, RMW and Z have strong correlation with their past values. The analysis of the
sample autocorrelation and partial autocorrelation functions of each y variable individually
leads to the following Autoregressive Integrated Moving Average (ARIMA) models (Box and
Jenkins (1976)).

CPC: ARIMA(2,1,0)
Non-stationary model: Uy, — 1.04U;—1 + 0.47U14—2 = aq,

where Uys = y1; — y1:—1 and ay; is white noise

CR, White noise

RMW, ARIMA(1,0,1): ys; — 0.85ys,—1 = ag; + 0.54a5,_1

e RP, White noise

Z: AR,H\IA(I,O,].), Yst — 0.77y5t_1 = as; + 0.78a5t_1

This indicates that for prediction of CPC, RMW and Z we can use their past values while CR
and RP can be predicted with temperature. It should also be noted that the correlations
as well as regressions of the filtered y variables (residuals from the ARIMA fit) with the
x variables remain almost the same as those of the non-filtered y’s. Also, the canonical
correlations between the filtered y and x are almost the same as those from the non-filtered
y:
p? = 0.958, pa = 0.410, p? = 0.326, p? = 0.105, p? = 0.012

However, predictions of CPC, RMW and Z can be substantially improved by the use of their
past values. This is indicated by the R? (Filter) obtained by regressing each of CPC, RMW
and Z on their past values. (see Table 3.17). We also show the R? values from Table 3.16.
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Table 3.17 R? (Filter) and R? (OLS)

CPC [RMW | Z
R (Filter) | 0.952 | 0.878 | 0.852
R? (OLS) | 0.037 | 0.044 | 0.222

It is evident that R? (Filter) is substantially larger than R? (OLS) for these variables. In

summary

e Responses CR and RP are strongly correlated with temperature and not at all corre-
lated with the other input variables. The R? coefficients shown in Table 3.16 indicate
that almost 90% of the variability in the two variables is explained by temperature

alone. Addition of the other variables to the linear model improves the R? only slightly.

e The other responses, CPC, RMW and Z, show a strong time dependence with their
previous values and are not predicted well by the x variables. Instead, these variables
are well explained by their past values. After filtering the time correlation in the
responses through an ARIMA model, the residuals are still not explained by the input

variables. However, these series are well fitted by ARIMA models.

The conclusion we draw from the analysis is that once the copolymer process has reached
its steady state, it is very sensitive to changes in temperature and not in changes of the other
variables. Of course, this conclusion is only valid within the specified tolerance region shown

in Table 3.1.

4. Concluding Remarks

In this paper we briefly reviewed some common DRMs such as PCR, RRR, CCR and
PLS. We also discussed the relatively new techniques MOR and WMOR. We note here
that there have been attempts to look for a common framework for these procedures (see
Burnham et al. (1995)). Merola (1998) and Merola and Abraham (1998) have discussed a
common objective function from which the objective functions of the various DRMs can be

obtained by changing some parameters.
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